KING FAHD UNIVERSITY OF PETROLEUM & MINERALS Physics Department

PHYS 301 First Major Exam (March 24, 2001) – Term 002

Instructor's Name:	Dr. A. Mekki	
Student's Name:	Key	
I.D. No:		
1.10.		

Exam Time: 90 minutes Show the details of your work

Problem #	Grade
1	/10
2	/10
3	/10
4	/10
5	/10
Total:	/50

(a) Prove the following vectorial relation:
$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \vec{\nabla}^2 \vec{A}$$

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ 2 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$

calculate:

(ii)
$$AB - B^t A^t$$

Consider the following force $\vec{F}=2xz\;\hat{i}+2yz\;\hat{j}+\left(x^2+y^2\right)\hat{k}$.

- (a) Calculate $\vec{\nabla} \times \vec{F}$
- (b) Find potential energy, U(x,y,z), associated with this force.

Q.3

A particle of mass m is acted upon by a force whose potential energy is given by $U(x) = ax^2-bx^3$, where a and b are positive constants.

- (a) Find the force F producing this potential.
- (b) Find the equilibrium positions, and state whether they are stable or unstable.
- (c) Sketch the potential energy curve.
- (d) Discuss the motion if $E_1=2E_0$, $E_2=\frac{E_0}{2}$ and $E_3=-E_0$ where $E_0=\frac{4a^3}{27b^2}$

Consider a particle of mass m whose motion starts from rest in a constant gravitational field. If a resisting force proportional to the square of the velocity (mkv²) is acting along the y-direction, find the distance the particle falls while accelerating from v = 0 to v = 0.5 v_t where v_t is the terminal velocity of the particle.

A rocket traveling through the atmosphere experiences ONLY a linear air resistance force given by -kv. Find the final speed of the rocket in terms of the u (the exhaust speed), m (the final mass), m_0 (the initial mass) and α (a constant given by $\frac{dm}{dt} = -k\alpha$).