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PROBLEMS

7.1 The Square Barrier

1. A particle incident on the potential step of Example
7.4 with a certain energy E � U is described by the wave


(x) � e�kx for x � 0

(a) Verify by direct calculation that the reflection coef-
ficient is unity in this case. (b) How must k be related
to E in order for 
(x) to solve Schrödinger’s equation
in the region to the left of the step (x � 0)? to the right
of the step (x � 0)? What does this say about the ratio
E/U ? (c) Evaluate the penetration depth � � 1/k for
10 MeV protons incident on this step.

2. Consider the step potential of Example 7.4 in the case
where E � U. (a) Examine the Schrödinger equation
to the left of the step to find the form of the solution in
the range x � 0. Do the same to the right of the step to
obtain the solution form for x � 0. Complete the solu-
tion by enforcing whatever boundary and matching
conditions may be necessary. (b) Obtain an expression
for the reflection coefficient R in this case, and show
that it can be written in the form

where k1 and k2 are wavenumbers for the incident and
transmitted waves, respectively. Also write an expres-
sion for the transmission factor T using the sum rule
obeyed by these coefficients. (c) Evaluate R and T in
the limiting cases of E : U and E : �. Are the results
sensible? Explain. (This situation is analogous to the
partial reflection and transmission of light striking an
interface separating two different media.)

3. Use the results of the preceding problem to calculate
the fraction of 25-MeV protons reflected and the frac-
tion transmitted by a 20-MeV step. How do your an-
swers change if the protons are replaced by electrons?

4. A 0.100-mA electron beam with kinetic energy 54.0 eV
enters a sharply defined region of lower potential where
the kinetic energy of the electrons is increased by
10.0 eV. What current is reflected at the boundary? (This
simulates electron scattering at normal incidence from a
metal surface, as in the Davisson–Germer experiment.)

5. (a) Tunneling of particles through barriers that are
high or wide (or both) is very unlikely. Show that for a
square barrier with

and particle energies well below the top of the
barrier (E �� U ) the probability for transmission is

2mUL2

�2 �� 1

R �
(k1 � k2)2

(k1 	 k2)2


(x) � 1
2 {(1 	 i)eikx 	 (1�i)e�ikx }  for x � 0

approximately

(The combination UL2 is sometimes referred to as the
barrier strength.) (b) Give numerical estimates for the
exponential factor in P for each of the following cases:
(1) an electron with U � E � 0.01 eV and L � 0.1 nm;
(2) an electron with U � E � 1 eV and L � 0.1 nm;
(3) an � particle (m � 6.7 � 10�27 kg) with U � E �

106 eV and L � 10�15 m; and (4) a bowling ball 
(m � 8 kg) with U � E � 1 J and L � 2 cm (this corre-
sponds to the ball’s getting past a barrier 2 cm wide
and too high for the ball to slide over).

6. A beam of electrons is incident on a barrier 5 eV high
and 1 nm wide. Write a simple computer program to
find what energy the electrons should have if 0.1% of
them are to get through the barrier.

7. Starting from the joining conditions, Equations 7.8,
obtain the result for the transmission coefficient of a
square barrier given in Equation 7.9 (valid when the
particle has insufficient energy to penetrate the barrier
classically: E � U ).

8. Use the Java applet available at our compan-
ion Web site (http://info.brookscole.com/

mp3e QMTools Simulations : Problem 7.8) to investi-
gate the scattering of electrons from a square barrier
1.00 Å thick and 10.0 eV high, in the case where the
electron energy is equal to the barrier height, E � U.
What is the functional form of the wave in the barrier
region? Determine the transmission coefficient at this
energy, and compare your result with the prediction of
Equation 7.9. What does classical physics predict for
the probability of transmission in this case?

9. Use the Java applet referenced in the preced-
ing problem to obtain transmission and reflec-

tion coefficients for a 5.00-eV electron incident on a
square barrier that is 1.00 Å thick and 10.0 eV high.
Verify the sum rule, Equation 7.5, and compare your
result for T(E) with the prediction of Equation 7.9.
What must the barrier thickness be to transmit 5.00-eV
protons with the same probability?

10. Scattering resonances. Use the Java applet avail-
able at our companion Web site (http://info.

brookscole.com/mp3e QMTools Simulations : Prob-
lem 7.10) to locate the two lowest energies E giving rise
to perfect transmission for electrons scattering from a
square barrier of width 1.00 Å and height 10.0 eV (look
for zero-amplitude reflections while varying E ). For
each energy use the “Trace” feature to estimate the
electron wavelength � in the barrier. (Hint : Zoom in
for a close-up view of the barrier waveform and greater
accuracy.) Compare � with the barrier width L and dis-

P � 16
E

U
e�2[√2m(U�E)/�]L
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cuss your findings in terms of the interference of waves
reflected from the leading and trailing edges of the
barrier (see Example 7.3).

11. The Ramsauer–Townsend effect. Consider the scattering
of particles from the potential well shown in Figure
P7.11. (a) Explain why the waves reflected from the
well edges x � 0 and x � L will cancel completely if
2L � �2, where �2 is the de Broglie wavelength of the
particle in region 2. (b) Write expressions for the wave-
functions in regions 1, 2, and 3. Impose the necessary
continuity restrictions on � and �/x to show explic-
itly that 2L � �2 leads to no reflected wave in region 1.
[This is a crude model for the Ramsauer–Townsend ef-
fect observed in the collisions of slow electrons with no-
ble gas atoms like argon, krypton, and xenon. Elec-
trons with just the right energy are diffracted around
these atoms as if there were no obstacle in their path
(perfect transmission). The effect is peculiar to the no-
ble gases because their closed-shell configurations pro-
duce atoms with abrupt outer boundaries.]

negative, we find that T(E) diverges for some particular
energy E0. Find this value E0. (As it happens, E0 is the
energy of a bound state in the delta well. The calculation
illustrates a general technique, in which bound states are
sought among the singularities of the scattering coeffi-
cients for a potential well of arbitrary shape.) (d) What
fraction of the particles incident on the well with energy
E � �E0� is transmitted and what fraction is reflected?
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12. A potential model of interest for its simplicity is the delta

well. The delta well may be thought of as a square well of
width L and depth S/L in the limit L : 0 (Fig. P7.12).
The limit is such that S, the product of the well depth
with its width, remains fixed at a finite value known as
the well strength. The effect of a delta well is to intro-
duce a discontinuity in the slope of the wavefunction at
the well site, although the wave itself remains continu-
ous here. In particular, it can be shown that

for a delta well of strength S situated at x � 0. (a) Solve
Schrödinger’s equation on both sides of the well (x � 0
and x � 0) for the case where particles are incident
from the left with energy E � 0. Note that in these
regions the particles are free, so that U(x) � 0.
(b) Enforce the continuity of 
 and the slope condition
at x � 0. Solve the resulting equations to obtain the
transmission coefficient T as a function of particle en-
ergy E. Sketch T(E ) for E � 0. (c) If we allow E to be

d


dx �
0	

�
d


dx �
0�

� �
2mS

�2 
(0)

13. Obtain directly an expression for the reflection coeffi-
cient R(E) for the delta well of Problem 12, and verify
the sum rule

R(E) 	 T(E) � 1

for all particle energies E � 0.
14. Keeping constant speed 0.8 m/s, a marble rolls back

and forth inside a shoebox. Make an order-of-
magnitude estimate of the probability of its escaping
through the wall of the box by quantum tunneling.
State the quantities you take as data and the values you
measure or estimate for them.

7.2 Barrier Penetration

15. A barrier of arbitrary shape can be approximated as a
succession of square barriers, as shown in Figure P7.15.
Write the transmission coefficient for this barrier using
the result of Equation 7.9 for each of the individual
barriers, assuming the transmitted wave intensity for
one becomes the incident wave intensity for the barrier
immediately following it in the series. Show that the
form of Equation 7.10 is recovered in the case where
E � U and �L �� 1.

16. Consider an � particle confined to a thorium nucleus.
Model the nuclear potential as a semi-infinite square
well with an infinitely high wall at r � 0 and a wall of
height 30.0 MeV at the nuclear radius R � 9.00 fm.
Use the iterative method described in Example 6.8 to
estimate the smallest values of energy and velocity per-
mitted for the � particle. What conclusion can you
draw from the fact that the ejected � is observed to have
a kinetic energy of 4.05 MeV?
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17. The attempt frequency of an � particle to escape the
nucleus is the number of times per second it collides
with the nuclear barrier. Estimate this collision fre-
quency in the tunneling model for the � decay of tho-
rium, assuming the � behaves like a true particle inside
the nucleus with total energy equal to the observed ki-
netic energy of decay. The daughter nucleus for this
case (radium) has Z � 88 and a radius of 9.00 fm. Take
for the overall nuclear barrier 30.0 MeV, measured
from the bottom of the nuclear well to the top of the
Coulomb barrier (see Fig. 7.8).

18. Verify the claim of Section 7.2 that the electrons of a
metal collide with the surface at a rate of about 1030 per
second per square centimeter. Do this by estimating the
collision frequency of electrons in a 1.00-cm cube of
copper metal with one face of the cube surface. Assume
that each copper atom contributes one conduction
electron to the metal (the chemical valence of copper is
	1) and that these conduction electrons move freely

with kinetic energy equal to 7.00 eV. In fact, not all the
electrons have this energy; see Chapter 10.

19. Resonant tunneling. Heterostructures formed
from layered semiconductors have characteris-

tics important to many modern electronic devices.
Here, we use computer simulation to study tunneling
in a three-layer gallium arsenide/gallium aluminum ar-
senide (GaAs–Ga1�xAlxAs) sandwich. The GaAs layer
constitutes a potential well between two confining bar-
riers formed by the Ga1�xAlxAs layers. Unusually large
transmission (resonant tunneling) through the device
occurs when the energy of the incident electron coin-
cides with that of a bound state in the central well. The
Java applet simulating this device can be found at
http://info.brookscole.com/mp3e QMTools Simula-
tions : Problem 7.19. The barriers are 0.25 eV high
and 5.0 nm wide, with a gap of equal width separating
them. Note that electrons in these materials behave
like free electrons with an effective mass m* �

0.067me, only a fraction of the free electron value.
Starting from E � 0, gradually increase the electron en-
ergy to find the lowest value for peak transmission. In-
vestigate the width of the resonance by varying the elec-
tron energy further until T(E ) falls to half of its peak
value. (In practice, the incident electron energy is
fixed and the device is “tuned” to resonance by apply-
ing a suitable bias voltage that alters the bound-state
energies of the central well.)

20. Ammonia inversion. Inversion of the ammonia
molecule can be simulated using the Java applet

available at our companion Web site (http://info.brooks
cole.com/mp3e QMTools Simulations : Problem 7.20)
The potential energy is the double oscillator of Equation
7.15 with parameter values chosen to model the nitro-
gen atom in NH3 (as discussed in the text) and a re-
duced mass of 2.47 u for the atom in this environment.
(a) Find and display the two lowest-lying stationary states
of the nitrogen atom in the ammonia molecule. De-
scribe the appearance of these waveforms (symmetry,
number of nodes, and so on). (b) Construct an initial
(nonstationary) state for the atom by mixing together
these two stationary waves with equal amplitude. De-
scribe this state. What does it imply for the location of
the atom initially? (c) Explore the time evolution of the
state constructed in (b). Verify that the atom flip-flops
between the two equilibrium positions and determine
the “flopping” frequency. Multiplying the flopping fre-
quency by Planck’s constant gives a characteristic energy
for this process. How does this characteristic energy
compare to the energy separation of the stationary
states? Explain (see Problem 6.38).
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Figure P7.15
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