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QUESTIONS

1. The probability density at certain points for a particle
in a box is zero, as seen in Figure 6.9. Does this imply
that the particle cannot move across these points?
Explain.

2. Discuss the relation between the zero-point energy and
the uncertainty principle.

3. Consider a square well with one finite wall and one infi-
nite wall. Compare the energy and momentum of a par-
ticle trapped in this well to the energy and momentum
of an identical particle trapped in an infinite well with
the same width.

4. Explain why a wave packet moves with the group velocity
rather than with the phase velocity.

5. According to Section 6.2, a free particle can be repre-
sented by any number of waveforms, depending on the

values chosen for the coefficients a(k). What is the
source of this ambiguity, and how is it resolved?

6. Because the Schrödinger equation can be formulated in
terms of operators as [H ]� � [E]�, is it incorrect to con-
clude from this the operator equivalence [H ] � [E]?

7. For a particle in a box, the squared momentum p2 is a
sharp observable, but the momentum itself is fuzzy. Ex-
plain how this can be so, and how it relates to the classi-
cal motion of such a particle.

8. A philosopher once said that “it is necessary for the very
existence of science that the same conditions always pro-
duce the same results.” In view of what has been said in
this chapter, present an argument showing that this
statement is false. How might the statement be reworded
to make it true?

PROBLEMS

6.1 The Born Interpretation

1. Of the functions graphed in Figure P6.1, which are
candidates for the Schrödinger wavefunction of an ac-
tual physical system? For those that are not, state why
they fail to qualify.

2. A particle is described by the wavefunction

(a) Determine the normalization constant A. (b) What
is the probability that the particle will be found be-
tween x � 0 and x � L/8 if a measurement of its posi-
tion is made?

6.2 Wavefunction for a Free Particle

3. A free electron has a wavefunction

where x is measured in meters. Find (a) the electron’s
de Broglie wavelength, (b) the electron’s momentum,
and (c) the electron’s energy in electron volts.

4. Spreading of a Gaussian wave packet. The Gaussian
wave packet �(x, 0) of Example 6.3 is built out of
plane waves according to the amplitude distribu-
tion function . Calculate
�(x, t) for this packet and describe its evolution.

6.3 Wavefunctions in the Presence of Forces

5. In a region of space, a particle with zero energy has a
wavefunction

(a) Find the potential energy U as a function of x.
(b) Make a sketch of U(x) versus x.

6. The wavefunction of a particle is given by

where A, B, and k are constants. Show that � is a solu-
tion of the Schrödinger equation (Eq. 6.13), assuming

�(x) � A cos(kx) � B sin(kx)

�(x) � Axe�x2/L2

a(k) � (C/√�)exp(�2k2)

�(x) � A sin(5 � 1010 x)

�(x) � 	A cos � 2�x
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228 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

the particle is free (U � 0), and find the corresponding
energy E of the particle.

6.4 The Particle in a Box

7. Show that allowing the state n � 0 for a particle in a
one-dimensional box violates the uncertainty principle,
�x �p � 
/2.

8. A bead of mass 5.00 g slides freely on a wire 20.0 cm
long. Treating this system as a particle in a one-dimen-
sional box, calculate the value of n corresponding
to the state of the bead if it is moving at a speed of
0.100 nm per year (that is, apparently at rest).

9. The nuclear potential that binds protons and neutrons
in the nucleus of an atom is often approximated by a
square well. Imagine a proton confined in an infinite
square well of length 10�5 nm, a typical nuclear diame-
ter. Calculate the wavelength and energy associated
with the photon that is emitted when the proton un-
dergoes a transition from the first excited state (n � 2)
to the ground state (n � 1). In what region of the elec-
tromagnetic spectrum does this wavelength belong?

10. An electron is contained in a one-dimensional box of
width 0.100 nm. (a) Draw an energy-level diagram for
the electron for levels up to n � 4. (b) Find the wave-
lengths of all photons that can be emitted by the elec-
tron in making transitions that would eventually get it
from the n � 4 state to the n � 1 state.

11. Consider a particle moving in a one-dimensional box
with walls at x � �L/2 and x � L/2. (a) Write the wave-
functions and probability densities for the states n � 1,
n � 2, and n � 3. (b) Sketch the wavefunctions and
probability densities. (Hint: Make an analogy to the case
of a particle in a box with walls at x � 0 and x � L.)

12. A ruby laser emits light of wavelength 694.3 nm. If this
light is due to transitions from the n � 2 state to the
n � 1 state of an electron in a box, find the width of
the box.

13. A proton is confined to moving in a one-dimensional
box of width 0.200 nm. (a) Find the lowest possible en-
ergy of the proton. (b) What is the lowest possible en-
ergy of an electron confined to the same box? (c) How
do you account for the large difference in your results
for (a) and (b)?

14. A particle of mass m is placed in a one-dimensional box
of length L. The box is so small that the particle’s
motion is relativistic, so that E � p2/2m is not valid.
(a) Derive an expression for the energy levels of the
particle using the relativistic energy–momentum rela-
tion and the quantization of momentum that derives
from confinement. (b) If the particle is an electron in a
box of length L � 1.00 � 10�12 m, find its lowest possi-
ble kinetic energy. By what percent is the nonrelativistic
formula for the energy in error?

15. Consider a “crystal” consisting of two nuclei and two
electrons, as shown in Figure P6.15. (a) Taking into ac-
count all the pairs of interactions, find the potential

energy of the system as a function of d . (b) Assuming
the electrons to be restricted to a one-dimensional box
of length 3d, find the minimum kinetic energy of the
two electrons. (c) Find the value of d for which the
total energy is a minimum. (d) Compare this value of d
with the spacing of atoms in lithium, which has a den-
sity of 0.53 g/cm3 and an atomic weight of 7. (This type
of calculation can be used to estimate the densities of
crystals and certain stars.)

16. An electron is trapped in an infinitely deep potential well
0.300 nm in width. (a) If the electron is in its ground
state, what is the probability of finding it within 0.100 nm
of the left-hand wall? (b) Repeat (a) for an electron in
the 99th excited state (n � 100). (c) Are your answers
consistent with the correspondence principle?

17. An electron is trapped at a defect in a crystal. The de-
fect may be modeled as a one-dimensional, rigid-walled
box of width 1.00 nm. (a) Sketch the wavefunctions
and probability densities for the n � 1 and n � 2
states. (b) For the n � 1 state, find the probability
of finding the electron between x1 � 0.15 nm and
x2 � 0.35 nm, where x � 0 is the left side of the box.
(c) Repeat (b) for the n � 2 state. (d) Calculate the en-
ergies in electron volts of the n � 1 and n � 2 states.

18. Find the points of maximum and minimum probability
density for the nth state of a particle in a one-dimen-
sional box. Check your result for the n � 2 state.

19. A 1.00-g marble is constrained to roll inside a tube of
length L � 1.00 cm. The tube is capped at both ends.
Modeling this as a one-dimensional infinite square
well, find the value of the quantum number n if the
marble is initially given an energy of 1.00 mJ. Calculate
the excitation energy required to promote the marble to
the next available energy state.

6.5 The Finite Square Well

20. Consider a particle with energy E bound to a finite

square well of height U and width 2L situated on �L �

x � �L. Because the potential energy is symmetric
about the midpoint of the well, the stationary state
waves will be either symmetric or antisymmetric about
this point. (a) Show that for E � U, the conditions for
smooth joining of the interior and exterior waves lead
to the following equation for the allowed energies of
the symmetric waves:

k tan kL �  (symmetric case)

Figure P6.15
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where and is the
wavenumber of oscillation in the interior. (b) Show that
the energy condition found in (a) can be rewritten as

Apply the result in this form to an electron trapped at a
defect site in a crystal, modeling the defect as a square
well of height 5 eV and width 0.2 nm. Solve the equa-
tion numerically to find the ground-state energy for the
electron, accurate to �0.001 eV.

21. Sketch the wavefunction �(x) and the probability den-
sity ��(x)�2 for the n � 4 state of a particle in a finite po-
tential well.

22. The potential energy of a proton confined to
an atomic nucleus can be modeled as a square

well of width 1.00 � 10�5 nm and height 26.0 MeV. De-
termine the energy of the proton in the ground state
and first excited state for this case, using the Java applet
available at our companion Website (http://info.
brookscole.com/mp3e QMTools Simulations : Prob-
lem 6.22). Refer to Exercise 3 of Example 6.8 for details.
Calculate the wavelength of the photon emitted when
the proton undergoes a transition from the first excited
state to the ground state, and compare your result with
that found using the infinite-well model of Problem 9.

23. Consider a square well having an infinite wall at x � 0
and a wall of height U at x � L (Fig. P6.23). For the
case E � U, obtain solutions to the Schrödinger equa-
tion inside the well (0 � x � L) and in the region be-
yond (x � L) that satisfy the appropriate boundary
conditions at x � 0 and x � �. Enforce the proper
matching conditions at x � L to find an equation for
the allowed energies of this system. Are there condi-
tions for which no solution is possible? Explain.

k sec kL �
√2mU




k � √2mE/
2 � √(2m/
2)(U � E) 25. Show that the oscillator energies in Equation 6.29 cor-
respond to the classical amplitudes

26. Obtain an expression for the probability density Pc(x)
of a classical oscillator with mass m, frequency 	, and
amplitude A. (Hint: See Problem 28 for the calculation
of classical probabilities.)

27. Coherent states. Use the Java applet available
at our companion website (http://info.

brookscole.com/mp3e QMTools Simulations : Prob-
lem 6.27) to explore the time development of a Gauss-
ian waveform confined to the oscillator well. The de-
fault settings for the initial wave describe a Gaussian
centered in the well with an adjustable width set by the
value of the parameter a. Describe the time evolution
of this wavefunction. Is it what you expected? Account
for your observations. Now displace the initial wave-
form off of center by increasing the parameter d from
zero to d � 1. Again describe the time evolution of the
resulting wavefunction. What is remarkable about this
case? Such wavefunctions, called coherent states, are im-
portant in the quantum theory of radiation.

6.7 Expectation Values

28. Classical probabilities. (a) Show that the classical probabil-
ity density describing a particle in an infinite square well
of dimension L is Pc(x) � 1/L. (Hint: The classical prob-
ability for finding a particle in dx—Pc(x)dx—is propor-
tional to the time the particle spends in this interval.)
(b) Using Pc(x), determine the classical averages �x� and
�x2� for a particle confined to the well, and compare with
the quantum results found in Example 6.15. Discuss your
findings in light of the correspondence principle.

29. An electron is described by the wavefunction

where x is in nanometers and C is a constant. (a) Find the
value of C that normalizes �. (b) Where is the electron
most likely to be found; that is, for what value of x is the
probability for finding the electron largest? (c) Calculate
�x� for this electron and compare your result with its most
likely position. Comment on any differences you find.

30. For any eigenfunction �n of the infinite square well,
show that �x� � L/2 and that

where L is the well dimension.
31. An electron has a wavefunction

where x0 is a constant and for normaliza-
tion (see Example 6.1). For this case, obtain expres-

C � 1/√x0

�(x) � Ce��x�/x0

�x2� �
L2

3
�

L2

2(n�)2

�(x) � 	0    for x � 0

Ce�x(1 � e�x)  for x � 0

An � √ (2n � 1)


m	

Figure P6.23
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6.6 The Quantum Oscillator

24. The wavefunction

also describes a state of the quantum oscillator, provided
the constant  is chosen appropriately. (a) Using
Schrödinger’s equation, obtain an expression for  in
terms of the oscillator mass m and the classical frequency
of vibration 	. What is the energy of this state? (b) Nor-
malize this wave. (Hint: See the integral of Problem 32.)

�(x) � Cxe�x2
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sions for �x� and �x in terms of x0. Also calculate the
probability that the electron will be found within a
standard deviation of its average position, that is, in the
range �x� � �x to �x� � �x, and show that this is inde-
pendent of x0.

32. Calculate �x�, �x2�, and �x for a quantum oscillator in
its ground state. Hint: Use the integral formula

33. (a) What value do you expect for �p� for the quantum
oscillator? Support your answer with a symmetry argu-
ment rather than a calculation. (b) Energy principles
for the quantum oscillator can be used to relate �p2� to
�x2�. Use this relation, along with the value of �x2� from

��

0
x2e�ax2

dx �
1

4a √ �

a
  a � 0

Problem 32, to find �p2� for the oscillator ground state.
(c) Evaluate �p, using the results of (a) and (b).

34. From the results of Problems 32 and 33, evaluate �x �p

for the quantum oscillator in its ground state. Is the re-
sult consistent with the uncertainty principle? (Note
that your computation verifies the minimum uncer-
tainty product; furthermore, the harmonic oscillator
ground state is the only quantum state for which this
minimum uncertainty is realized.)

6.8 Observables and Operators

35. Which of the following functions are eigenfunctions of
the momentum operator [p]? For those that are eigen-
functions, what are the eigenvalues?
(a) A sin(kx) (c) A cos(kx) � iA sin(kx)
(b) A sin(kx) � A cos(kx) (d) Ae ik(x�a)
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ADDITIONAL PROBLEMS

36. The quantum bouncer. The bouncer is the quan-
tum analog to the classical problem of a ball

bouncing vertically (and elastically) on a level surface
and is modeled by the potential energy shown in Figure
P6.36. The coordinate normal to the surface is denoted
by x, and the surface itself is located at x � 0. Above the
surface, the potential energy for the bouncer is linear,
representing the attractive force of a uniform field—in
this case the gravity field near the Earth. Below the sur-
face, the potential energy rises abruptly to a very large
value consistent with the bouncer’s inability to penetrate
this region. Obtaining stationary states for the bouncer
from the Schrödinger equation using analytical tech-
niques requires knowledge of special functions. Numeri-
cal solution furnishes a simpler alternative and allows for
effortless study of the bound-state waveforms, once they
are found. The Java applet for the quantum bouncer can
be found at http://info.brookscole.com/mp3e QMTools
Simulations : Problem 6.36. Use the applet as described
there to find the three lowest-lying states of a tennis ball

(mass � 50 g) bouncing on a hard floor. Count the num-
ber of nodes for each wavefunction to verify the general
rule that the nth excited state exhibits exactly n nodes.
For each state, determine the most probable distance
above the floor for the bouncing ball and compare with
the maximum height reached in the classical case. (Clas-
sically, the ball is most likely to be found at the top of its
flight, where its speed drops to zero—see Problem 28.)

37. Nonstationary states. Consider a particle in an infinite
square well described initially by a wave that is a superpo-
sition of the ground and first excited states of the well:

(a) Show that the value normalizes this wave,
assuming �1 and �2 are themselves normalized.
(b) Find � (x, t) at any later time t. (c) Show that the su-
perposition is not a stationary state, but that the average
energy in this state is the arithmetic mean (E1 � E2)/2
of the ground- and first excited-state energies E1 and E2.

38. For the nonstationary state of Problem 37, show that
the average particle position �x� oscillates with time as

where

and � � (E2 � E1)/
. Evaluate your results for the
mean position x0 and amplitude of oscillation A for an
electron in a well 1 nm wide. Calculate the time for the
electron to shuttle back and forth in the well once. Cal-
culate the same time classically for an electron with en-
ergy equal to the average, (E1 � E2)/2.

A � � x�1*�2 dx

x0 �
1

2 �� x � �1 �2 dx � � x � �2 �2 dx�

�x � � x0 � A cos(�t)

C � 1/√2

�(x, 0) � C[�1(x) � �2(x)]
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