Physics 102-Rec Quiz#6-Sect.23 Chapter 23

Instructor: Dr. A. Mekki

Name: Key Id

Consider the configuration of charges shown in the figure. The sphere is non-conducting, has radius a = 5.0 cm and a charge q = -20μ C. The spherical shell is conducting, has an inner radius b = 7 cm and an outer radius c = 9 cm and a charge Q = 20μ C. Calculate

(a) The electric field at r = 2.0 cm from the center of the sphere.

Inside the sphere
$$E = \frac{kq}{a^3}r$$

$$= \frac{9 \times 10^9 \times 20 \times 10^6}{(0.05)^3} \times 0.02 = 2.88 \times 10^7 \text{ N/C}$$

$$(0.05)^3 \text{ radially inward}.$$

(b) The electric field at r = 8.0 cm from the center of the sphere.

(c) The electric field at r = 12 cm from the center of the sphere.

$$. E = \frac{k(q+Q)}{r^2} = \frac{q \times 10^9 (20 \times 10^6 + 20 \times 10^6)}{(0.12)^2} = 0$$

(d) The charge on the inner and outer surfaces of the spherical shell, call them q_{in} and q_{out} .

$$q_{in} = 20 \, \mu c$$

 $q_{in} + q_{out} = Q = 20 \, \mu c$
 $\Rightarrow q_{out} = 0$