KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #3- CHAPTER 18

NAME: Key ID# SECTION#

A glass window has an area of 0.50 m^2 and a thickness of 0.60 cm. The rate of heat flow between the faces is 2000 W. If the outside temperature is $-5\,^{\circ}\text{C}$, find the inside temperature. The thermal conductivity of glass = $0.80 \text{ W/m} \cdot \text{C}^{\circ}$.

$$P = \frac{Q}{E} = k \frac{A (T_H - T_C)}{L}$$

$$\frac{PL}{kA} = T_H - T_C$$

$$T_{H} = T_{C} + \frac{PL}{kA}$$

$$= -5 + \frac{2000 \times 0.6 \times 10^{2}}{0.8 \times 0.5} = \boxed{25^{\circ}}$$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #3- CHAPTER 18

NAME:

Ker

ID#

SECTION#

(a) Consider that 500 cal of work is done by the gas and 100 J of heat is extracted from the gas. What is the change in internal energy (in joules) of the gas?

(b) A gas within a closed chamber undergoes the cycle shown in the p-V diagram. Calculate the net energy added to the system as heat during one complete cycle.

= 0

For a cycle
$$\Delta E_{int} = 0$$

$$Q = \frac{1}{2} 40 \times 3 = 60$$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #3- CHAPTER 18

NAME: Key ID# SECTION#

Calculate the amount of energy, in Joules, required to completely melt 130 g of lead initially at temperature of 15.0 °C. Melting point of lead $T_m = 328$ °C, latent heat of fusion of lead $L_f = 2.32 \times 10^4$ J/kg and the specific heat of lead c = 128 J/kg/K.

15°C $\xrightarrow{\text{Solid}}$ 328°C; 328°C $\xrightarrow{\text{Solid}}$ 328°C $\xrightarrow{\text{$