Old Exam. Questions Chapter 25

T071:

Q1. The three capacitors in the figure 1 have an equivalent capacitance of 2.77 μ F. What is C₂? (Ans: 7 μ F).

Q2. When the potential difference across a 5 μ F capacitor is increased by 2 V, the energy stored increases by 10 %. What was the original potential difference? (Ans: 40 V).

Q3. What is the charge on C3 in the figure 2? (Ans: 16μ C).

Q4. A parallel-plate capacitor is completely filled with a dielectric of dielectric constant 6, has a capacitance of 50 pF. If the plate separation is 0.1 mm, find the plate area. (Ans: 0.94 cm²)

<u>T062</u>:

Q14. How much energy is stored in the combination of capacitors shown figure (5)?(Ans: 0.03 mJ)

Q15. Consider three identical capacitors. Their equivalent capacitance when connected in parallel is C_p , and their equivalent capacitance when connected in series is C_s . Which of the following statements is **CORRECT**? ($C_p=9C_s$)

Q16. Two parallel-plate capacitors are connected in series to a battery as shown in figure (6). A dielectric is inserted in capacitor C_1 . (The charge on C_2 increases)

Q17.: Figure (7) shows three capacitors connected to a battery of voltage V = 6 Volts. The charges on the capacitors are known to be $Q_1 = 24 \ \mu\text{C}$ for C_1 and $Q_2 = 96 \ \mu\text{C}$ for C_2 . What are the values of the capacitances C_1 and C_2 ? (Ans: C1=8 μ F, C2= 16 μ F)

<u>T061</u>:

Q#15. A parallel plate capacitor has square shaped plates with an area = 4.1×10^{-3} m² and 1.6×10^{-3} m separation. What charge will appear on the plates of such capacitor if a potential difference of 80 V is applied? (Ans: 1.8×10^{-9} C)

Q#16. An air filled parallel-plate capacitor has a capacitance of 3.0×10^{-12} F. The plate separation is then doubled and a wax dielectric is inserted, completely filling the space between the plates. As a result the, capacitance becomes 7.5×10^{-12} F. The dielectric constant of the wax is: (Ans: 3)

Q#15. A parallel plate capacitor has square shaped plates with an area = 4.1×10^{-3} m² and 1.6×10^{-3} m separation. What charge will appear on the plates of such capacitor if a potential difference of 80 V is applied? (Ans:1.8×10⁻⁹ C)

Q#17. A battery having potential difference V = 12 V and four capacitors, each having a capacitance of $12\mu F$, are connected as shown in the figure 1. What is the charge on C2? (**Ans: 72** μ **C**)

Q#18. Consider the combination of capacitors as shown in the Figure 2. The energy stored in the 8.0 μ F capacitor is 0.40 J. The energy stored in the 5.0 μ F capacitor is: (**Ans: 0.25 J**)