Q13. Two blocks of mass $m_1 = 24.0$ kg and m_2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string is $T = 294$ N. Find the value of m_2. (Ignore friction) (40.0 kg)

Q14. Two horizontal forces of equal magnitudes are acting on a box sliding on a smooth horizontal table. The direction of one force is the north direction; the other is in the west direction. What is the direction of the acceleration of the box? (45° west of north)

Q16. A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s2 by means of a rope. The force of the block on the rope is: (35 N, down)

Q17. Two students are dragging a box (m=100 kg) across a horizontal frozen lake. The first student pulls with force $F_1 = 50.0$ N, while the second pulls with force F_2. The box is moving in the x-direction with acceleration a (see Fig. 3). Assuming that friction is negligible, what is F_2?

Q13. A constant force F of magnitude 20 N is applied to block A of mass $m = 4.0$ kg, which pushes block B as shown in Fig. 5. The block slides over a frictionless flat surface with an acceleration of 2.0 m/s2. What is the net force on block B? (12 N)

Q14. Only two forces act upon a 5.0 kg box. One of the forces is $\vec{F}_1 = (6.0 \hat{i} + 8.0 \hat{j})$ N. If the box moves at a constant velocity of $(1.6 \hat{i} + 1.2 \hat{j})$ m/s, what is the magnitude of the second force? (10. N)
Q15. An elevator of mass 480 kg is designed to carry a maximum load of 3000 N. What is the tension in the elevator cable at maximum load when the elevator moves down accelerating at 9.8 m/s²? (0)

Q16.: A car of mass 1000 kg is initially at rest. It moves along a straight road for 20 s and then comes to rest again. The velocity – time graph for the movement is given in Fig.6. The magnitude of the net force that acts on the car while it is slowing down to stop from t = 15 s to t = 20 s is: (2000N)

T062
Q15.: Two blocks of masses $m_1 = 4.00\, \text{kg}$ and $m_2 = 2.00\, \text{kg}$ are connected by a string passing over a massless and frictionless pulley and placed on a frictionless horizontal table as shown in Fig. 3. A force of $F = 10.0\, \text{N}$ at an angle of 60.0° with the horizontal is applied to m_1. The magnitude of acceleration of the system is: (2.43 m/s²)

Q18. Two boxes A and B ($m_A = 3.0\, \text{kg}$ and $m_B = 1.0\, \text{kg}$) are in contact on a horizontal frictionless surface and move along the x-axis (see Fig. 4). A horizontal force is applied on Box A. The net force acting on A is F_1 and on B is F_2. Which one of the following statements is correct? ($F_1 = 7.5\, \text{i N}$, $F_2 = 2.5\, \text{i N}$)
Q19. Two boxes, one of mass \(m = 5.00 \text{ kg} \) and the other with an unknown mass \(M \) are connected with a string passing over a massless frictionless pulley and are placed on frictionless planes as shown in Fig. 5. What must be the mass \(M \), if it goes down the plane with an acceleration of \(a = 2.45 \text{ m/s}^2 \)? (19.1 kg)

Q20: A 2.00-kg mass is hanging from the ceiling of an elevator accelerating upward at \(a = 2.50 \text{ m/s}^2 \) (see Fig. 6). What is the tension \(T \) in the string? (24.6 N)

T061
Q13. A 4.0 kg block is pushed upward a 30° inclined frictionless plane with a constant horizontal force \(F \) (Fig 4). If the block moves with a constant speed find the magnitude of the force \(F \). (23 N)

Q14. An elevator cab with a total mass of 2000 kg is pulled upward by a cable. If the elevator accelerates at \(2.00 \text{ m/s}^2 \) upward, find the tension in the cable. \((2.36 \times 10^4 \text{ N})\)

Q16. A 7.0 kg block and a 3.0 kg block are connected by a string as shown in Fig 5. If the pulley is massless and the surface is frictionless, the magnitude of the acceleration of the 3.0 kg block is: \((2.9 \text{ m/s}^2)\)
T052

Q13. A 5.0-kg mass is suspended by a string from the ceiling of an elevator that is moving downward with constant acceleration of 2.8 m/s². The tension in the string is: (35 N)

Q14. A 3.0-kg block slides on a frictionless 37° incline plane. A vertical force of 15 N is applied to the block (see Fig 4). The acceleration of the block is: (2.9 m/s² down the incline)

Q15. Two blocks of mass $m_1 = 5.0$ kg and $m_2 = 10$ kg are connected by a massless rod and slide on a frictionless 30° incline as shown in Fig 5. The tension in the rod is: (zero)

Q16. A 2.3-N weight is suspended by a string from a ceiling and held at an angle θ from the vertical by 4.0-N horizontal force F as shown in Fig 6. The tension in the string is: (4.6 N)

Q20. Three equal mass blocks each of mass =2.0 kg can move together over a horizontal frictionless surface. Two forces, $F_1 = 40$ i N and $F_2 = -10$ i N are applied on the three masses system as shown in the Fig 7. The net force on the middle mass is: (10 i N)
T051

Q14. A block of mass \(m_1=5.7\) kg on a frictionless 30° inclined plane is connected by a cord over a massless, frictionless pulley to a second block of mass \(m_2=3.5\) kg hanging vertically as shown in Fig 4. The acceleration of \(m_2\) is: (0.69 m/s downward)

Q15. Fig.5 shows a block A of mass 6.0 kg and block B of 8.0 kg connected by a rigid rod of negligible mass. Force \(F_a=16 i\) N acts on block A; force \(F_b=-30 i\) N acts on block B. The tension (T) in the rod is: (Neglect friction) (22 N)

Q16. A 5.0-kg mass is held at an angle \(\theta\) from the vertical by a horizontal force \(F=15\) N as shown in Fig 6. The tension (T) in the string supporting the mass (in Newton) is: (Ans: 51)

Q17. A 0.20-kg stone is attached to a string and whirled in a circle of radius \(r=0.60\) m on a horizontal frictionless surface as shown in Fig. 7. If the stone makes 150 revolutions per minute, the tension (T) in the string is: (30 N)