PHYS101.13 QUIZ#9- CHAPTER 10 DATE: 19/5/09

Name: Key Id#:

A rope pulls a box of mass m = 2.0-kg on a frictionless surface through a pulley as shown in the figure. The pulley has a mass M = 1.0 kg and radius R = 10 cm. Calculate the linear acceleration of the box if the force F is 40 N. (Consider the pulley as a uniform disk).

$$T = ma - 0 \quad \text{and} \quad FR - TR = I\alpha = I\frac{a}{R} - 0$$

$$T = ma - 0 \quad \text{and} \quad FR - TR = I\alpha = I\frac{a}{R} - 0$$

$$T = ma - 0 \quad \text{and} \quad FR - TR = I\alpha = I\frac{a}{R^2}$$

$$\Rightarrow a = \frac{f}{IR^2 + m}$$

$$\Rightarrow a = \frac{f}{IR^2 + m}$$

$$I_{disk} = \frac{1}{2}MR^2 \Rightarrow a = \frac{f}{IR^2 + m} = \frac{40}{0.5 + 2}$$

$$a = \frac{40}{2.5} = \frac{16 \text{ m/s}^2}{IR^2}$$

PHYS101.14 QUIZ#9- CHAPTER 10 DATE: 19/5/09

Name:

Key

Id#:

In the figure $m_1 = 0.50$ kg, $m_2 = 0.40$ kg and the pulley has a disk shape of radius 0.05 m and mass M = 1.5 kg. What is the angular acceleration of the pulley?

PHYS101.15 QUIZ#9- CHAPTER 10 DATE: 17/5/09

Name:

Key

Id#:

A thin rod of mass 0.50 kg and length 2.0 m is pivoted at one end and can rotate in a vertical plane about this horizontal frictionless pivot (axis). It is released from rest in the vertical position as shown in the figure. $I_{cm} = ML^2/12$

Find the **angular speed** of the rod as it its lowest point as shown in the figure.

$$\Delta K + \Delta U_g = 0$$

$$\Delta K = \frac{1}{2} I \omega_f^2 - 0$$

$$I = I_{cm} + Mh^2 = \frac{1}{12}ML^2 + M(\frac{L}{2})^2 = \frac{1}{3}ML^2$$

$$\frac{1}{2} \left(\frac{1}{3} ML^2 \right) \omega_f^L - MgL = 0$$

=>
$$W_f = \sqrt{6gL} = [10.8 \text{ rad/s}]$$