PHYS101 QUIZ#12 - CHAPTER 14

DATE: 23/12/12

Name:

Key

Id#:

Sect#

An iceberg floats on the sea. Its volume above the seawater is 5.0×10^2 m³. Assume the density of ice to be 9.5×10^2 kg/m³ and the density of seawater to be 1.25×10^3 kg/m³. Calculate the total mass of the iceberg.

iceberg.
$$f_b = f_g$$
 $m_f g = m_0 g$
 $f_f V_{sub} = f_0 V_0 = f_0 (V_{app} + V_{sub})$
 $V_{sub} = f_0 V_0 = f_0 V_{app}$
 $V_{sub} = f_0 V_0 = f_0 V_{app}$
 $V_{sub} = f_0 V_0 = f_0 V_0$
 $V_{sub} = f_0 V_0 V_0$
 $V_{sub} = f_0 V_0 V_0$
 $V_{sub} = f_0 V_0 V_0$
 $V_{sub} = f_0 V_0$
 $V_{sub} =$

$$V_0 = V_{\text{sub}} + V_{\text{app}} = 500 + 1583 = 2083 \text{ m}^3$$
 $M_0 = V_0 \int_0^2 = 2083 \text{ m}^3 \times 950 \text{ kg} = 1.98 \times 10^6 \text{ kg}$
 $M_0 = 1.98 \times 10^6 \text{ kg}$

PHYS101 QUIZ#12 - CHAPTER 14

DATE: 23/12/12

N	-	m	-	
I۷	d	ш	ı	

Key

Id#:

Sect#

An aluminum ball of volume 6.0 cm³ is dropped in water. Assume the density of water to be 1200 kg/m³ and the density of aluminum to be 2700 kg/m³. Find the acceleration with which the ball sinks in the water. Treat the water as an ideal fluid.

$$F_{b} - F_{g} = -ma$$
 $A = \frac{F_{g} - F_{b}}{m} = \frac{mg - mgg}{m}$
 $A = \frac{(m - mf)}{m} g$
 $A = \frac{(p - f_{f}) Vg}{m} = \frac{(2700 - 1200) 6x lox 9.8}{6x lox 2700}$
 $A = \frac{5.4 m/s^{2}}{m}$

PHYS101 QUIZ#12 - CHAPTER 14 DATE: 23/12/12

Name:

Key

Id#:

Sect#

A pipe 20 cm in diameter is connected to the top of a water storage tank of volume 1.0×10^5 liters. If the tank is filled at a constant rate in 20 minutes, what is the entry speed of water from the pipe into the tank? 1 liter = 10^{-3} m³.

$$R_{V} = \frac{10^{5} \times 10^{3}}{20 \times 60} = 0.083 \, \frac{\text{m}/\text{s}}{\text{m}}$$

$$R_{V} = A \, v = \frac{\pi D^{2}}{4} \times v$$

$$0.083 = \pi \frac{(0.2)^{2}}{4} v$$

$$V = 2.65 \, \frac{\text{m}/\text{s}}{\text{m}}$$