Chapter 9

$$
\begin{aligned}
& \mathrm{Pb} \# 4 \text {. } \\
& 3 M(0,0) \\
& M \text { left }\left(-\frac{L}{2},-\frac{L}{2}\right) \\
& M \text { right }\left(\frac{L}{2}, \frac{L}{2}\right) \\
& X_{C M}=\frac{0 \times 3 M+\left(-\frac{L}{2} \times M\right)+\left(\frac{L}{2} \times M\right)}{5 M}=0 \\
& Y_{c m}=\frac{0 \times 3 M+\left(-\frac{L}{2} \times M\right)+\left(-\frac{L}{2} \times M\right)}{5 M}=-\frac{L}{4} \\
& \text { Coordinates of the center of mass are }\left(0,-\frac{L}{4}\right) \\
& P b \# 5 . \\
& \text { Consider two pieces } \\
& \text { (1) one which is a square } \\
& \text { of dimensions } 6 \times 6 \mathrm{~m}^{2} \\
& \text { and mass } M \\
& \text { (2) One which is a square } \\
& \text { of dimensions } 2 \times 2 \mathrm{~m}^{2} \\
& \text { and mass } m \text {. } \\
& \Rightarrow \quad x_{c m}=\frac{0 \times M+2 x(-m)}{9 m+(-m)}=\frac{-2 m}{8 m}=-\frac{1}{4}=0.25 m \\
& Y_{c m}=\frac{0 \times M+0 \times(-m)}{9 m+(-m)}=0 \\
& \text { notice that } \\
& \frac{M}{m}=\frac{36}{4}=9 \Rightarrow M=9 \mathrm{~m} \\
& -\frac{2 m}{8 m}=-\frac{1}{4}=0.25 \mathrm{~m} \\
& 0
\end{aligned}
$$

Pb\#8.

$$
\begin{aligned}
& \text { face \#1 } M(20,0,20) \\
& \text { \#2 removed } \\
& \text { \#3 } \quad M(20,40,20) \\
& \text { \#4 } \quad \mathrm{M}(20,20,0) \\
& 45 \quad M(40,20,20) \\
& \text { \#6 } \quad M(\infty, 20,20) \\
& x_{c m}=\frac{M \times\left(20 \times 3^{+42}\right)}{5 M}=\frac{40+60}{5}=\frac{100}{5}=20 \mathrm{~cm} \\
& y_{c m}=\frac{M X \times(20 \times 3+40)}{5 M}=\frac{100}{5}=20 \mathrm{~cm} \\
& Z_{c m}=\frac{M \times(20 \times 4)}{5 M X}=\frac{80}{5}=16 \mathrm{~cm} \\
& \operatorname{Cm}(20,29,16) \mathrm{cm} \\
& \text { PD\#I. } \\
& \begin{aligned}
v_{c m} & =\frac{\sum m_{i} v_{i}}{\sum m_{i}}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{2400 \times 80+1600 \times 60}{2400+1600} \\
& =72 \mathrm{Km}_{\mathrm{m}} / h
\end{aligned} \\
& \begin{aligned}
v_{c m} & =\frac{\sum m_{i} v_{i}}{\sum m_{i}}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{2400 \times 80+1600 \times 60}{2400+1600} \\
& =72 \mathrm{Km}_{\mathrm{m}} / h
\end{aligned} \\
& P D_{=13} \quad t_{1}=3 \operatorname{aos} 10^{-3} \mathrm{~s} \quad y_{1}=\frac{1}{2} g t_{1}^{2}=0,44 \mathrm{~m} \\
& t_{2}=2 \pi \times 10^{-3} \mathrm{~s} \quad y_{2}=\frac{1}{2} g t_{2}^{2}=0.20 \mathrm{~m} \\
& y_{c m}=\frac{\sum m_{i} y_{i}}{\sum m_{i}}=\frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}}=0.28 \mathrm{~m} \\
& \text { (2) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } v_{1}=g t_{1}=2.94 \mathrm{~m} / \mathrm{s} \\
& v_{2}-g t_{2}=1.96 \mathrm{~m} / \mathrm{s} \\
& v_{c n}=\frac{\sum m_{i} v_{i}}{\sum m_{i}}=2.29 \mathrm{~m} / \mathrm{s} \\
& \text { Pb\#14. } \\
& m_{1}=1000 \mathrm{~kg} \quad a_{1}=4 \mathrm{~m} / \mathrm{s}^{2} \\
& m_{1}=2000 \mathrm{~kg} \quad v_{2}=8 \mathrm{~m} / \mathrm{s} \\
& t=3 \mathrm{sec} \quad v_{1}=a_{1} t=12 \mathrm{~m} / \mathrm{s} \\
& x_{1}=\frac{1}{2} a_{1} t_{1}^{2}=18 \mathrm{~m} \\
& x_{2}=\frac{1}{2} a_{1} / t^{\circ}+v t=24 \mathrm{~m} \\
& X_{c m}=\frac{\sum x_{i} m_{i}}{\sum m_{i}}=\frac{x_{1} m_{1}+x_{2} m_{2}}{m_{1}+m_{2}}=22 m \\
& V_{c m}=\frac{v_{1} m_{1}+v_{2} m_{2}}{m_{1}+m_{2}}=\frac{12 \times 1000+8 \times 2000}{3000} \\
& =9.3 \mathrm{~m} / \mathrm{s} \\
& a_{c m}=\frac{a_{1} m_{1}+a_{2} m_{2}^{0}}{m_{1}+m_{2}}=\frac{4 \times 1000}{3000} \\
& =\frac{4}{3}=1.33 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$\mathrm{Pb}=22$.

$$
\begin{aligned}
p_{i}=m_{i} v_{i} & =0.7 \times 5 \\
& =3.5 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
p_{f}=m_{f} v_{f}=0.7 \times(-2)=-1.4 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\overrightarrow{\Delta p}=\vec{p}_{f}-\vec{p}_{i}=-1.4 \hat{i}-3.5 \hat{i}=-4.9 \hat{i} \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
|\Delta \vec{p}|=4.9 \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$P b_{\#} 24$.
a) Since

$$
\begin{aligned}
& p_{x i}=p_{x_{f}} \\
& \Rightarrow m v_{i} \sin 30^{\circ}=m v_{f} \sin \theta \quad \text { but } v_{i}=v_{f}=2 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

b)

$$
\begin{aligned}
\Delta p_{x} & =m v_{v_{f}}-m v_{x_{i}}=m v \sin 30^{\circ}-m v \operatorname{si} 30^{\circ}=0 \\
\Delta p_{y} & =m v_{y_{f}-}-m v_{y_{i}}=-m v \cos 30^{\circ}-\left(+m v \cos 30^{\circ}\right) \\
& =-2 m \cos 30^{\circ}=-0.57 \mathrm{~kg} \cdot \frac{m}{s} \\
\Delta \vec{p} & =0 \hat{\imath}-0.57 \hat{\jmath} \quad \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$\mathrm{Pb} \neq 34$.

$$
\begin{array}{r}
\overrightarrow{p_{i}}=\overrightarrow{p_{f}} \Rightarrow p_{x_{i}}=P_{x_{f}} \\
p_{y_{i}}=p_{y_{f}}
\end{array}
$$

$$
M v_{i x}=0+m v_{2 f} \cos 30^{\circ}-(1)
$$

$$
M v_{i y}=m v_{15}+m v_{25} \sin 30^{\circ}-(2)
$$

$$
\text { (1) } \Rightarrow 4 v_{i x}=2 \times 5 \times \cos 30^{\circ} \Rightarrow v_{i x}=2.16 \mathrm{~m} / \mathrm{s}
$$

$$
\text { (2) } \Rightarrow 4 v_{i y}=2 \times 3+2 \times 5 \times \sin 30^{\circ} \Rightarrow v_{i y}=2.75 \mathrm{~m} / \mathrm{s}
$$

velocity $\quad \vec{v}_{i}=2.16 \hat{\imath}+2.75 \hat{\jmath} \mathrm{~m} / \mathrm{s}$

$$
\text { speed } \Rightarrow\left|\vec{v}_{i}\right|=3.5 \mathrm{~m} / \mathrm{s}
$$

14P. Figure $10-29$ shows an approximate plot of force magnitude versus time during the collision of a 58 g Superball with a wall. The initial velocity of the ball is $34 \mathrm{~m} / \mathrm{s}$ perpendicular to the wall: it rebounds directly back with approximately the same speed, also perpendicular to the wall. What is $F_{\max }$, the maximum magnitude of the force on the ball from the wall during the collision?

Fig. 10-29 Problem 14.

$$
\text { Impulse }=\underbrace{\int \vec{F} \cdot d t}_{\text {area under the }}=\Delta \vec{p}
$$

 curve.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}\left(F_{\text {max }} \times 2 \times 10^{-3}\right)+F_{\text {max }} \times 2 \times 10^{-3}+\frac{1}{2}\left(F_{\max } \times 2 \times 10^{-3}\right) \\
& =4 F_{\text {max }} \times 10^{-3} \\
\Delta p & =p_{f}-p_{i}=58 \times 10^{-3}(34-(-34))=3944 \times 10^{-3} \\
& \Rightarrow 4 F_{\max }=3944 \Rightarrow F_{\text {max }}=986 \mathrm{~N}
\end{aligned}
$$

16P. A ball having a mass of 150 g strikes a wall with a speed of $5.2 \mathrm{~m} / \mathrm{s}$ and rebounds with only 50% of its initial kinetic energy.
(a) What is the speed of the ball immediately after rebounding?
(b) What is the magnitude of the impulse on the wall from the ball?
(c) If the ball was in contact with the wall for 7.6 ms , what was the magnitude of the average force on the ball from the wall during this time interval?
a)

$$
\begin{aligned}
& K_{s}=\frac{1}{2} K_{i} \\
& v_{i}=5.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
K_{i}=\frac{1}{2} m v_{i}^{2}=2.028 \mathrm{~J}
$$

$$
K_{f}=1.014 \mathrm{~J}=\frac{1}{2} \mathrm{~m} v_{f}^{2} \Rightarrow \mathcal{Y}_{f}=3.7 \mathrm{~m} / \mathrm{s}
$$

b)

$$
\begin{aligned}
J & =\Delta p=p_{f}-p_{i}=m\left(v_{f}-v_{i}\right) \\
& =0.15 \times(3.7-(-5.2))=1.3 \mathrm{Kg.} \mathrm{\frac{m}{s}}
\end{aligned}
$$

c) $J=\bar{F} \Delta t \Rightarrow \bar{F}=\frac{J}{\Delta t}=\frac{1.3}{7.6 \times 10^{-3}}=174 \mathrm{~N}$

35E. The blocks in Fig. 10-37 slide without friction. (a) What is the velocity \vec{v} of the 1.6 kg block after the collision? (b) Is the collision elastic? (c) Suppose the initial velocity of the 2.4 kg block is the reverse of what is shown. Can the velocity \vec{v} of the 1.6 kg block after the collision be in the direction shown? ssm

Fig. 10-37 Exercise 35.
a) Conservation of momentum

$$
\begin{aligned}
& m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
& v_{1 f}=\frac{1.6 \times 5.5+2.5 \times 2.4-2.4 \times 4.9}{1.6}=1.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b)

$$
\begin{aligned}
& K_{i}=\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=31.7 \mathrm{~J} \\
& K_{f}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}=31.7 \mathrm{~J}
\end{aligned}
$$

Since $K_{i}=K_{f} \Rightarrow$ the collision is elastic.
c)

$$
\begin{aligned}
& v_{2 i}=-2.5 \mathrm{~m} / \mathrm{s} \\
& v_{1 f}=\frac{1.6 \times 5.5+(2.4)(-2.5)-2.4 \times 4.9}{1.6}=-5.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

46E. Two 2.0 kg bodies, A and B, collide. The velocities before the collision are $\vec{v}_{A}=15 \hat{\mathrm{i}}+30 \hat{\mathrm{j}}$ and $\vec{v}_{B}=-10 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}$. After the collision, $\vec{v}_{A}^{\prime}=-5.0 \hat{\mathrm{i}}+20 \hat{\mathrm{j}}$. All speeds are given in meters per second. (a) What is the final velocity of B ? (b) How much kinetic energy is gained or lost in the collision?
a) Conservation of momentum (two dimensions)

$$
\begin{gathered}
\overrightarrow{p_{i}}=\vec{P}_{f} \\
m_{A} \vec{v}_{A i}+m_{B} \vec{v}_{B i}=m_{A} \vec{v}_{A f}+m_{B} \vec{v}_{B f} \\
\text { Since } m_{A}=m_{B} \Rightarrow \vec{v}_{B f}=\vec{v}_{A i}+\vec{v}_{B i}-\vec{v}_{A f} \\
\vec{v}_{B_{f}}=10 \hat{\imath}+15 \hat{\jmath} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

b)

$$
\begin{gathered}
K_{i}=\frac{1}{2} m v_{A i}^{2}+\frac{1}{2} m v_{B i}^{2}=\frac{1}{2}(2)[1125+125]=1250 \mathrm{~J} \\
K_{f}=\frac{1}{2} m v_{A f}^{2}+\frac{1}{2} m v_{B f}^{2}=\frac{1}{2}(2)[425+325]=750 \mathrm{~J} \\
\Delta K=K_{f}-K_{i}=-500 \mathrm{~J} \quad \begin{array}{c}
\text { kinetic energy } \\
\text { lost }
\end{array}
\end{gathered}
$$

47E. An alpha particle collides with an oxygen nucleus that is initally at rest. The alpha particle is scattered at an angle of 64.0° from its initial direction of motion, and the oxygen nucleus recoils at an angle of 51.0° on the opposite side of that initial direction. The final speed of the nucleus is $1.20 \times 10^{5} \mathrm{~m} / \mathrm{s}$. Find (a) the final speed and (b) the initial speed of the alpha particle. (In atomic mass units, the mass of an alpha particle is 4.0 u , and the mass of an oxygen nucleus is 16 u .) lw

$$
\begin{gathered}
\text { a) } \begin{array}{l}
\vec{p}_{i}=\vec{p}_{f} \\
p_{x_{i}}=P_{x_{f}} \Rightarrow m_{1} v_{1 i}=m_{1} v_{16} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2}-(1) \\
P_{y_{i}}=P_{y_{f}} \Rightarrow \quad 0=-m_{1} v_{1 f} \sin \theta_{1}+m_{2} v_{2 f} \sin \theta_{2}-(2) \\
(2) \Rightarrow v_{1 f}=\frac{m_{2} v_{2 f} \sin \theta_{2}}{m_{1} \sin \theta_{1}}=\frac{16 u \times 1.2 \times 10^{5} \times \sin 51}{4 u \times \sin 64}=4.2 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{array}
\end{gathered}
$$

(b)
(1) $\Rightarrow v_{1 i}=\frac{m_{1} v_{1 f} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2}}{m_{1}}$

$$
\begin{aligned}
& =\frac{4 u \times 4.2 \times 10^{5} \times \cos 64^{\circ}+16 u \times 1.2 \times 10^{5} \cos 51^{\circ}}{4 u} \\
& =4.86 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

