PHYS-101 Formula Sheet for the Final Exam

$\frac{dx}{dx}$	$a = \frac{dv}{dt}$	$\omega = \frac{d\theta}{dt}$	$\alpha - \frac{d\omega}{\omega}$	For static equilibri	ium:
	$u - \frac{1}{dt}$	$\omega = \frac{1}{dt}$	$\alpha = \frac{d\omega}{dt}$	$\sum \vec{F} = 0$	0 and $\sum_{\vec{\tau}} \vec{\tau} = 0$
$v_{avg} = \frac{\Delta x}{\Delta t}$	$a_{avg} = \frac{\Delta v}{\Delta t}$	$s = r\theta$	$v = r\omega$		
For constant ac	•	$a_t = r\alpha$	$a_r = r\omega^2$	$E = \frac{1}{\Delta L/L_0}$	$G = \frac{F/A}{\Delta x/L}$
$v = v_0 + at$ $v^2 = v_0^2 + 2a(x - x_0)$		If $\alpha = constant$:		$B = \frac{p}{ \Delta V /V}$	
$v = v_0 + 2u(x - x_0)$ $x - x_0 = v_0 t + \frac{1}{2}at^2$		$\omega = \omega_0 + \alpha t$		$F = \frac{Gm_1m_2}{r^2} \qquad U = -\frac{Gm_1m_2}{r}$	
1		$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$		·	
$x - x_0 = \frac{1}{2}(v + v_0)t$		$\theta - \theta_0 = \frac{\omega + \omega_0^2}{2} t$		Energy in Planetary Motion: GMm	
$\mathbf{x} - \mathbf{x}_0 = v\mathbf{t} - \frac{1}{2}at^2$		<i>L</i>		$E = -\frac{GMm}{2r}$	
$\vec{r} = x\hat{\imath} + y\hat{\jmath} \qquad \vec{v} = \vec{v}_0 + \vec{a}t$		$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$		Г	
$\vec{r} - \vec{r}_0 = \vec{v}_0 t + \frac{1}{2}\vec{a}t^2$		$I = \sum m_i r_i^2 = \int r^2 dm$		$v_{esc} = \sqrt{\frac{2GM}{R}}$	$T^2 = \frac{4\pi}{GM}r^3$
$a_r = \frac{v^2}{2}$	$a_t = \frac{d \vec{v} }{dt}$	$I = I_{com} + Md^2$	2	$\rho = \frac{m}{V}$	F
	$\vec{v}_{PA} = \vec{v}_{PB} + \vec{v}_{BA}$	For cylinder I _{cor}	$_{n}=\frac{1}{2}MR^{2}$		$p = \frac{F}{A}$
		For disk I =	$=\frac{1}{-}MR^2$	$p = p_0$	
$H = \frac{v_0^2 \sin^2 \theta}{2g} \qquad R = \frac{v_0^2 \sin^2 \theta_0}{g}$		For disk $I_{com} = \frac{1}{2}MR^2$		$F_b = m_f g = \rho_f V_f g$	
$y = (tan\theta_0)x - \frac{gx^2}{2(v_0 cos\theta_0)^2}$		For thin rod $I_{com} = \frac{1}{12} ML^2$		$A_1v_1 = A_2v_2 = constant$ $p + \frac{1}{2}\rho v^2 + \rho gy = constant$	
$\vec{\mathrm{F}}_{\mathrm{net}} = m\vec{a} = rac{dec{p}}{dt}$		For sphere $I_{com} = \frac{2}{5} MR^2$		$\frac{x + x_m \cos(\omega t + \phi)}{x + x_m \cos(\omega t + \phi)}$	
		For hoop $I_{com} = MR^2$		$\frac{x - x_m \cos(\omega t + \varphi)}{k = m\omega^2}$	
$f_k = \mu_k N \qquad f_s \le \mu_s N$		$\vec{\tau} = \vec{r} \times \vec{F}$		$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$	
$W = \int \vec{F} \cdot d\vec{s}$		$ \vec{A} \times \vec{B} = ABsin\theta$			
<i>if</i> \vec{F} <i>is a constant</i> $W = \vec{F} \cdot \vec{s}$		$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$		$E = K + U = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2} = \frac{1}{2}kx_{m}^{2}$	
$P = \vec{F} \cdot \vec{v} \qquad P_{avg} = \frac{W}{\Delta t}$		$\vec{A} \cdot \vec{B} = ABcos\theta$		$T = 2\pi \sqrt{\frac{L}{g}} \qquad T = 2\pi \sqrt{\frac{I}{mgh}}$	
	$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$	<i>W</i> =	$\int \tau d\theta$	$T = 2\pi \sqrt{\frac{1}{g}}$	$T = 2\pi \sqrt{\frac{mgh}{mgh}}$
		$P = \frac{dW}{dt} = \tau \omega$		$G = 6.67 \times 10^{-11} Nm^2 / kg^2$	
$\frac{W_c = -\Delta U}{1 2 1 2}$				$1 Pa = 1N/m^2$	
$\Delta U_s = \frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2$		For a solid rotating about a fixed axis:		$\frac{p_{atm} = 1.01 \times 10^5 Pa = 1 atm}{ka}$	
$F_s = -kx$		$K_{rot} = \frac{1}{2}I\omega^2$		$\rho_{water} = 1000 \frac{kg}{m^3}$	
$\Delta U_g = mg(y_f - y_i)$		$\vec{L} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v})$		$g = 9.80 \ m/s^2$	
$W = \Delta K + \Delta U + \Delta E_{th}$		$\frac{L - I \times p - m(I \times V)}{L_z = I_\omega}$		For Earth:	$10^{24} h^{2}$
$\frac{\Delta E_{th} = f_k d}{\vec{p} = m\vec{v}}$		$\frac{-2}{\sqrt{d\vec{L}}}$			98 × 10 ²⁴ kg .37 × 10 ⁶ m
$\vec{J} = \Delta \vec{p} = \int \vec{F} dt = \vec{F}_{avg} \Delta t$		$\vec{\tau} = \frac{d\vec{L}}{dt}$			
J		$a_{com,x} = -\frac{gsin\theta}{1 + I_{com}/MR^2}$			
$\frac{\vec{p}_{1i} + \vec{p}_{2i} = \vec{p}_{1f} + \vec{p}_{2f}}{\sum m_i \vec{r}_i - 1 \ f}$		$\frac{1 + I_{com}/MK^2}{\sqrt{dL}}$			
$\vec{R}_{com} = \frac{\sum m_i \vec{r}_i}{m_i} = \frac{1}{M} \int \vec{r} dn$		$\sum \tau_{ext} = \frac{dL}{dt} = I\alpha$			
$ec{v}_{com} = rac{\sum m_i ec{v}_i}{\sum m_i}$					
$\vec{P}_{com} = \sum m_i \vec{v}_i$					