4. In Figure 26.4, batter B supplies $12\,V$. (a) Find the charge on each capacitor first when only switch S_1 is closed and (b) later when switch S_2 is also closed. Take $C_1=1.0\,\mu F$, $C_2=2.0\,\mu F$, $C_3=3.0\,\mu F$ and $C_4=4.0\,\mu F$.

5. A certain substance has a dielectric constant of 2.8 and a dielectric strength of $18\,MV/m$. If it is used as the dielectric material in aparallel-plate capacitor, what minimum area should the plates of the capacitor have to obtain a capacitance of $7.0\times10^{-2}\,\mu F$ and to ensure that the capacitor will be able to withstand a potential difference of $4.0\,kV$?

Chapter 27

- 1. Near Earth, the density of protons in the solar wind is $8.70\,cm^{-3}$ and their speed is $470\,km/s$. (a) Find the current density of these protons. (b) If Earth's magnetic field did not deflect them, the protons would strike the planet. What total current would Earth then receive?
- 2. A wire with a resistance of $6.0\,\Omega$ is drawn out through a die so that its new length is three times its original length. Find the resistance of the longer wire, assuming that the resistivity and density of the material are unchanged.
- 3. A common flashlight bulb is rated at $0.30\,A$ and $2.9\,V$ (the values of the current and voltage under operating conditions). If the resistance of the bulb filament at room temperature $(20^{\circ}C)$ is $1.1\,\Omega$, what is the temperature of the filament when the bulb is on? The filment is made of tungsten.
- 4. A cylindrical resistor of radius $5.0 \, mm$ and length $2.0 \, cm$ is made of material that has a resistivity of $3.5 \times 10^{-5} \, \Omega \, m$. What are (a) the current density and (b) the potential difference when the energy dissipation rate in the resistor is $1.0 \, W$?
- 5. A $100\,W$ lightbulb is plugged into a standard $120\,V$ outlet. (a) How much does it cost per month to leave the light turned on continuously? Assume electrical energy costs 6c/kW.h. (b) What is the resistance of the bulb? (c) What is the current in the bulb? (d) Is the resistance different when the bulb is turned off?

Chapter 28

- 1. A wire of esistance $5.0\,\Omega$ is connected o a battery whose emf E is $2.0\,V$ and whose internal resisance is $1.0\,\Omega$. In 2.0 min, (a) How much energy is transferred from chemical to electrical form? (b) How much energy appears in the wire as thermal energy? (c) Account for the fifference between (a) and (b).
- 2. In Figure 28.2, if the potential at point P is 100 V, what is the potential at point Q?

