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Summary

Chapter Outline

Much of what we have learned about the hydrogen atom with its single
electron can be used directly to describe such single-electron ions as
He� and Li2�, which are hydrogen-like in their electronic structure. Mul-
tielectron atoms, however, such as neutral helium and lithium, introduce
extra complications that stem from the interactions among the atomic
electrons. Thus, the study of the atom inevitably involves us in the com-
plexities of systems consisting of many interacting electrons. In this chapter
we will learn some of the basic principles needed to treat such systems
effectively and apply these principles to describe the physics of electrons
in atoms.

Being of like charge and confined to a small space, the electrons of an
atom repel one another strongly through the Coulomb force. In addition,
we shall discover that the atomic electrons behave like tiny bar magnets, in-
teracting magnetically with one another as well as with any external mag-
netic field applied to the atom. These magnetic properties derive in part
from a new concept—electron spin—which will be explored at some length
in this chapter.

Another new physical idea, known as the exclusion principle, is also pre-
sented in this chapter. This principle is extremely important in understanding
the properties of multielectron atoms and the periodic table. In fact, the im-
plications of the exclusion principle are almost as far-reaching as those of the
Schrödinger equation itself.
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9.1 ORBITAL MAGNETISM AND THE
NORMAL ZEEMAN EFFECT

An electron orbiting the nucleus of an atom should give rise to magnetic effects,
much like those arising from an electric current circulating in a wire loop. In
particular, the motion of charge generates a magnetic field within the atom, and
the atom as a whole is subject to forces and torques when it is placed in an exter-
nal magnetic field. These magnetic interactions can all be described in terms of
a single property of the atom—the magnetic dipole moment.

To calculate the magnetic moment of an orbiting charge, we reason by
analogy with a current-carrying loop of wire. The moment � of such a loop
has magnitude �� � � iA, where i is the current and A is the area bounded by
the loop. The direction of this moment is perpendicular to the plane of the
loop, and its sense is given by a right-hand rule, as shown in Figure 9.1a. This
characterization of a current loop as a magnetic dipole implies that its mag-
netic behavior is similar to that of a bar magnet with its north-south axis di-
rected along � (Fig. 9.1b).

For a circulating charge q, the (time-averaged) current is simply q/T,
where T is the orbital period. Furthermore, A/T is just the area swept out
per unit time and equals the magnitude of the angular momentum �L � of
the orbiting charge divided by twice the particle mass m.1 This relation is
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Figure 9.1 (a) The magnetic field in the space surrounding a current-carrying wire
loop is that of a magnetic dipole with moment � perpendicular to the plane of the
loop. The vector � points in the direction of the thumb if the fingers of the right hand
are curled in the sense of the current i (right-hand rule). (b) The magnetic field in the
space surrounding a bar magnet is also that of a magnetic dipole. The dipole moment
vector � points from the south to the north pole of the magnet. (c) The magnetic mo-
ment � of an orbiting electron with angular momentum L. Since the electron is nega-
tively charged, � and L point in opposite directions.

(a)

i

µ
N

S

L

v
r

µ

(b) (c)

1This is one of Kepler’s laws of planetary motion, later shown by Newton to be a consequence of
any central force.
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easily verified for circular orbits, where �L � � mvr, v � 2�r/T, and A � �r 2,
so that

The same result holds for orbital motion of any kind (see Problem 2), so that
�� � � iA becomes

(9.1)

for the magnetic moment of an orbiting charge q. Since L is perpen-
dicular to the orbital plane, so too is �. You may verify that the sense
of the vector described by Equation 9.1 is consistent with that ex-
pected from the right-hand rule. Thus, the magnetic moment vector is
directed along the angular momentum vector, and its magnitude is fixed
by the proportionality constant q/2m, called the gyromagnetic ratio. For
electrons, q � �e so the direction of � is opposite the direction of L
(Fig. 9.1c).

On the atomic scale, the elemental unit of angular momentum is �. It fol-
lows that the natural unit for atomic moments is the quantity e�/2me, called
the Bohr magneton and designated by the symbol �B. Its value in SI units
( joules/tesla) is

(9.2)

Because � is proportional to L, the orbital magnetic moment is subject to
space quantization, as illustrated in Figure 9.2. In particular, the z component
of the orbital magnetic moment is fixed by the value of the magnetic quantum
number m� as

(9.3)

Just as with angular momentum, the magnetic moment vector can be visual-
ized as precessing about the z-axis, thereby preserving this sharp value of �z

while depicting the remaining components �x and �y as fuzzy.
The interaction of an atom with an applied magnetic field depends on the

size and orientation of the atom’s magnetic moment. Suppose an external
field B is applied along the z-axis of an atom. According to classical electro-
magnetism, the atom experiences a torque

� � � � B (9.4)

that tends to align its moment with the applied field. Instead of aligning
itself with B, however, the moment actually precesses around the field direc-
tion! This unexpected precession arises because � is proportional to the
angular momentum L. The motion is analogous to that of a spinning
top precessing in the Earth’s gravitational field. The gravitational torque
acting to tip it over instead results in precession because of the angular

�z � �
e

2me
Lz � �

e�

2me
m� � ��Bm�

�B �
e�

2me
� 9.274 � 10�24 J/T

� �
q

2m
L

� L � � m � 2�r

T �r � 2m � �r2

T � � 2m � A

T �  or  A

T
�

� L �
2m
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Magnetic moment of an

orbiting charge

Bohr magneton

A magnetic moment

precesses in a magnetic field
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298 CHAPTER 9 ATOMIC STRUCTURE

momentum possessed by the spinning top. Returning to the atomic case,
because � � dL/dt, we see from Equation 9.4 that the change in angular
momentum, dL, is always perpendicular to both L and B. Figure 9.3 depicts
the motion (precession) that results. For atoms in a magnetic field this is
known as Larmor precession.

From the geometry of Figure 9.3, we see that in a time dt the precession an-
gle increases by d�, where

L sin 	 
 d� � �dL �

But Equations 9.1 and 9.4 can be combined to give

For electrons we take q � �e and the frequency of precession, or Larmor fre-
quency �L, becomes

(9.5)

It is useful to introduce the quantum of energy ��L associated with the
Larmor frequency �L. This energy is related to the work required to reorient
the atomic moment against the torque of the applied field. Remembering that

�L �
d�

dt
�

1

L sin	

� dL �
dt

�
e

2me
B

� dL � � � � � dt � � q

2me
LB sin	 � dt

Figure 9.3 Larmor precession
of the orbital moment � in an
applied magnetic field B. Since
� is proportional to L, the
torque of the applied field
causes the moment vector � to
precess around the direction of
B with frequency �L � eB/2me.

µ

φ

θ

θ
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� � B
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µ

µ

µ
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µ

µ

Figure 9.2 The orientations in space and z components of the orbital mag-
netic moment for the case � � 2. There are 2� � 1 � 5 different possible orien-
tations.
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the work of a torque � to produce an angular displacement d	 is dW � � d	, we
have from Equation 9.4

dW � ��B sin	 d	 � d(�B cos	) � d(� 
 B)

The minus sign signifies that the external torque must oppose that produced by
the magnetic field B. The work done is stored as orientational potential en-
ergy of the dipole in the field. Writing dW � �dU, we identify the magnetic
potential energy U as

(9.6)

Equation 9.6 expresses the fact that the energy of a magnetic dipole in
an external magnetic field B depends on its orientation in this field. The
magnetic energy is minimal when � and B are aligned; therefore, this align-
ment is the preferred orientation. Because the possible orientations for �

are restricted by space quantization, the magnetic energy is quantized
accordingly. Taking the z-axis along B, and combining Equations 9.1, 9.3,
and 9.6, we find

(9.7)

From Equation 9.7 we see that the magnetic energy of an atomic electron de-
pends on the magnetic quantum number m� (so named for this dependence!)
and, therefore, is quantized. The total energy of this electron is the sum of its
magnetic energy U plus whatever energy it had in the absence of an applied
field—say, E0. Therefore,

E � E0 � ��Lm� (9.8)

For atomic hydrogen, E0 depends only on the principal quantum number n;
in more complex atoms, the atomic energy also varies according to the sub-
shell label �, as discussed further in Section 9.5.

Unlike energies, the wavefunctions of atomic electrons are unaffected
by the application of a magnetic field. This somewhat surprising result can be
partly understood by recognizing that according to classical physics, the only
effect of the field is to cause (Larmor) precession around the direction of B.
For atomic electrons, this translates into precession of L about the z-axis. How-
ever, such a precession is already implicit in our semiclassical picture of elec-
tron orbits in the absence of external fields, as required by the sharpness of Lz

while Lx and Ly remain fuzzy. From this viewpoint, the introduction of an
applied magnetic field merely transforms this virtual precession2 into a real one
at the Larmor frequency!

U �
e

2me
L 
B �

eB

2me
Lz � ��Lm�

U � �� 
B
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2In zero magnetic field, the precession of the classical vector may be termed virtual (not real)
since even though the same value may not be obtained for Lx (or Ly) in successive measurements,
the average value �Lx� (or �Ly�) does not change over time. With B nonzero, however, it can be
shown that (d2/dt2) �Lx� � ��L

2 �Lx� (and similarly for �Ly�), indicating that �Lx� (and �Ly�) oscil-
lates at the Larmor frequency �L.

The energy of a magnetic

moment depends on its

orientation in a magnetic field
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300 CHAPTER 9 ATOMIC STRUCTURE

Evidence for the existence of atomic moments is the appearance of extra
lines in the spectrum of an atom that is placed in a magnetic field. Consider a
hydrogen atom in its first excited (n � 2) state. For n � 2, � can have values 0
and 1. The magnetic field has no effect on the state for which � � 0, since
then m� � 0. For � � 1, however, m� can take values of 1, 0, and �1, and the
first excited level is split into three levels by the magnetic field (Figure 9.4).

(       +       )(       –       )

No magnetic field Magnetic field present

Spectrum with magnetic
field present

Spectrum without 
magnetic field

0 0 L 0 0 L

n  =  2,     =  1�

h

n  =  1,     =  0�

0

h 0 h L
(       –       ) h 0 h L

(      +         )

h 0

�m   =  1

�m   =  0

�m   =  –1

�m   =  0

ω

ω ω ω

ω

ω ω ω ω ωω

ω

With n � 2, � can be 0 or 1, and m� is 0(twice) and 1.
Thus, the magnetic energy U can be 0, ���L, or ���L.
In such applications, the energy quantum ��L is called
the Zeeman energy. This Zeeman energy divided by � is
the Larmor frequency:

�L �
5.79 � 10�5 eV

6.58 � 10�16 eV
s
� 8.80 � 1010 rad/s

� 9.27 � 10�24 J � 5.79 � 10�5 eV

EXAMPLE 9.1 Magnetic Energy of the 
Electron in Hydrogen

Calculate the magnetic energy and Larmor frequency for
an electron in the n � 2 state of hydrogen, assuming the
atom is in a magnetic field of strength B � 1.00 T.

Solution Taking the z -axis along B, we calculate the
magnetic energy from Equation 9.7 as

For a 1.00 T field, the energy quantum ��L has the value

��L �
e�

2me
B � �BB � (9.27 � 10�24 J/T)(1.00 T)

U �
eB

2me
Lz �

e�

2me
Bm� � ��Lm�

Figure 9.4 Level splittings for the ground and first excited states of a hydrogen
atom immersed in a magnetic field B. An electron in one of the excited states decays
to the ground state with the emission of a photon, giving rise to emission lines at �0,
�0 � �L, and �0 � �L. This is the normal Zeeman effect. When B � 0, only the line
at �0 is observed.
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9.1 ORBITAL MAGNETISM AND THE NORMAL ZEEMAN EFFECT 301

The original (Lyman) emission line is replaced by the three lines depicted in
Figure 9.4. The central line appears at the same frequency �0 as it would with-
out a magnetic field. This is flanked on both sides by new lines at frequencies
�0  �L. Therefore, the magnetic field splits the original emission line into
three lines. Because �L is proportional to B, the amount of splitting increases
linearly with the strength of the applied field. This effect of spectral line
splitting by a magnetic field is known as the normal Zeeman effect after
its discoverer, Pieter Zeeman.

Zeeman spectra of atoms excited to higher states should be more complex,
because many more level splittings are involved. For electrons excited to the
n � 3 state of hydrogen, the expected Zeeman lines and the atomic transitions
that give rise to them are shown in Figure 9.5. Accompanying each hydrogen
line are anywhere from two to six satellites at frequencies removed from the
original by multiples of the Larmor frequency. But the observed Zeeman spec-
trum is not this complicated, owing to selection rules that limit the transitions

n  =  3

n  =  2

n  =  1

Spectrum

+ 2
+ 1

0
– 1

– 2

l  =  2

l  =  1
+ 1

0

– 1

l  =  00

�
m

–2 L +2 L– L L–3 L +3 L

3,2 2,1 3,1ω

ω ω

ω

ω

ω

ω ω ω

Figure 9.5 Zeeman spectral lines and the underlying atomic transitions that give rise
to them for an electron excited to the n � 3 state of hydrogen. Because of selection
rules, only the transitions drawn in color actually occur. Transitions from the n � 3,
l � 1 orbitals (not shown) to the n � 1 state give rise to the colored lines in the illustra-
tion at the bottom right.

The normal Zeeman effect
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to those for which � changes by 1 and m� changes by 0, �1, or �1. The result
is that satellites appear at the Larmor frequency only and not at multiples of
this frequency. The selection rules express conservation of angular momen-
tum for the system, taking into account the angular momentum of the emitted
photon. (See Section 8.5.)

Finally, even the splitting of an emission line into a triplet of equally spaced
lines as predicted here, called the normal Zeeman effect, frequently is not ob-
served. More commonly, splittings into four, six, or even more unequally
spaced lines are seen. This is the anomalous Zeeman effect, which has its roots
in the existence of electron spin.

9.2 THE SPINNING ELECTRON

The anomalous Zeeman splittings are only one of several phenomena not
explained by the magnetic interactions discussed thus far. Another is the
observed doubling of many spectral lines referred to as fine structure. Both
effects are attributed to the existence of a new magnetic moment—the spin
moment—that arises from the electron spinning on its axis.

We have seen that the orbital motion of charge gives rise to magnetic
effects that can be described in terms of the orbital magnetic moment � given
by Equation 9.1. Similarly, a charged object in rotation produces magnetic
effects related to the spin magnetic moment �s. The spin moment is found
by noting that a rotating body of charge can be viewed as a collection of
charge elements �q with mass �m all rotating in circular orbits about a fixed
line, the axis of rotation (Fig. 9.6). To each of these we should apply Equation
9.1 with L replaced by Li, the orbital angular momentum of the ith charge
element (Fig. 9.6b). If the charge-to-mass ratio is uniform throughout the

302 CHAPTER 9 ATOMIC STRUCTURE

z

x

y

∆q

S

z

x

y

∆q

Li

ri
pi

(a) (b)

Figure 9.6 (a) A spinning charge q may be viewed as a collection of charge elements
�q orbiting a fixed line, the axis of rotation. (b) The circular path followed by one such
charge element. The angular momentum of this charge element Li � ri � pi lies along
the axis of rotation. The magnetic moments accompanying these orbiting charge ele-
ments are summed to give the total magnetic moment of rotation, or spin magnetic
moment, of the charge q.
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body, then �q/�m is the ratio of total charge q to total mass me and we get for
the spin moment

(9.9)

where S, the spin angular momentum, is the total angular momentum of
rotation. The spin angular momentum S points along the axis of rotation
according to a right-hand rule, as shown in Figure 9.6; its magnitude depends
on the size and shape of the object, as well as its speed of rotation. If the
charge-to-mass ratio is not uniform, the gyromagnetic ratio in Equation 9.9,
q/2me, must be multiplied by a dimensionless constant, the g factor, whose
value reflects the detailed charge-to-mass distribution within the body. Note
that g factors different from unity imply a distribution of charge that is not

�s �
q

2me
� Li �

q

2me
S
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A rotating charge gives rise

to a spin magnetic moment

O
tto Stern was one of the
finest experimental physicists
of the 20th century. Born

and educated in Germany (Ph.D. in
physical chemistry in 1912), he at first
worked with Einstein on theoretical
issues in molecular theory, in particu-
lar applying the new quantum ideas
to theories of the specific heat of
solids. From about 1920, Stern de-
voted himself to his real life’s work,
the development of the molecular
beam method, which enabled him to
investigate the properties of free or
isolated atoms and culminated in a
Nobel prize in 1945. In this method, a
thin stream of atoms is introduced
into a high-vacuum chamber where
the atoms are free, and hence the
properties of individual atoms may
be investigated by applying external
fields or by some other technique.

Stern first used this method to
confirm that silver atoms obey the
Maxwell speed distribution. Shortly
after, in a series of elegant and diffi-
cult experiments with Walter Gerlach,
Stern showed that silver atoms obey
space quantization and succeeded in
measuring the magnetic moment of
the silver atom. In the period from
1923 to 1933, Stern directed a re-
markably productive molecular beam
laboratory at the University of Ham-
burg. With his students and cowork-
ers he directly demonstrated the wave

nature of helium atoms and mea-
sured the magnetic moments of many
atoms. Finally, with a great deal of ef-
fort, he succeeded in measuring the
very small magnetic moments of the
proton and deuteron. For these last
important fundamental measure-
ments he was awarded the Nobel
prize. In connection with the mea-
surement of the proton’s magnetic
moment, an interesting story is told
by Victor Weisskopf, which should
gladden the hearts of experimental-
ists everywhere:

“There was a seminar held by the
theoretical group in Göttingen, and
Stern came down and gave a talk on

the measurements he was about to
finish of the magnetic moment of the
proton. He explained his apparatus,
but he did not tell us the result. He
took a piece of paper and went to
each of us saying, ‘What is your pre-
diction of the magnetic moment of
the proton?’ Every theoretician from
Max Born down to Victor Weisskopf
said, ‘Well, of course, the great thing
about the Dirac equation is that it
predicts a magnetic moment of one
Bohr magneton for a particle of spin
one-half!’ Then he asked us to write
down the prediction; everybody wrote
‘one magneton.’ Then, two months
later, he came to give again a talk
about the finished experiment, which
showed that the value was 2.8 magne-
tons. He then projected the paper
with our predictions on the screen. It
was a sobering experience.”*

In protest over Nazi dismissals of
some of his closest coworkers, Stern
resigned his post in Hamburg and
came to the Carnegie Institute of
Technology in the United States in
1933. Here he worked on molecular
beam research until his retirement
in 1946.

*From Victor F. Weisskopf, Physics in the

Twentieth Century; Selected Essays: My Life

as a Physicist, Cambridge, MA, The MIT
Press, 1972.

OTTO STERN

(1888–1969)
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304 CHAPTER 9 ATOMIC STRUCTURE

tightly linked to the distribution of mass, an unusual circumstance but one
that cannot be excluded.3

The existence of a spin magnetic moment for the electron was first demon-
strated in 1921 in a classic experiment performed by Otto Stern and Walter
Gerlach. Electron spin was unknown at that time; the Stern–Gerlach experi-
ment was originally conceived to demonstrate the space quantization associ-
ated with orbiting electrons in atoms. In their experiment, a beam of silver
atoms was passed through a nonuniform magnetic field created in the gap be-
tween the pole faces of a large magnet. The beam was then detected by being
deposited on a glass collector plate (Fig. 9.7). A nonuniform field exerts a
force on any magnetic moment, so that each atom is deflected in the gap by
an amount governed by the orientation of its moment with respect to the di-
rection of inhomogeneity (the z-axis), as illustrated in Figure 9.7b. If the mo-
ment directions are restricted by space quantization as in Figure 9.2, so too are
the deflections. Thus, the atomic beam should split into a number of discrete
components, one for each distinct moment orientation present in the beam.
This is contrary to the classical expectation that any moment orientation (and
hence any beam deflection) is possible, and all would combine to produce a
continuous fanning of the atomic beam (Fig. 9.7c).

The Stern–Gerlach experiment produced a staggering result: The silver
atomic beam was clearly split—but into only two components, not the odd num-
ber (2� � 1) expected from the space quantization of orbital moments! This is
all the more remarkable when we realize that silver atoms in their ground state
have no orbital angular momentum (� � 0), because the outermost electron in
silver normally would be in an s state. The result was so surprising that the
experiment was repeated in 1927 by T. E. Phipps and J. B. Taylor with a beam of
hydrogen atoms replacing silver, thereby eliminating any uncertainties arising
from the use of the more complex silver atoms. The results, however, were
unchanged. From these experiments, we are forced to conclude that there is
some contribution to the atomic magnetic moment other than the orbital
motion of electrons and that this moment is subject to space quantization.

Our present understanding of the situation dates to the 1925 paper
of Samuel Goudsmit and George Uhlenbeck, then graduate students at
the University of Leiden. Goudsmit and Uhlenbeck believed that the
unknown moment had its origin in the spinning motion of atomic
electrons, with the spin angular momentum obeying the same quantization
rules as orbital angular momentum. The magnetic moment seen in
the Stern – Gerlach experiment is attributed to the spin of the outermost
electron in silver. Because all allowed orientations of the spin moment
should be represented in the atomic beam, the observed splitting presents a
dramatic confirmation of space quantization as applied to electron spin,
with the number of components (2s � 1) indicating the value of the spin
quantum number s.

The spin magnetic moment suggests that the electron can be viewed as a
charge in rotation, although the classical picture of a spinning body of

3It is only fair to caution the reader at this point not to take the classical view of an electron as a
tiny charged ball spinning on its axis too literally. Although such a picture is useful in first intro-
ducing and visualizing electron spin, it is not technically correct. Several shortcomings of the clas-
sical picture are discussed in detail on pp. 306 and 307.
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9.2 THE SPINNING ELECTRON 305

charge must be adjusted to accommodate the wave properties of matter.
The resulting semiclassical model of electron spin can be summarized as
follows:

• The spin quantum number s for the electron is ! This value is dictated
by the observation that an atomic beam passing through the Stern–
Gerlach magnet is split into just two components (� 2s � 1). Accord-
ingly, there are exactly two orientations possible for the spin axis,
described as the “spin-up” and “spin-down” states of the electron. This
is space quantization again, according to the quantization rules for
angular momentum4 as applied to a spin of :

where or (9.10)

The two values �/2 for Sz correspond to the two possible orientations
for S shown in Figure 9.8. The value ms � � refers to the spin-up case,
sometimes designated with an up arrow (q) or simply a plus sign (�).
Likewise, ms � � is the spin-down case, (p) or (�). The fact that s has a
nonintegral value suggests that spin is not merely another manifestation
of orbital motion, as the classical picture implies.

1
2

1
2

�1
2ms � 1

2Sz � ms�

1
2

1
2 Properties of electron spin

Figure 9.7 The Stern–Gerlach experiment to detect space quantization. (a) A beam
of silver atoms is passed through a nonuniform magnetic field and detected on a
collector plate. (b) The atoms, with their magnetic moment, are equivalent to tiny bar
magnets. In a nonuniform field, each atomic magnet experiences a net force that
depends on its orientation. (c) If any moment orientation were possible, a continuous
fanning of the beam would be seen at the collector. For space quantization, the
fanning is replaced by a set of discrete lines, one for each distinct moment orientation
present in the beam.
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4For integer angular momentum quantum numbers, the z component is quantized as ms � 0, 1, . . .
s, which can also be written as ms � s, s �1, . . . , �s. For s � , the latter implies ms � or .�1

2
1
2

1
2
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• The magnitude of the spin angular momentum is

(9.11)

and never changes! This angular momentum of rotation cannot be
changed in any way, but is an intrinsic property of the electron, like
its mass or charge. The notion that �S � is fixed contradicts classical laws,
where a rotating charge would be slowed down by the application of a
magnetic field owing to the Faraday emf that accompanies the changing
magnetic field (the diamagnetic effect). Furthermore, if the electron
were viewed as a spinning ball with angular momentum subject to
classical laws, parts of the ball near its surface would be rotating with
velocities in excess of the speed of light!5 All of this is taken to mean that
the classical picture of the electron as a charge in rotation must not be
pressed too far; ultimately, the spinning electron is a quantum entity defy-
ing any simple classical description.

• The spin magnetic moment is given by Equation 9.9 with a g factor of 2;
that is, the moment is twice as large as would be expected for a body with

�√3/2

� S � � √s(s � 1)� �
√3

2
�
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Spin up

S =  3

2

ms = – 1
2

Spin down

–1
2

1
2

0

Sz

1
2

ms =h

h

h

The spin angular momentum

of an electron

5This follows from the extremely small size of the electron. The exact size of the electron is un-
known, but an upper limit of 10�6 Å is deduced from experiments in which electrons are scat-
tered from other electrons. According to some current theories, the electron may be a true point
object, that is, a particle with zero size!

Figure 9.8 The spin angular mo-
mentum also exhibits space quan-
tization. This figure shows the two
allowed orientations of the spin
vector S for a spin particle, such
as the electron.

1
2
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9.2 THE SPINNING ELECTRON 307

spin angular momentum given by Equation 9.10. The value g � 2 is
required by the amount of beam deflection produced by the Stern–
Gerlach magnet; the larger the magnetic moment, the greater will be the
deflection of the atomic beam. As already mentioned, any g factor other
than unity implies a nonuniform charge-to-mass ratio in the classical pic-
ture. The g factor of 2 can be realized classically but suggests a bizarre
picture that cannot be taken seriously (see Problem 8). The correct g fac-
tor of 2 is predicted by the relativistic quantum theory of the electron put
forth by Paul Dirac in 1929.6

With the recognition of electron spin we see that an additional quantum
number, ms, is needed to specify the internal, or spin, state of an electron.
Therefore, the state of an electron in hydrogen must be described by the four
quantum numbers n, �, m�, and ms. Furthermore, the total magnetic moment
now has orbital and spin contributions:

(9.12)

Because of the electron g factor, the total moment � is no longer in the same
direction as the total (orbital plus spin) angular momentum J � L � S. The
component of the total moment � along J is sometimes referred to as the ef-
fective moment. When the magnetic field B applied to an atom is weak, the
effective moment determines the magnetic energy of atomic electrons accord-
ing to Equation 9.6. As we shall discover in Section 9.3, the number of possible
orientations for J (and, hence, for the effective moment) is even, leading to
the even number of spectral lines seen in the anomalous Zeeman effect.

� � �0 � �s �
�e

2me
{L � gS}

6The g factor for the electron is not exactly 2. The best value to date is g � 2.00232. The discrep-
ancy between Dirac’s predicted value and the observed value is attributed to the electron inter-
acting with the “vacuum.” Such effects are the subject of quantum electrodynamics, developed by
Richard Feynman in the early 1950s.

The total magnetic moment

of an electron

For the up spin state, we take the plus sign and get
cos	 � 0.577, or 	 � 54.7°. The down spin orientation is
described by the minus sign and gives cos	 � �0.577, or
	 � 125.3°. Because the axis of rotation coincides with
the direction of the spin vector, these are the angles the
rotation axis makes with the z-axis.

While Sz is sharp in either the up or down spin orien-
tation, both Sx and Sy are fuzzy. This fuzziness may be de-
picted by allowing the spin vector to precess about the 
z -axis, as we did for the orbital angular momentum in
Chapter 8.

EXAMPLE 9.2 Semiclassical Model for
Electron Spin

Calculate the angles between the z-axis and the spin angu-
lar momentum S of the electron in the up and down spin
states. How should we portray the fuzziness inherent in the
x and y components of the spin angular momentum?

Solution For the electron, the magnitude of the spin
angular momentum is , and the z compo-
nent of spin is Sz � �/2. Thus, the spin vector S is in-
clined from the z -axis at angles given by

cos 	 �
Sz

� S �
� 

1

√3

� S � � �√3/2
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Exercise 1 The photon is a spin 1 particle, that is, s � 1 for the photon. Calculate the
possible angles between the z-axis and the spin vector of the photon.

Answer 45�, 90�, and 135�

308 CHAPTER 9 ATOMIC STRUCTURE

values 0 (twice) and 1, there is an orbital contribution
to the magnetic energy U0 � m���L that introduces new
levels at E2  ��L, as discussed in Example 9.1. The pres-
ence of electron spin splits each of these into a pair of
levels, the additional (spin) contribution to the energy
being Us � (gms)��L (Fig. 9.9). Because g � 2 and ms is
 for the electron, the spin energy in the field �Us � is

again the Zeeman energy ��L. Therefore, an electron in
this shell can have any one of the energies

E2, E2  ��L, E2  2��L

In making a downward transition to the n � 1 shell with
energy E1 � �13.6 eV, the final state of the electron may
have energy E1 � ��L or E1 � ��L, depending on the
orientation of its spin in the applied field. Therefore, the
energy of transition may be any one of the following pos-
sibilities:

�E2,1, �E2,1  ��L, �E2,1  2��L, �E2,1  3��L

1
2

EXAMPLE 9.3 Zeeman Spectrum of Hydrogen
Including Spin

Examine the Zeeman spectrum produced by hydrogen
atoms initially in the n � 2 state when electron spin is
taken into account, assuming the atoms to be in a mag-
netic field of magnitude B � 1.00 T.

Solution The electron energies now have a magnetic
contribution from both the orbital and spin motions.
Choosing the z-axis along the direction of B, we calculate
the magnetic energy from Equations 9.6 and 9.12:

The energy (e�/2me)B is the Zeeman energy �BB or ��L;
its value in this example is

�BB � (9.27 � 10�24 J/T)(1.00 T) � 9.27 � 10�24 J

� 5.79 � 10�5 eV

For the n � 2 state of hydrogen, the shell energy is
E2 � �(13.6 eV)/22 � �3.40 eV. Because m� takes the

U � �� 
B �
e

2me
B{Lz � gSz} �

e�

2me
B(m� � gms)

Without spin With spin

Spectrum with spinSpectrum without spin

– L + L

2,1

–3 L +3 L

2,1

n  =  2, m =
+1

0

–1

n  =  1, m =  0

l  =  1

l  =  0

m =  1, ms  =  1/2
m =  0, ms  =  1/2
m = 1, ms  = �1/2
m =  0, ms  =  –1/2
m =  –1, ms  =  –1/2

m =  0, ms  =  1/2

m =  0, ms  =  –1/2

�

�

�

�

�

�

�

�

�

ω

ωω

ω

ωω

Figure 9.9 (Example 9.3) Predicted Zeeman pattern and underlying atomic transi-
tions for an electron excited to the n � 2 state of hydrogen, when electron spin is
taken into account. Again, selection rules prohibit all but the colored transitions.
Because of the neglect of the spin–orbit interaction, the effect shown here (called the
Paschen–Back effect) is observed only in very intense applied magnetic fields.
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9.3 THE SPIN–ORBIT INTERACTION AND
OTHER MAGNETIC EFFECTS

The existence of both spin and orbital magnetic moments for the electron in-
evitably leads to their mutual interaction. This so-called spin–orbit interac-
tion is best understood from the vantage point of the orbiting electron, which
“sees” the atomic nucleus circling it (Fig. 9.10). The apparent orbital motion
of the nucleus generates a magnetic field at the electron site, and the electron
spin moment acquires magnetic energy in this field according to Equation 9.6.
This can be thought of as an internal Zeeman effect, with B arising from the
orbital motion of the electron itself. The electron has a higher energy when its
spin is up, or aligned with B, than when its spin is down, or aligned opposite
to B (Fig. 9.10b).

The energy difference between the two spin orientations is responsible
for the fine structure doubling of many atomic spectral lines. For example,
the 2p : 1s transition in hydrogen is split into two lines because the 2p level
is actually a spin doublet with a level spacing of about 5 � 10�5 eV (Fig. 9.11),
while the 1s level remains unsplit (there is no orbital field in a state with
zero orbital angular momentum). Similarly, the spin–orbit doubling of the
sodium 3p level gives rise to the well-known sodium D lines to be discussed
in Example 9.4.

The coupling of spin and orbital moments implies that neither orbital an-
gular momentum nor spin angular momentum is conserved separately.
But total angular momentum J � L � S is conserved, so long as no external
torques are present. Consequently, quantum states exist for which � J � and Jz
are sharp observables quantized in the manner we have come to expect for an-
gular momentum:

Jz � mj� with mj � j, j � 1, . . . , �j

(9.13)

Permissible values for the total angular momentum quantum number j are

j � � � s, � � s � 1, . . . , �� � s � (9.14)

in terms of the orbital (�) and spin (s) quantum numbers. For an atomic elec-
tron s � and � � 0, 1, 2, . . . , so j � (for � � 0) and j � �  (for � � 0).1

2
1
2

1
2

� J � � √j( j � 1)�

9.3 THE SPIN–ORBIT INTERACTION AND OTHER MAGNETIC EFFECTS 309

eliminating the satellites at �2,1  3�L. Furthermore, the
spin moment and the orbital moment of the electron
interact with each other, a circumstance not recognized in
our calculation. Only when this spin–orbit interaction
energy is small compared with the Zeeman energy, ��L,
do we observe the spectral lines predicted here. This is
the case for the Paschen–Back effect, in which the
magnetic field applied to the atom is intense enough to
make ��L the dominant energy. Typically, to observe the
Paschen–Back effect requires magnetic fields in excess of
several tesla.

Photons emitted with these energies have frequencies

�2,1, �2,1  �L, �2,1  2�L, �2,1  3�L

Therefore the spectrum should consist of the original
line at �2,1 flanked on both sides by satellite lines sepa-
rated from the original by the Larmor frequency, twice
the Larmor frequency, and three times this frequency.
Notice that the lines at �2,1  2�L and �2,1  3�L appear
solely because of electron spin.

Again, however, the observed pattern is not the
predicted one. Selection rules inhibit transitions unless
m� � ms changes by 0, �1, or �1. This has the effect of
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These results can be deduced from the vector addition model shown in Figure
9.12a. With j � , there are only two possibilities for mj, namely mj �  . For

j � �  , the number of possibilities (2j � 1) for mj becomes either 2� or
2� � 2. Notice that the number of mj values is always even for a single electron,
leading to an even number of orientations in the semiclassical model for J

1
2

1
2

1
2
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+ B
2p

1s

2P3/2

2P1/2

L

S

L

S

µ

µ– B

∆E

∆E ≅  2 B  =  5 ×  10–5  eVµ

µ

µ

Figure 9.11 The 2p level of hydrogen is split by the spin–orbit effect into a doublet
separated by the spin–orbit energy �E � 5 � 10�5 eV. The higher energy state is the
one for which the spin angular momentum of the electron is “aligned” with its orbital
angular momentum. The 1s level is unaffected, since no magnetic field arises for or-
bital motion with zero angular momentum.

Figure 9.12 (a) A vector model for determining the total angular momentum
J � L � S of a single electron. (b) The allowed orientations of the total angular mo-
mentum J for the states j � and j � . Notice that there are now an even number
of orientations possible, not the odd number familiar from the space quantization
of L alone.

1
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(a)

(b)

J
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J

L
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h

h
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1–
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2
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h
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Jz

J

Figure 9.10 (a) Left: An elec-
tron with angular momentum L
orbiting the nucleus of an atom.
In the spin-up orientation shown
here, the spin angular momen-
tum S of the electron is
“aligned” with L. Right: From the
viewpoint of the orbiting elec-
tron, the nucleus circulates as
shown. (b) The apparently circu-
lating nuclear charge is repre-
sented by the current i and
causes a magnetic field B at the
site of the electron. In the pres-
ence of B, the electron spin
moment �s acquires magnetic
energy U � ��s 
B. The spin
moment �s is opposite the spin
vector S for the negatively
charged electron. The direction
of B is given by a right-hand
rule: With the thumb of the right
hand pointing in the direction of
the current i, the fingers give the
sense in which the B field circu-
lates about the orbit path. The
magnetic energy is highest for
the case shown, where S and L
are “aligned.”

S

L

B

S

(b)

(a)

r
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r

Nucleus

Electron

µs
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(Fig. 9.12b), rather than the odd number predicted for the orbital angular
momentum L alone.

A common spectroscopic notation is to use a subscript after a letter to
designate the total angular momentum of an atomic electron, where the let-
ter itself (now uppercase) describes its orbital angular momentum. For
example, the notation 1S1/2 describes the ground state of hydrogen,
where the 1 indicates n � 1, the S tells us that � � 0, and the subscript 

denotes j � . Likewise, the spectroscopic notations for the n � 2 states of

hydrogen are 2S1/2(� � 0, j � ), 2P3/2(� � 1, j � ), and 2P1/2(� � 1, j � ).

Again, the spin–orbit interaction splits the latter two states in energy by

about 5 � 10�5 eV.

1
2

3
2

1
2

1
2

1
2

9.3 THE SPIN–ORBIT INTERACTION AND OTHER MAGNETIC EFFECTS 311

For the sodium doublet, the observed wavelength differ-
ence is

�2 � �1 � 589.592 nm � 588.995 nm � 0.597 nm

Using this with hc � 1240 eV 
 nm gives

�E �
(1240 eV
nm)(0.597 nm)

(589.592 nm)(588.995 nm)
� 2.13 � 10�3 eV

EXAMPLE 9.4 The Sodium Doublet

The famed sodium doublet arises from the spin–orbit
splitting of the sodium 3p level, and consists of the
closely spaced pair of spectral lines at wavelengths of
588.995 nm and 589.592 nm. Show on an energy-level di-
agram the electronic transitions giving rise to these lines,
labeling the participating atomic states with their proper
spectroscopic designations. From the doublet spacing,
determine the magnitude of the spin–orbit energy.

Solution The outer electron in sodium is the first
electron to occupy the n � 3 shell, and it would go into
the lowest-energy subshell, the 3s or 3S1/2 level.
The next-highest levels belong to the 3p subshell. The
2(2� � 1) � 6 states of this subshell are grouped into
the 3P1/2 level with two states, and the 3P3/2 level with
four states. The spin – orbit effect splits these levels
by the spin – orbit energy. The outer electron, once it
is excited to either of these levels by some means (such
as an electric discharge in the sodium vapor lamp),
returns to the 3S1/2 level with the emission of a pho-
ton. The two possible transitions 3P3/2 : 3S1/2 and
3P1/2 : 3S1/2 are shown in Figure 9.13. The emitted
photons have nearly the same energy but differ by
the small amount �E representing the spin – orbit split-
ting of the initial levels. Since E � hc/� for photons,
�E is found as

�E �
hc

�1
�

hc

�2
�

hc(�2 � �1)

�1�2

∆E3p

3s 3S1/2

3P1/2

3P3/2

588.995 nm 589.592 nm

Figure 9.13 (Example 9.4). The transitions 3P3/2 : 3S1/2

and 3P1/2 : 3S1/2 that give rise to the sodium doublet. The
3p level of sodium is split by the spin–orbit effect, but the 3s

level is unaffected. In the sodium vapor lamp, electrons
normally in the 3s level are excited to the 3p levels by an
electric discharge.

Spectroscopic notation

extended to include spin

Exercise 2 Using the spin–orbit interaction energy calculated in Example 9.4, calcu-
late the magnitude of the magnetic field at the site of the orbiting 3p electron in
sodium.

Answer B � 18.38 T, a large field by laboratory standards.
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9.4 EXCHANGE SYMMETRY AND THE
EXCLUSION PRINCIPLE

As mentioned earlier, the existence of spin requires that the state of an atomic
electron be specified with four quantum numbers. In the absence of spin–
orbit effects these could be n, �, m�, and ms; if the spin–orbit interaction is
taken into account, m� and ms are replaced by j and mj. In either case, four
quantum numbers are required, one for each of the four degrees of freedom
possessed by a single electron.

In those systems where two or more electrons are present, we might
expect to describe each electronic state by giving the appropriate set of four
quantum numbers. In this connection an interesting question arises,
namely, “How many electrons in an atom can have the same four quantum
numbers, that is, be in the same state?” This important question was
answered by Wolfgang Pauli in 1925 in a powerful statement known as
the exclusion principle. The exclusion principle states that no two

312 CHAPTER 9 ATOMIC STRUCTURE

W
olfgang Pauli was an ex-
tremely talented Austrian
theoretical physicist who

made important contributions in
many areas of modern physics. At the
age of 21, Pauli gained public recog-
nition with a masterful review article
on relativity, which is still considered
to be one of the finest and most com-
prehensive introductions to the sub-
ject. Other major contributions were
the discovery of the exclusion princi-
ple, the explanation of the connec-
tion between particle spin and statis-
tics, theories of relativistic quantum
electrodynamics, the neutrino hy-
pothesis, and the hypothesis of nu-
clear spin. An article entitled “The
Fundamental Principles of Quantum
Mechanics,” written by Pauli in 1933
for the Handbuch der Physik, is widely
acknowledged to be one of the best
treatments of quantum physics ever
written. Pauli was a forceful and col-
orful character, well known for his
witty and often caustic remarks di-
rected at those who presented new
theories in a less than perfectly clear
manner. Pauli exerted great influ-
ence on his students and colleagues
by forcing them with his sharp criti-
cism to a deeper and clearer under-

standing. Victor Weisskopf, one of
Pauli’s famous students, has aptly
described him as “the conscience of
theoretical physics.” Pauli’s sharp
sense of humor was also nicely cap-
tured by Weisskopf in the following
anecdote:

“In a few weeks, Pauli asked me to
come to Zurich. I came to the big
door of his office, I knocked, and no
answer. I knocked again and no an-
swer. After about five minutes he said,
rather roughly, “Who is it? Come in!”

I opened the door, and here was
Pauli—it was a very big office—at the
other side of the room, at his desk,
writing and writing. He said, “Who is
this? First I must finish calculating.”
Again he let me wait for about five
minutes and then: “Who is that?” “I
am Weisskopf.” “Uhh, Weisskopf, ja,
you are my new assistant.” Then he
looked at me and said, “Now, you see
I wanted to take Bethe, but Bethe
works now on the solid state. Solid
state I don’t like, although I started it.
This is why I took you.” Then I said,
“What can I do for you, sir?” and he
said “I shall give you right away a
problem.” He gave me a problem,
some calculation, and then he said,
“Go and work.” So I went, and after
10 days or so, he came and said,
“Well, show me what you have done.”
And I showed him. He looked at it
and exclaimed: “I should have taken
Bethe!”*

*From Victor F. Weisskopf, Physics in the

Twentieth Century: Selected Essays: My Life

as a Physicist. Cambridge, MA, The MIT
Press, 1972, p. 10.

WOLFGANG PAULI

(1900–1958)
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electrons in an atom can have the same set of quantum numbers. We
should point out that if this principle were not valid, every electron would
occupy the 1s atomic state (this being the state of lowest energy), the chem-
ical behavior of the elements would be drastically different, and nature as
we know it would not exist!

The exclusion principle follows from our belief that electrons are identical
particles—that it is impossible to distinguish one electron from another. This
seemingly innocuous statement takes on added importance in view of the wave
nature of matter, and has far-reaching consequences. To gain an appreciation
for this point, let us consider a collision between two electrons, as shown in
Figure 9.14. Figures 9.14a and 9.14b depict two distinct events, the scattering
effect being much stronger in the latter where the electrons are turned
through a larger angle. Each event, however, arises from the same initial
condition and leads to the same outcome—both electrons are scattered
and emerge at angles 	 relative to the axis of incidence. Had we not followed
their paths, we could not decide which of the two collisions actually occurred,
and the separate identities of the electrons would have been lost in the
process of collision.

But paths are classical concepts, blurred by the wave properties of matter
according to the uncertainty principle. That is, there is an inherent fuzziness
to these paths, which blends them inextricably in the collision region, where
the electrons may be separated by only a few de Broglie wavelengths. The
quantum viewpoint is better portrayed in Figure 9.14c, where the two distinct
possibilities (from a classical standpoint) merge into a single quantum
event—the scattering of two electrons through an angle 	. Note that indis-
tinguishability plays no role in classical physics: All particles, even identical
ones, are distinguishable classically through their paths! With our acceptance
of matter waves, we must conclude that identical particles cannot be told

9.4 EXCHANGE SYMMETRY AND THE EXCLUSION PRINCIPLE 313

Figure 9.14 The scattering of two electrons as a result of their mutual repulsion.
The events depicted in (a) and (b) produce the same outcome for identical
electrons but are nonetheless distinguishable classically because the path taken
by each electron is different in the two cases. In this way, the electrons retain
their separate identities during collision. (c) According to quantum mechanics,
the paths taken by the electrons are blurred by the wave properties of matter.
In consequence, once they have interacted, the electrons cannot be told apart in
any way!
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apart in any way—they are truly indistinguishable. Incorporating this
remarkable fact into the quantum theory leads to the exclusion principle
discovered by Pauli.

Let us see how indistinguishability affects our mathematical description
of a two-electron system, say, the helium atom. Each electron has kinetic
energy and the atom has electrostatic potential energy associated with the
interaction of the two electrons with the doubly charged helium nucleus.
These contributions are represented in Schrödinger’s equation for one
electron by terms

where �1
2 is the Laplacian in this electron’s coordinate, r1. For brevity, let us

write the sum of both terms simply as h(1)�, with the label 1 referring to r1.
For the second electron, we write the same expression, except that r1 must be
replaced everywhere by r2, the coordinate of the second electron. The station-
ary states for our two-electron system satisfy Schrödinger’s time-independent
equation,

h(1)� � h(2)� � E� (9.15)

The fact that h(1) and h(2) are the same but for their arguments reflects the
indistinguishability of the two electrons.

Equation 9.15 accounts for the electrons’ kinetic energy and the atom’s
potential energy, but ignores the interaction between the two electrons. In
fact, the electrons repel each other through the Coulomb force, leading to an
interaction energy that must be added to the left-hand side of Equation 9.15.
For simplicity, we shall ignore this interaction and treat the electrons as inde-
pendent objects, each unaffected by the other’s presence. In Section 9.5 we
show how this independent particle approximation can be improved to give a bet-
ter description of reality.

The two-electron wavefunction depends on the coordinates of both parti-
cles, � � �(r1, r2), with ��(r1, r2) �2 representing the probability density for
finding one electron at r1 and the other at r2. The indistinguishability of elec-
trons requires that a formal interchange of particles produce no observable
effects. In particular, all probabilities are unaffected by the interchange, so the
wavefunction � must be one for which

��(r1, r2) �2 � ��(r2, r1) �2

We say that such a wavefunction exhibits exchange symmetry. The wavefunc-
tion itself may be either even or odd under particle exchange. The former is
characterized by the property

(9.16)

and describes a class of particles called bosons. Photons belong to this class, as
do some more exotic particles such as pions. Electrons, as well as protons and
neutrons, are examples of fermions, for which

�(r1, r2) � �(r2, r1)

�
�2

2me
�1

2� �
k(2e)(�e)

r1
�
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Exchange symmetry

for bosons

Electrons are truly

indistinguishable
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(9.17)

Therefore, our two-electron helium wavefunction must obey Equation 9.17 to
account for the indistinguishability of electrons.7

To recover the Pauli principle, we must examine the wavefunction more
closely. For independent electrons, solutions to Equation 9.15 are easily
found. Because each electron “sees” only the helium nucleus, the wavefunc-
tion in each coordinate must be an atomic function of the type discussed in
Chapter 8. We denote these atomic functions by �a, where a is a collective la-
bel for the four quantum numbers n, �, m�, and ms (or n, �, j, and mj if
spin–orbit effects are included). The products �a(r1)�b(r2) satisfy our equa-
tion, because

h(1)�a(r1)�b(r2) � Ea�a(r1)�b(r2)

h(2)�a(r1)�b(r2) � Eb�a(r1)�b(r2)

Ea and Eb are hydrogen-like energies for the states labeled a and b (see Eq.
8.38). Therefore,

[h(1) � h(2)]�a(r1)�b(r2) � (Ea � Eb)�a(r1)�b(r2) (9.18)

and E � Ea � Eb is the total energy of this two-electron state.
Notice that the one-electron energies are simply additive, as we might have

anticipated for independent particles. Furthermore, the solution �a(r1)�b(r2)
describes one electron occupying the atomic state labeled a and the other the
state labeled b. But this product is not odd under particle exchange, as
required for identical fermions. However, you can verify that �a(r2)�b(r1) also
is a solution to Equation 9.15 with energy E � Ea � Eb, corresponding to our
two electrons having exchanged states. The antisymmetric combination of
these two

�ab(r1, r2) � �a(r1)�b(r2) � �a(r2)�b(r1) (9.19)

does display the correct exchange symmetry, that is,

�ab(r2, r1) � �a(r2)�b(r1) � �a(r1)�b(r2)

� ��ab(r1, r2)

Therefore, Equation 9.19 furnishes an acceptable description of the system.
Notice, however, that it is now impossible to decide which electron occupies
which state—as it should be for identical electrons! Finally, we see that when
a and b label the same state (a � b), �ab is identically zero—the theory allows
no solution (description) in this case, in agreement with the familiar state-
ment of the exclusion principle.

�(r1, r2) � ��(r2, r1)
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7It is an experimental fact that integer spin particles are bosons, but half-integer spin particles are
fermions. This connection between spin and symmetry under particle exchange can be shown to
have a theoretical basis when the quantum theory is formulated so as to conform to the require-
ments of special relativity.

Exchange symmetry

for fermions
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9.5 ELECTRON INTERACTIONS AND
SCREENING EFFECTS

The preceding discussion of the helium atom exposes an issue that arises whenever

we treat a system with two or more electrons, namely, how to handle the effects of

electron–electron repulsion. Electrons confined to the small space of an atom are

expected to exert strong repulsive electrical forces on one another. To ignore these

altogether, as in the independent-particle model, is simply too crude; to include

them exactly is unmanageable, since precise descriptions even for the classical mo-

tion in this case are unknown except through numerical computation. Accordingly,

some workable approximation scheme is needed. A most fruitful approach to this

problem begins with the notion of an effective field.

Any one atomic electron is subject to the Coulomb attraction of the nucleus as

well as the Coulomb repulsion of every other electron in the atom. These influences

largely cancel each other, leaving a net effective field with potential energy Ueff(r).

316 CHAPTER 9 ATOMIC STRUCTURE

describes electron 1 as having spin up and electron 2 as
having spin down. These spin directions are reversed in
the second term. If we introduce the notation ���� to
describe the two electron spins in the first term, then the
second term becomes ����, and the total two-electron
wavefunction for the helium ground state can be written

The equal admixture of the spin states ���� and ����
means the spin of any one of the helium electrons is just
as likely to be up as it is to be down. Notice, however, that
the spin of the remaining electron is always opposite the
first. Such spin–spin correlations are a direct consequence
of the exclusion principle. (The valence electrons in dif-
ferent orbitals of many higher-Z atoms tend to align their
spins. This tendency—known as Hund’s rule—is an-
other example of spin–spin correlations induced by the
exclusion principle.)

The total electronic energy of the helium atom in this
approximation is the sum of the one-electron energies Ea

and Eb :

E � Ea � Eb � �54.4 eV � 54.4 eV � �108.8 eV

The magnitude of this number, 108.8 eV, represents the
energy (work) required to remove both electrons from
the helium atom in the independent particle model. The
measured value is substantially lower, about 79.0 eV,
because of the mutual repulsion of the two elec-
trons. Specifically, it requires less energy—only about
24.6 eV—to remove the first electron from the atom,
because the electron left behind screens the nuclear
charge, making it appear less positive than a bare helium
nucleus.

�(r1, r2) � ��1(2/a0)3 e�2(r1�r2)/a0 {� ��� � � ���}

EXAMPLE 9.5 Ground State of the 
Helium Atom

Construct explicitly the two-electron ground-state wave-
function for the helium atom in the independent parti-
cle approximation, using the prescription of Equation
9.19. Compare the predicted energy of this state with the
measured value, and account in a qualitative way for any
discrepancy.

Solution In the independent-particle approximation,
each helium electron “sees” only the doubly charged he-
lium nucleus. Accordingly, the ground-state wavefunction
of the helium atom is constructed from the lowest-energy
hydrogen-like wavefunctions, with atomic number Z � 2
for helium. These are states for which n � 1, � � 0, and
m� � 0. Referring to Equation 8.42 of Chapter 8, we find
(with Z � 2)

To this orbital function we must attach a spin label ()
indicating the direction of electron spin. Thus, the one-
electron state labels a and b in this example are given by
a � (1, 0, 0, �), b � (1, 0, 0, �). Because there is no
orbital field to interact with the electron spin, the ener-
gies of these two states are identical and are just the
hydrogen-like levels of Equation 8.38 with n � 1 and
Z � 2:

Ea � Eb � �(22/12)(13.6 eV) � �54.4 eV

The antisymmetric two-electron wavefunction for the
ground state of helium is then

�(r1, r2) � �1 0 0�(r1)�1 0 0�(r2) � �1 0 0�(r1)�1 0 0�(r2)

Both terms have the same spatial dependence but differ
as to their spin. The first term of the antisymmetric wave

�100(r) � ��1/2(2/a0)3/2e�2r/a0

O P T I O N A L
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Ueff may not be Coulombic—or even spherically symmetric—and may be different

for each atomic electron. The success of this approach hinges on how simply and

accurately we can model the effective potential. A few of the more obvious possibili-

ties are outlined here.

The outermost, or valence, electrons of an atom “see” not the bare nucleus, but

one shielded, or screened, by the intervening electrons. The attraction is more like

that arising from a nucleus with an effective atomic number Zeff somewhat less than

the actual number Z and would be described by

(9.20)

For a Z-electron atom, Zeff � Z would represent no screening whatever; at

the opposite extreme is perfect screening by the Z � 1 other electrons, giving

Zeff � Z � (Z � 1) � 1. The best choice for Zeff need not even be integral, and use-

ful values may be deduced from measurements of atomic ionization potentials (see

Example 9.6). Furthermore, the degree of screening depends on how much time an

electron spends near the nucleus, and we should expect Zeff to vary with the shell

and subshell labels of the electron in question. In particular, a 4s electron is

screened more effectively than a 3s electron, since its average distance from the

nucleus is greater. Similarly, a 3d electron is better screened than a 3s, or even a 3p

electron (lower angular momentum implies more eccentric classical orbits, with

greater penetration into the nuclear region). The use of a Zeff for valence electrons

is appropriate whenever a clear distinction exists between these and inner (core)

electrons of the atom, as in the alkali metals.

EXAMPLE 9.6 Zeff for the 3s Electron in Sodium

The outer electron of the sodium atom occupies the 3s atomic level. The observed

value for the ionization energy of this electron is 5.14 eV. From this information, de-

duce a value of Zeff for the 3s electron in sodium.

Solution Since the ionization energy, 5.14 eV, represents the amount of energy

that must be expended to remove the 3s electron from the atom, we infer that

the energy of the 3s electron in sodium is E � �5.14 eV. This should be

compared with the energy of a 3s electron in a hydrogen-like atom with atomic

number Z eff, or

Equating this to �5.14 eV and solving for Zeff gives

In principle, nuclear shielding can be better described by allowing Zeff to vary

continuously throughout the atom in a way that mimics the tighter binding accom-

panying electron penetration into the core. Two functional forms commonly are

used for this purpose. For Thomas–Fermi screening we write

(9.21)

where aTF is the Thomas–Fermi screening length. According to Equation 9.21, Zeff

is very nearly Z close to the nucleus (r � 0) but drops off quickly in the outer region,

Zeff(r) � Z e�r/aTF

Zeff � 3 √ 5.14

13.6
� 1.84

E � �
Zeff

2

32 (13.6 eV)

Ueff(r) �
k(Zeffe)(�e)

r
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The Thomas–Fermi atom
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becoming essentially zero for r �� aTF. In this way, aTF becomes an indicator of

atomic size. The Thomas–Fermi model prescribes aTF proportional to Z �1/3; the

weak variation with Z suggests that all atoms are essentially the same size, regardless

of how many electrons they may have. Because the Thomas–Fermi potential is not

Coulombic, the one-electron energies that result from the use of Equation 9.21 vary

within a given shell; that is, they depend on the principal (n) and orbital (�) quan-

tum numbers. The study of these energies and their associated wavefunctions

requires numerical methods, or further approximation. The Thomas–Fermi

approximation improves with larger values of Z and so is especially well suited to

describe the outer electronic structure of the heavier elements.

In another approach, called the quantum-defect method, nuclear shielding is

described by

(9.22)

where b is again a kind of screening length. This form is appropriate to the alkali

metals, where a lone outer electron is responsible for the chemical properties of the

atom. From Equation 9.22, this electron “sees” Zeff � 1 for r �� b and larger values

in the core. The special virtue of Equation 9.22 is that it leads to one-electron ener-

gies and wavefunctions that can be found without further approximation. In particu-

lar, the energy levels that follow from Equation 9.22 can be shown to be

(9.23)

where D(�) is termed the quantum defect, since it measures the departure from

the simple hydrogen-atom level structure. As the notation suggests, the quantum

defect for an s electron differs from that for a p or d electron, but all s electrons

have the same quantum defect, regardless of their shell label. Table 9.1 lists some

quantum defects deduced experimentally for the sodium atom. Taking b � 0 in

Equation 9.22 causes all quantum defects to vanish, returning us to the hydrogen-

like level structure discussed in Chapter 8.

The use of a simple Zeff, or the more complicated forms of the Thomas – Fermi

or quantum-defect method, still results in a Ueff with spherical symmetry; that is,

the electrons move in a central field. The Hartree theory discards even this fea-

ture in order to achieve more accurate results. According to Hartree, the elec-

tron “cloud” in the atom should be treated as a classical body of charge distrib-

uted with some volume charge density �(r). The potential energy of any one

atomic electron is then

(9.24)

The first term is the attractive energy of the nucleus, and the second term is the re-

pulsive energy of all other atomic electrons. This Ueff gives rise to a one-electron

Schrödinger equation for the energies Ei and wavefunctions �i of this, say the i th,

atomic electron.

Ueff(r) �
kZe2

r
� � ke 	 �(r�)

� r � r� � 
 dV �

En �
ke2

2a0
 {n � D(�)}�2

Zeff(r) � 1 �
b

r
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Table 9.1 Some Quantum Defects 

for the Sodium Atom

Subshell s p d f

D(�) 1.35 0.86 0.01 �0

Quantum defects
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But the Hartree theory is self-consistent. That is, the charge density �(r) due

to the other atomic electrons is itself calculated from the electron wavefunc-

tions as

�(r) � �e ��j(r) �2 (9.25)

The sum in Equation 9.25 includes all occupied electron states �j except the ith

state. In this way the mathematical problem posed by Ueff is turned back on itself:

We must solve not one Schrödinger equation, but N of them in a single stroke, one

for each of the N electrons in the atom! This is accomplished using numerical

methods in an iterative solution scheme. An educated guess is made initially for

each of the N ground-state electron waves. Starting with this guess, the � and Ueff for

every electron can be computed and all N Schrödinger equations solved. The result-

ing wavefunctions are compared with the initial guesses; if discrepancies appear, the

calculation is repeated with the new set of electron wavefunctions replacing the old

ones. After several such iterations, agreement is attained between the starting

and calculated wavefunctions. The resulting N electron wavefunctions are said to be

fully self-consistent. Implementation of the Hartree method is laborious and

demands considerable skill, but the results for atomic electrons are among the

best available. Indeed, the Hartree and closely related Hartree–Fock methods

are the ones frequently used today when accurate atomic energy levels and wave-

functions are required.

9.6 THE PERIODIC TABLE

In principle, it is possible to predict the properties of all the elements by
applying the procedures of wave mechanics to each one. Because of the large
number of interactions possible in multielectron atoms, however, approxima-
tions must be used for all atoms except hydrogen. Nevertheless, the electronic
structure of even the most complex atoms can be viewed as a succession of
filled levels increasing in energy, with the outermost electrons primarily
responsible for the chemical properties of the element.

In the central field approximation, the atomic levels can be labeled by
the quantum numbers n and �. From the exclusion principle, the maximum
number of electrons in one such subshell level is 2(2� � 1). The energy
of an electron in this level depends primarily on the quantum number n,
and to a lesser extent on �. The levels can be grouped according to the
value of n (the shell label), and all those within a group have energies that
increase with increasing �. The order of filling the subshell levels with
electrons is as follows: Once a subshell is filled, the next electron goes into
the vacant level that is lowest in energy. This minimum energy principle
can be understood by noting that if the electron were to occupy a higher
level, it would spontaneously decay to a lower one with the emission of
energy.

The chemical properties of atoms are determined predominantly by the
least tightly bound, or valence, electrons, which are in the subshell of high-
est energy. The most important factors are the occupancy of this subshell
and the energy separation between this and the next-higher (empty) sub-
shell. For example, an atom tends to be chemically inert if its highest 
subshell is full and there is an appreciable energy gap to the next-higher
subshell, since then electrons are not readily shared with other atoms to

�
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Hartree’s self-consistent

fields
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form a molecule. The quasi-periodic recurrence of similar highest-shell
structures as Z increases is responsible for the periodic system of the chemi-
cal elements.

The specification of n and � for each atomic electron is called the electron
configuration of that atom. We are now in a position to describe the electron
configuration of any atom in its ground state:

Hydrogen has only one electron, which, in its ground-state, is described by
the quantum numbers n � 1, � � 0. Hence, its electron configuration is
designated as 1s1.

Helium, with its two electrons, has a ground-state electron configuration of
1s2. That is, both electrons are in the same (lowest-energy) 1s subshell.
Since two is the maximum occupancy for an s subshell, the subshell (and in
this case also the shell) is said to be closed, and helium is inert.

Lithium has three electrons. Two of these are assigned to the 1s subshell,
and the third must be assigned to the 2s subshell, because this subshell has
slightly lower energy than the 2p subshell. Hence, the electron configura-
tion of lithium is 1s22s1.

With the addition of another electron to make beryllium, the 2s subshell is
closed. The electron configuration of beryllium, with four electrons alto-
gether, is 1s22s2. (Beryllium is not inert, however, because the energy gap sepa-
rating the 2s level from the next available level—the 2p—is not very large.)

Boron has a configuration of 1s22s22p1. (With spin–orbit doubling, the 2p
electron in boron actually occupies the 2P1/2 sublevel, corresponding to
n � 2, � � 1, and j � .)

Carbon has six electrons, and a question arises of how to assign the two 2p
electrons. Do they go into the same orbital with paired spins (qp), or
do they occupy different orbitals with unpaired spins (qq)? Experi-
ments show that the energetically preferred configuration is the latter, in
which the spins are aligned. This is one illustration of Hund’s rule,
which states that electrons usually fill different orbitals with unpaired
spins, rather than the same orbital with paired spins. Hund’s rule can be
partly understood by noting that electrons in the same orbital tend to be
closer together, where their mutual repulsion contributes to a higher en-
ergy than if they were separated in different orbitals. Some exceptions to
this rule do occur in those elements with subshells that are nearly filled
or half-filled. The progressive filling of the 2p subshell illustrating Hund’s
rule is shown schematically in Figure 9.15. With neon, the 2p subshell is
also closed. The neon atom has ten electrons in the configuration
1s22s22p6. Because the energy gap separating the 2p level from the next
available level — the 3s — is quite large, the neon configuration is excep-
tionally stable and the atom is chemically inert.

A complete list of electron configurations for all the known elements is
given in Table 9.2. Note that beginning with potassium (Z � 19), the 4s sub-
shell starts to fill while the 3d level remains empty. Only after the 4s subshell
is closed to form calcium does the 3d subshell begin to fill. We infer that the
3d level has a higher energy than the 4s level, even though it belongs to a
lower-indexed shell. This should come as no surprise, because the energy

1
2
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separating consecutive shells becomes smaller with increasing n (see the
hydrogen-like spectrum), but the energy separating subshells is more nearly
constant because of the screening discussed in Section 9.5. (In fact, the
energy separating the 3d and 4s levels is very small, as evidenced by the
electron configuration of chromium, in which the 3d subshell temporarily
regains an electron from the 4s.) The same phenomenon occurs again
with rubidium (Z � 37), in which the 5s subshell begins to fill at the expense
of the 4d and 4f subshells. Energetically, the electron configurations
shown in the table imply the following ordering of subshells with respect to
energy:

1s � 2s � 2p � 3s � 3p � 4s � 3d � 4p � 5s � 4d � 5p � 6s � 4f � 5d

� 6p � 7s � 6d � 5f . . .

The elements from scandium (Z � 21) to zinc (Z � 30) form the first
transition series. These transition elements are characterized by progres-
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Atom

Li

Be

B

C

N

O

F

N

1s 2s 2p

Electron
configuration

1s22s1

1s22s2

1s22s22p1

1s22s22p2

1s22s22p3

1s22s22p4

1s22s22p5

1s22s22p6

Figure 9.15 Electronic configurations of successive elements from lithium to neon.
The filling of electronic states must obey the Pauli exclusion principle and Hund’s rule.

Ordering of subshells

by energy
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sive filling of the 3d subshell while the outer electron configuration is
unchanged at 4s2 (except in the case of copper). Consequently, all the tran-
sition elements exhibit similar chemical properties. This belated occupancy
of inner d subshells is encountered again in the second and third transition
series, marked by the progressive filling of the 4d and 5d subshells, respec-
tively. The second transition series includes the elements yttrium (Z � 39)
to cadmium (Z � 48); the third contains the elements lutetium (Z � 71) to
mercury (Z � 80).

Related behavior is also seen as the 4f and 5f subshells are filled. The lan-
thanide series, stretching from lanthanum (Z � 57) to ytterbium (Z � 70), is
marked by a common 6s2 valence configuration, with the added electrons
completing the 4f subshell (the nearby 5d levels also are occupied in some
instances). The lanthanide elements, or lanthanides, also are known as the
rare earths because of their low natural abundance. Cerium (Z � 58), which
forms 0.00031% by weight of the Earth’s crust, is the most abundant of the
lanthanides.

322 CHAPTER 9 ATOMIC STRUCTURE

Table 9.2 Electronic Configurations of the Elements

Ground Ionization Ground Ionization
Z Symbol Configuration Energy (eV) Z Symbol Configuration Energy (eV)

1 H 1s1 13.595 27 Co 3d 74s2 7.86
2 He 1s2 24.581 28 Ni 3d 84s2 7.633
3 Li [He] 2s1 5.390 29 Cu 3d104s1 7.724
4 Be 2s2 9.320 30 Zn 3d104s2 9.391
5 B 2s22p1 8.296 31 Ga 3d104s24p1 6.00
6 C 2s22p2 11.256 32 Ge 3d104s24p2 7.88
7 N 2s22p3 14.545 33 As 3d104s24p3 9.81
8 O 2s22p4 13.614 34 Se 3d104s24p4 9.75
9 F 2s22p5 17.418 35 Br 3d104s24p5 11.84

10 Ne 2s22p6 21.559 36 Kr 3d104s24p6 13.996
11 Na [Ne] 3s1 5.138 37 Rb [Kr] 5s1 4.176
12 Mg 3s2 7.644 38 Sr 5s2 5.692
13 Al 3s23p1 5.984 39 Y 4d5s2 6.377
14 Si 3s23p2 8.149 40 Zr 4d25s2 6.835
15 P 3s23p3 10.484 41 Nb 4d 45s1 6.881
16 S 3s23p4 10.357 42 Mo 4d 55s1 7.10
17 Cl 3s23p5 13.01 43 Tc 4d 55s2 7.228
18 Ar 3s23p6 15.755 44 Ru 4d 75s1 7.365
19 K [Ar] 4s1 4.339 45 Rh 4d 85s1 7.461
20 Ca 4s2 6.111 46 Pd 4d10 8.33
21 Sc 3d4s2 6.54 47 Ag 4d105s1 7.574
22 Ti 3d 24s2 6.83 48 Cd 4d105s2 8.991
23 V 3d 34s2 6.74 49 In 4d105s25p1 5.785
24 Cr 3d 54s 6.76 50 Sn 4d105s25p2 7.342
25 Mn 3d 54s2 7.432 51 Sb 4d105s25p3 8.639
26 Fe 3d 64s2 7.87 52 Te 4d105s25p4 9.01
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9.6 THE PERIODIC TABLE 323

Table 9.2 Electronic Configurations of the Elements

Ground Ionization Ground Ionization
Z Symbol Configuration Energy (eV) Z Symbol Configuration Energy (eV)

53 I 4d105s25p5 10.454 79 Au [Xe, 4f 145d10] 6s1 9.22
54 Xe 4d105s25p6 12.127 80 Hg 6s2 10.434
55 Cs [Xe] 6s1 3.893 81 Tl 6s26p1 6.106
56 Ba 6s2 5.210 82 Pb 6s26p2 7.415
57 La 5d6s2 5.61 83 Bi 6s26p3 7.287
58 Ce 4f 5d6s2 6.54 84 Po 6s26p4 8.43
59 Pr 4f 36s2 5.48 85 At 6s26p5 9.54
60 Nd 4f 46s2 5.51 86 Rn 6s26p6 10.745
61 Pm 4f 56s2 5.60 87 Fr [Rn] 7s1 3.94
62 Fm 4f 66s2 5.644 88 Ra 7s2 5.277
63 Eu 4f 76s2 5.67 89 Ac 6d7s2 5.17
64 Gd 4f 75d6s2 6.16 90 Th 6d27s2 6.08
65 Tb 4f 96s2 6.74 91 Pa 5f 26d7s2 5.89
66 Dy 4f 106s2 6.82 92 U 5f 36d 7s2 6.194
67 Ho 4f 116s2 6.022 93 Np 5f 46d7s2 6.266
68 Er 4f 126s2 6.108 94 Pu 5f 67s2 6.061
69 Tm 4f136s2 6.185 95 Am 5f 77s2 5.99
70 Yb 4f 146s2 6.22 96 Cm 5f 76d 7s2 6.02
71 Lu 4f 145d6s2 6.15 97 Bk 5f 86d 7s2 6.23
72 Hf 4f 145d26s2 6.83 98 Cf 5f 107s2 6.30
73 Ta 4f 145d36s2 7.88 99 Es 5f 117s2 6.42
74 W 4f 145d46s2 7.98 100 Fm 5f 127s1 6.50
75 Re 4f 145d 56s2 7.87 101 Mv 5f 137s2 6.58
76 Os 4f 145d66s2 8.71 102 No 5f 147s2 6.65
77 Ir 4f 145d76s2 9.12 103 Lw 5f 146d 7s2

78 Pt 4f 145d86s2 8.88 104 Ku 5f 146d27s2

Note: The bracket notation is used as a shorthand method to avoid repetition in indicating inner-shell electrons. Thus, [He] represents
1s2, [Ne] represents 1s22s22p6, [Ar] represents 1s22s22p63s23p6, and so on.

In the actinide series from actinium (Z � 89) to nobelium (Z � 102), the
valence configuration remains 7s2, as the 5f subshell progressively fills (along
with occasional occupancy of the nearby 6d level).

Table 9.2 also lists the ionization energies of the elements. The ionization
energy for each element is plotted against its atomic number Z in Figure
9.16a. This plot shows that the ionization energy tends to increase within a
shell, then drops dramatically as the filling of a new shell begins. The behavior
repeats, and it is from this recurring pattern that the periodic table gets its
name. A similar repetitive pattern is observed in a plot of the atomic volume
per atom versus atomic number (see Fig. 9.16b).

The primary features of these plots can be understood from simple argu-
ments. First, the larger nuclear charge that accompanies higher values of
Z tends to pull the electrons closer to the nucleus and binds them more
tightly. Were this the only effect, the ionization energy would increase
and the atomic volume would decrease steadily with increasing Z. But the
innermost, or core, electrons screen the nuclear charge, making it less
effective in binding the outer electrons. The screening effect varies in a
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Figure 9.16 (a) Ionization energy of the elements versus atomic number Z . (b) Atomic
volume of the elements versus atomic number Z . The recurring pattern with increasing
atomic number exemplifies the behavior from which the periodic table gets its name.

complicated way from one element to the next, but it is most pronounced
for a lone electron outside a closed shell, as in the alkali metals (Li, Na, K,
Rb, Cs, and Fr). For these configurations the ionization energy drops
sharply, only to rise again as the nuclear charge intensifies at higher Z. The
variation in ionization energy is mirrored by the behavior of atomic volume,
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9.7 X-RAY SPECTRA AND MOSELEY’S LAW 325

which peaks at the alkali configurations and becomes smaller as the screen-
ing effect subsides.

9.7 X-RAY SPECTRA AND MOSELEY’S LAW

Electronic transitions within the inner shells of heavier atoms are accompa-
nied by large energy transfers. If the excess energy is carried off by a photon,
x rays are emitted at specific wavelengths peculiar to the emitting atom. This
explains why discrete x-ray lines are produced when energetic electrons bom-
bard a metal target, as discussed earlier in Section 3.5.

The inner electrons of high Z elements are bound tightly to the atom, be-
cause they see a nuclear charge essentially unscreened by the remaining elec-
trons. Consider the case of molybdenum (Mo), with atomic number Z � 42
(see Table 9.2). The innermost, or K shell, electrons have n � 1 and energy
(from Equation 8.38)

E1 � �
ke2

2a0
� Z2

12  � �(13.6 eV)(42)2 � �23990.4 eV

O

N

M

L

K

n = 5

n = 4

n = 3

n = 2

n = 1

Kαα
Kββ

K γγ
Kδδ

K εε

Lα
Lβ

Lγ
Lδ

Mαα
Mββ

M γγ

Nα Nβ

Figure 9.17 Origin of x-ray spectra. The K series (K�, K�, K�, . . .) originates with
electrons in higher-lying shells making a downward transition to fill a vacancy in the K

shell. In the same way, the filling of vacancies created in higher shells produces the L
series, the M series, and so on.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight



Thus, approximately 24 keV must be supplied to dislodge a K shell electron
from the Mo atom.8 Energies of this magnitude are routinely delivered via
electron impact: electrons accelerated to kilovolt energies collide with
atoms of a molybdenum target, giving up most or all of their energy to one
atom in a single collision. If large enough, the collision energy may excite
one of the K shell electrons to a higher vacant level or free it from the atom
altogether. (Recall there are two electrons in a filled K shell.) In either case,
a vacancy, or hole, is left behind. This hole is quickly filled by another,
higher-lying atomic electron, with the energy of transition released in the
form of a photon. The exact energy (and wavelength) of the escaping pho-
ton depends on the energy of the electron filling the vacancy, giving rise to
an entire K series of emission lines denoted in order of increasing energy
(decreasing wavelength) by K�, K�, K�, . . . . In the same way, the filling of
vacancies left in higher shells produces the L series, the M series, and so on,
as illustrated in Figure 9.17.

326 CHAPTER 9 ATOMIC STRUCTURE

Henry G. J. Moseley (1887 – 1915) discovered a direct way to measure Z, the atomic
number, from the characteristic x-ray wavelength emitted by an element. Moseley’s
work not only established the correct sequence of elements in the periodic table
but also provided another confirmation of the Bohr model of the atom, in this case
at x-ray energies. One wonders what other major discoveries Moseley would
have made if he had not been killed in action at the age of 27 in Turkey in the first
world war. (University of Oxford, Museum of the History of Science/Courtesy AIP Niels Bohr

Library)

8In contrast, only 7.10 eV (the ionization energy from Table 9.2) is required to free the outermost,
or 5s, electron.
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Figure 9.18 The original data of Moseley showing the relationship between atomic
number Z and the characteristic x-ray frequencies. The gaps at Z � 43, 61, and 75 rep-
resent elements unknown at the time of Moseley’s work. (There are also several errors
in the atomic number designations for the elements.) (© From H. G. J. Moseley, Philos.
Mag. (6), 27:703, 1914)
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The energy of the longest-wavelength photons in a series can be estimated
from simple screening arguments. For the K� line, the K shell vacancy is filled
by an electron from the L shell (n � 2). But an electron in the L shell is par-
tially screened from the nucleus by the one remaining K shell electron and so
sees a nuclear charge of only Z � 1. Thus, the energy of the K� photon can be
approximated as an n � 2 to n � 1 transition in a one-electron atom with an
effective nuclear charge of Z � 1:

(9.26)

For molybdenum (Z � 42), this is E[K�] � 17.146 keV, corresponding to a
wavelength

For comparison, the observed K� line of molybdenum has wavelength
0.7095 Å, in reasonable agreement with our calculation.

In a series of careful experiments conducted from 1913 to 1914, the British
physicist H. G. J. Moseley measured the wavelength of K� lines for numerous
elements and confirmed the validity of Equation 9.26, known as Moseley’s
law. According to Moseley’s law, a plot of the square root of photon frequency
(E/h)1/2 versus atomic number Z should yield a straight line. Such a Moseley
plot, as it is called, is reproduced here as Figure 9.18. Before Moseley’s work,
atomic numbers were mere placeholders for the elements appearing in the
periodic table, the elements being ordered according to their mass. By mea-
suring their K� lines, Moseley was able to establish the correct sequence of ele-
ments in the periodic table, a sequence properly based on atomic number
rather than atomic mass. The gaps in Moseley’s data at Z � 43, 61, and 75 rep-
resent elements unknown at the time of his work.

SUMMARY

The magnetic behavior of atoms is characterized by their magnetic moment.
The orbital moment of an atomic electron is proportional to its orbital angu-
lar momentum:

(9.1)

The constant of proportionality, �e/2me, is called the gyromagnetic ratio.
Since L is subject to space quantization, so too is the atomic moment �.
Atomic moments are measured in Bohr magnetons, �B � e�/2me; the SI
value of �B is 9.27 � 10�24 J/T.

An atom subjected to an external magnetic field B experiences a mag-
netic torque, which results in precession of the moment vector � about the
field vector B. The frequency of precession is the Larmor frequency �L

given by

(9.5)�L �
eB

2me

� �
�e

2me
L

�[K�] �
hc

E[K�]
�

12.4 keV
Å

17.146 keV
� 0.723 Å

E[K�] � �
ke2

2a0

(Z � 1)2

22 �
ke2

2a0

(Z � 1)2

12 �
ke2

2a0

3(Z � 1)2

4
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