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We have seen that associated with any particle is a matter wave called the
wavefunction. How this wavefunction affects our description of a particle and
its behavior is the subject of quantum mechanics, or wave mechanics. This
scheme, developed from 1925 to 1926 by Schrodinger, Heisenberg, and oth-
ers, makes it possible to understand a host of phenomena involving elemen-
tary particles, atoms, molecules, and solids. In this and subsequent chapters,
we shall describe the basic features of wave mechanics and its application to
simple systems. The relevant concepts for particles confined to motion along a
straight line (the xaxis) are developed in the present chapter.

6.1 THE BORN INTERPRETATION

The wavefunction ¥ contains within it all the information that can be known
about the particle. That basic premise forms the cornerstone of our investiga-
tion: One of our objectives will be to discover how information may be ex-
tracted from the wavefunction; the other, to learn how to obtain this wavefunc-
tion for a given system.

The currently held view connects the wavefunction ¥ with probabilities in
the manner first proposed by Max Born in 1925:
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CHAPTER 6

QUANTUM MECHANICS IN ONE DIMENSION

ax Born was a German theo-
retical physicist who made
major contributions  in

many areas of physics, including rela-
tivity, atomic and solid-state physics,
matrix mechanics, the quantum me-
chanical treatment of particle scatter-
ing (“Born approximation”), the
foundations of quantum mechanics
(Born interpretation of W), optics,
and the kinetic theory of liquids.
Born received the doctorate in
physics from the University of Gottin-
gen in 1907, and he acquired an ex-
tensive knowledge of mathematics as
the private assistant to the great
German mathematician David Hil-
bert. This strong mathematical back-
ground proved a great asset when he
was quickly able to reformulate
Heisenberg’s quantum theory in a
more consistent way with matrices.

In 1921, Born was offered a post at
the University of Gottingen, where he
helped build one of the strongest
physics centers of the 20th century.
This group consisted, at one time

Image not available due to copyright restrictions

MAX BORN
(1882-1970)

or another, of the mathematicians
Hilbert, Courant, Klein, and Runge
and the physicists Born, Jordan,
Heisenberg, Franck, Pohl, Heitler,
Herzberg, Nordheim, and Wigner,

among others. In 1926, shortly
after Schrodinger’s publication of
wave mechanics, Born applied
Schrodinger’s methods to  atomic
scattering and developed the Born
approximation method for carrying
out calculations of the probability of
scattering of a particle into a given
solid angle. This work furnished the
basis for Born’s startling (in 1926) in-
terpretation of [¥|? as the probability
density. For this so-called statistical in-
terpretation of [¥[2 he was awarded
the Nobel prize in 1954.

Fired by the Nazis, Born left
Germany in 1933 for Cambridge
and eventually the University of
Edinburgh, where he again became
the leader of a large group investi-
gating the statistical mechanics of
condensed matter. In his later years,
Born campaigned against atomic
weapons, wrote an autobiography,
and translated German humorists
into English.

The probability that a particle will be found in the infinitesimal interval

Born interpretation of W

P(x)dx = | W(x,1)|? dx

dx about the point x, denoted by P(x) dx, is

(6.1)

Therefore, although it is not possible to specify with certainty the location
of a particle, it is possible to assign probabilities for observing it at any given
position. The quantity |¥|?, the square of the absolute value of W, repre-
sents the intensity of the matter wave and is computed as the product of ¥
with its complex conjugate, that is, |W|? = ¥*W. Notice that ¥ itself is not a
measurable quantity; however, |¥|? is measurable and is just the probability
per unit length, or probability density P(x), for finding the particle at the
point x at time ¢ For example, the intensity distribution in a light diffrac-
tion pattern is a measure of the probability that a photon will strike a given
point within the pattern. Because of its relation to probabilities, we insist
that W(x, t) be a single-valued and continuous function of x and t so that no am-
biguities can arise concerning the predictions of the theory. The wavefunc-
tion ¥ also should be smooth, a condition that will be elaborated later as it is
needed.
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6.1 THE BORN INTERPRETATION 193

Because the particle must be somewhere along the x-axis, the probabilities
summed over all values of x must add to 1:

foo |W(x, t)[2dx =1 (6.2)

Any wavefunction satisfying Equation 6.2 is said to be normalized. Nor-
malization is simply a statement that the particle can be found somewhere
with certainty. The probability of finding the particle in any finite interval
a=x=bis

b4 2[

a X b

b
P=J |W(x, 0)|2dx

That is, the probability is just the area included under the curve of probability

density between the points x = aand x = b (Fig. 6.1).

EXAMPLE 6.1 Normalizing the Wavefunction

The initial wavefunction of a particle is given as ¥ (x, 0) =
Cexp(—|x|/xp), where Cand x are constants. Sketch this
function. Find C in terms of x, such that ¥(x, 0) is nor-
malized.

Solution The given wavefunction is symmetric, decay-
ing exponentially from the origin in either direction, as
shown in Figure 6.2. The decay length x( represents the

| | | I
=3xg  —2xy =X X 2x)  3xg

Figure 6.2 (Example 6.1) The symmetric wavefunction
W(x, 0) = Cexp(—|x|/xp). At x = *xq the wave amplitude
is down by the factor 1/¢ from its peak value ¥(0, 0) = C.
C is a normalizing constant whose proper value is
¢ =1/Vx.

Figure 6.1 The probability for
a particle to be in the interval
a = x= b is the area under the
curve from a to b of the probabil-
ity density function | W (x, 7[>

(6.3)

distance over which the wave amplitude is diminished by
the factor 1/¢from its maximum value W (0, 0) = C.
The normalization requirement is

1=f |W(x,0) % dx = c‘ZJ —21x1/%0 gy

Because the integrand is unchanged when x changes sign
(it is an even function), we may evaluate the integral over
the whole axis as twice that over the half-axis x> 0,
where |x| = x. Then,

1= 202f 25/ % g = 9C2 <%> = C2x
0

Thus, we must take C = 1/Vx, for normalization.

EXAMPLE 6.2 Calculating Probabilities

Calculate the probability that the particle in the preced-
ing example will be found in the interval —xy = x = x.

Solution The probability is the area under the curve of
|W (x, 0)]? from —x to +xg and is obtained by integrating
the probability density over the specified interval:

X0 X0

P:f |«1r(x,0)|2dx:2f | W (x, 0)|? dx
—x0 0

where the second step follows because the integrand is

an even function, as discussed in Example 6.1. Thus,

X0
P= QCQJ e 2% dx = 2C%(x0/2) (1 — e 2)
0

Substituting C = 1/\/x_0 into this expression gives for the
probability P =1 — ¢ 2 = 0.8647, or about 86.5%, inde-
pendent of x.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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194 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

Plane wave representation
for a free particle

The fundamental problem of quantum mechanics is this: Given the
wavefunction at some initial instant, say ¢ = 0, find the wavefunction at
any subsequent time ¢. The wavefunction W(x, 0) represents the initial infor-
mation that must be specified; once this is known, however, the wave propa-
gates according to prescribed laws of nature.

Because it describes how a given system evolves, quantum mechanics is a dy-
namical theory much like Newtonian mechanics. There are, of course, impor-
tant differences. In Newton’s mechanics, the state of a particle at t = 0 is speci-
fied by giving its initial position x(0) and velocity v(0)—just two numbers;
quantum mechanics demands an entire wavefunction ¥ (x, 0)—an infinite set
of numbers corresponding to the wavefunction value at every point x. But
both theories describe how this state changes with time when the forces acting
on the particle are known. In Newton’s mechanics x(¢) and v(¢) are calculated
from Newton’s second law; in quantum mechanics W (x, {) must be calculated
from another law— Schridinger’s equation.

6.2 WAVEFUNCTION FOR A FREE PARTICLE

A free particle is one subject to no force. This special case can be studied us-
ing prior assumptions without recourse to the Schrédinger equation. The de-
velopment underscores the role of the initial conditions in quantum physics.

The wavenumber k and frequency w of free particle matter waves are given
by the de Broglie relations

k L d & (6.4)
== an = .
f CTh
For nonrelativistic particles w is related to k as
fik?
w(k) = —— (6.5)
2m

which follows from the classical connection E = p?/2m between the energy E
and momentum p for a free particle.!
For the wavefunction itself, we should take

W (x, f) = Adr— ) = Afcos(kx — wt) + i sin(kx — i)} (6.6)

where i = \/Tl is the imaginary unit. This is an oscillation with wavenumber £,
frequency w, and amplitude A. Because the variables x and ¢ occur only in the
combination kx — wt, the oscillation is a traveling wave, as befits a free particle
in motion. Further, the particular combination expressed by Equation 6.6 is
that of a plane wave,? for which the probability density [W|? (= A%) is uniform.
That is, the probability of finding this particle in any interval of the x-axis is
the same as that for any other interval of equal length and does not change
with time. The plane wave is the simplest traveling waveform with this prop-

IThe functional form for w(k) was discussed in Section 5.3 for relativistic particles, where
E= \j(cp)2 + (mc?)2. In the nonrelativistic case (v << ¢), this reduces to E = pZ/Qm + mc2. The
rest energy IYy = mc” can be disregarded in this case if we agree to make E, our energy reference.
By measuring all energies from this level, we are in effect setting E( equal to zero.

2For a plane wave, the wave fronts (points of constant phase) constitute planes perpendicular to
the direction of wave propagation. In the present case the constant phase requirement kx — wt =
constant demands only that x be fixed, so the wave fronts occupy the y—z planes.
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6.2 WAVEFUNCTION FOR A FREE PARTICLE 195

Y(x, 0) | W(x, t) a(h)

e X * ((2_%))5

(a) (b) (c)

Figure 6.3 (a) A wave packet W(x, 0) formed from a superposition of plane waves.
(b) The same wave packet some time ¢ later (real part only). Because v, = w/k =
hk/2m, the plane waves with smaller wavenumber move at slower speeds, and the
packet becomes distorted. The body of the packet propagates with the group speed
dw/ dk of the plane waves. (c¢) The amplitude distribution function a(k) for this packet,
indicating the amplitude of each plane wave in the superposition. A narrow wave
packet requires a broad spectral content, and vice versa. That is, the widths Ax and Ak
are inversely related as AxAk =~ 1.

erty—it expresses the reasonable notion that there are no special places for a
free particle to be found. The particle’s location is completely unknown at
¢t =0 and remains so for all time; however, its momentum and energy are
known precisely as p = ik and E = fiw, respectively.

But not all free particles are described by Equation 6.6. For instance, we may
establish (by measurement) that our particle initially is in some range Ax about
xp. In that case, W(x, 0) must be a wave packet concentrated in this interval, as
shown in Figure 6.3a. The plane wave description is inappropriate now because
the initial wave shape is not given correctly by W;(x, 0) = ¢/*. Instead, a sum of
plane waves with different wavenumbers must be used to represent the packet.
Because k is unrestricted, the sum actually is an integral here and we write

W(x, 0) = f a(k) ™ dk (6.7)
The coefficients a(k) specify the amplitude of the plane wave with wavenumber
k in the mixture and are chosen to reproduce the initial wave shape. For a
given W (x, 0), the required a(k) can be found from the theory of Fourier inte-
grals. We shall not be concerned with the details of this analysis here; the essen-
tial point is that it can be done for a packet of any shape (see optional Section
5.4). If each plane wave constituting the packet is assumed to propagate inde-
pendently of the others according to Equation 6.6, the packet at any time ¢is

W(x, 1) = J a(k) et et} gp (6.8)
Notice that the initial data are used only to establish the amplitudes a(k); subse-
quently, the packet develops according to the evolution of its plane wave con-
stituents. Because each of these constituents moves with a different velocity
v, = o/k (the phase velocity), the wave packet undergoes dispersion (see Sec-
tion 5.3) and the packet changes its shape as it propagates (Fig. 6.3b). The
speed of propagation of the wave packet as a whole is given by the group velocity
dw/ dk of the plane waves forming the packet. Equation 6.8 no longer describes a

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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196 CHAPTER 6

QUANTUM MECHANICS IN ONE DIMENSION

particle with precise values of momentum and energy. To construct a wave packet
(that is, localize the particle), a mixture of wavenumbers (hence, particle mo-
menta) is necessary, as indicated by the different a(k). The amplitudes a(k) fur-
nish the so-called spectral content of the packet, which might look like that
sketched in Figure 6.3c. The narrower the desired packet W (x, 0), the broader is
the function a(k) representing that packet. If Ax denotes the packet width and
Ak the extent of the corresponding a(k), one finds that the product always is a
number of order unity, that is, Ax Ak = 1. Together with p = #ik, this implies an

uncertainty principle:

EXAMPLE 6.3 Constructing a Wave Packet

Find the wavefunction W(x, 0) that results from taking
the function a(k) = (Ca/\/;)exp(—an?), where C and
« are constants. Estimate the product Ax Ak for this case.

Solution The function W(x, 0) is given by the integral
of Equation 6.7 or

0 ) C oo )
W(x, 0) = J a(k) o™ dk = Ta j olikx—=a®®®) g
o0 7T —0o0

To evaluate the integral, we first complete the square in
the exponent as

; 2 2
ikx — o®k2 = —(ak - i) .
2w 402

The second term on the right is constant for the integra-
tion over k; to integrate the first term we change variables
with the substitution z = ak — ix/2a, obtaining

Cc * ;
W(x, 0) = \/, e_"2/4“2f e d

T —o0
The integral now is a standard one whose value is known
to be \/77 Then,

o= (x/2a)?

W(x, 0) = G /4" =

AxAp~ (6.9)

This function W (x, 0), called a Gaussian function, has
a single maximum at x = 0 and decays smoothly to zero
on either side of this point (Fig. 6.4a). The width of this
Gaussian packet becomes larger with increasing a. Ac-
cordingly, it is reasonable to identify a with Ax, the initial
degree of localization. By the same token, a(k) also is a
Gaussian function, but with amplitude Ca/ v and width
1/2a (since a®k* = (k/2[1/2a])?). Thus, Ak = 1/2a and
AxAk = 1/2, independent of a. The multiplier C is a scale
factor chosen to normalize W.

Because our Gaussian packet is made up of many indi-
vidual waves all moving with different speeds, the shape
of the packet changes over time. In Problem 4 it is shown
that the packet disperses, its width growing ever larger
with the passage of time as

Ax(l) = \/[Ax(o)]2 + [

t 2
2mAx(0) }

Similarly, the peak amplitude diminishes steadily in order
to keep the waveform normalized for all times (Fig.
6.4b). The wave as a whole does not propagate, because
for every wavenumber k present in the wave group there
is an equal admixture of the plane wave with the oppos-
ing wavenumber —k.

|
|
l ———W(0,1)/e
|
|

s
4Ax(1)

(b)

Figure 6.4 (Example 6.3) (a) The Gaussian wavefunction W(x, 0) =
C exp{—(x/2a)?}, representing a particle initially localized around x = 0. C is
the amplitude. At x = *2a, the amplitude is down from its maximum value by
the factor 1/¢; accordingly, « is identified as the width of the Gaussian, a = Ax.
(b) The Gaussian wavefunction of Figure 6.4a at time ¢ (apart from a phase fac-

tor). The width has increased to Ax () = Va2 + (fit/2ma)? and the amplitude

is reduced by the factor Va/Ax ().
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6.3 WAVEFUNCTIONS IN THE PRESENCE OF FORCES 197

EXAMPLE 6.4 Dispersion of Matter Waves

An atomic electron initially is localized to a region of
space 0.10 nm wide (atomic size). How much time
elapses before this localization is destroyed by disper-
sion? Repeat the calculation for a 1.0-g marble initially lo-
calized to 0.10 mm.

Solution Taking for the initial state a Gaussian wave
shape, we may use the results of the previous example. In
particular, the extent of the matter wave after a time ¢ has
elapsed is

Ax(t) = '\/[Ax(O)]2 + [LT
2mAx(0)

where Ax(0) is its initial width. The packet has effectively
dispersed when Ax(f) becomes appreciable compared
to Ax(0), say, Ax(f) =10 Ax(0). This happens when
fit/2m = 99 [Ax(0)12, or ¢ = V99 (2m/%) [Ax(0)]2.

The electron is initially localized to 0.10 nm
(= 10719 m), and its mass is m. = 9.11 X 10731 kg. Thus,
the electron wave packet disperses after a time

(2)(9.11 X 1073 kg) 10 s
= V99 1.00 X 10 2
{ 1055 x 1095 | ¢ m)

1.7 X 107155

The same calculation for a 1.0-g marble localized to
0.10 mm = 10~* m gives

M@{

=19 X 1025

(2) (107° kg)
1.055 X 1034 ] s

} (1074 m)2

or about 6.0 X 10'® years! This is nearly 10 million
times the currently accepted value for the age of the
Universe. With its much larger mass, the marble does not
show the quantum effects of dispersion on any measur-
able time scale and will, for all practical purposes, remain
localized “forever.” By contrast, the localization of an
atomic electron is destroyed in a time that is very short,
on a par with the time it takes the electron to complete
one Bohr orbit.

In closing this section, we note that in principle Equations 6.7 and
6.8 solve the fundamental problem of quantum mechanics for free particles
subject to any initial condition ¥ (x, 0). Because of its mathematical simplic-
ity, the Gaussian wave packet is commonly used to represent the initial sys-
tem state, as in the previous examples. However, the Gaussian form is often
only an approximation to reality. Yet even in this simplest of cases, the
mathematical challenge of obtaining W (x, ) from W (x, 0) tends to obscure
the important results. Numerical simulation affords a convenient alternative
to analytical calculation that also aids in visualizing the important phe-
nomena of wave packet propagation and dispersion. To “see” quantum
waveforms in action and further explore their time evolution, go to our
companion Web site http://info.brookscole.com/mp3e, select QMTools
Simulations — Evolution of Free Particle Wave Packets (Tutorial), and fol-
low the on-site instructions.

6.3 WAVEFUNCTIONS IN THE PRESENCE OF FORCES

For a particle acted on by a force £, W(x, {) must be found from
Schrédinger’s equation:

hZ 02w o
————— + UV =i —

2m  dx (6.10)

Again, we assume knowledge of the initial wavefunction ¥(x, 0). In this
expression, U(x) is the potential energy function for the force F that is,

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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198 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

F = —dU/dx. Schrédinger’s equation is not derivable from any more basic
principle, but is one of the laws of quantum physics. As with any law, its
“truth” must be gauged ultimately by its ability to make predictions that agree

with experiment.

rwin Schroédinger was an Aus-

trian theoretical physicist best

known as the creator of wave
mechanics. As a young man he was a
good student who liked mathematics
and physics, but also Latin and Greek
for their logical grammar. He re-
ceived a doctorate in physics from the
University of Vienna. Although his
work in physics was interrupted by
World War I, Schrédinger had by
1920 produced important papers on
statistical mechanics, color vision, and
general relativity, which he at first
found quite difficult to understand.
Expressing his feelings about a scien-
tific theory in the remarkably open
and outspoken way he maintained
throughout his life, Schrodinger
found general relativity initially “de-
pressing” and “unnecessarily compli-
cated.” Other Schrodinger remarks in
this vein, with which some readers
will enthusiastically agree, are as fol-
lows: The Bohr—Sommerfeld quan-
tum theory was “unsatisfactory, even
disagreeable.” “I . .. feel intimidated,
not to say repelled, by what seem to
me the very difficult methods [of ma-
trix mechanics] and by the lack of
clarity.”

Shortly after de Broglie intro-
duced the concept of matter waves
in 1924, Schroédinger began to de-
velop a new relativistic atomic the-
ory based on de Broglie’s ideas, but
his failure to include electron spin
led to the failure of this theory for
hydrogen. By January of 1926, how-
ever, by treating the electron as a
nonrelativistic particle, Schrodinger
had introduced his famous wave
equation and successfully obtained
the energy values and wavefunctions
for hydrogen. As Schrodinger him-
self pointed out, an outstanding fea-

Image not available due to copyright restrictions

ERWIN SCHRODINGER
(1887-1961)

ture of his approach was that the dis-
crete energy values emerged from
his wave equation in a natural way
(as in the case of standing waves on
a string), and in a way superior to
the artificial postulate approach of
Bohr. Another outstanding feature
of Schrodinger’s wave mechanics was
that it was easier to apply to physical
problems than Heisenberg’s matrix
mechanics, because it involved a
partial differential equation very
similar to the classical wave equa-
tion. Intrigued by the remarkable
differences in conception and math-
ematical method of wave and matrix
mechanics, Schrodinger did much
to hasten the universal acceptance
of all of quantum theory by demon-
strating the mathematical equiva-
lence of the two theories in 1926.
Although Schrédinger’s wave the-
ory was generally based on clear

physical ideas, one of its major
problems in 1926 was the physical
interpretation of the wavefunction
W. Schrodinger felt that the electron
was ultimately a wave, ¥ was the vi-
bration amplitude of this wave, and
PP was the electric charge density.
As mentioned in Chapter 4, Born,
Bohr, Heisenberg, and others
pointed out the problems with this
interpretation and presented the
currently accepted view that W*W¥ is
a probability and that the electron is
ultimately no more a wave than
a particle. Schrodinger never ac-
cepted this view, but registered his
“concern and disappointment” that
this “transcendental, almost psychi-
cal interpretation” had become “uni-
versally accepted dogma.”

In 1927, Schrodinger, at the invita-
tion of Max Planck, accepted the
chair of theoretical physics at
the University of Berlin, where he
formed a close friendship with Planck
and experienced six stable and pro-
ductive years. In 1933, disgusted with
the Nazis like so many of his col-
leagues, he left Germany. After sev-
eral moves reflecting the political in-
stability of Europe, he eventually
settled at the Dublin Institute for Ad-
vanced Studies. Here he spent 17
happy, creative years working on
problems in general relativity, cos-
mology, and the application of quan-
tum physics to biology. This last effort
resulted in a fascinating short book,
What is Life?, which induced many
young physicists to investigate biologi-
cal processes with chemical and phys-
ical methods. In 1956, he returned
home to his beloved Tyrolean moun-
tains. He died there in 1961.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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6.3 WAVEFUNCTIONS IN THE PRESENCE OF FORCES

The Schrodinger equation propagates the initial wave forward in time. To
see how this works, suppose W (x, 0) has been given. Then the left-hand side
(LHS) of Schrodinger’s equation can be evaluated and Equation 6.10 gives
dW/dt at ¢ = 0, the initial rate of change of the wavefunction. From this we
compute the wavefunction a short time, 6t later as W(x, 6)) = V(x, 0) +
[0W/0t] 6t This allows the LHS to be re-evaluated, now at ¢ = &t. With each
such repetition, ¥ is advanced another step &¢into the future. Continuing the
process generates ¥ at any later time ¢ Such repetitious calculations are
ideally suited to computers, and the method just outlined may be used to solve
the Schrédinger equation numerically.?

But how can we obtain an explicit mathematical expression for ¥ (x, ¢)?
Returning to the free particle case, we see that the plane waves W (x, {) of
Equation 6.6 serve a dual purpose: On the one hand, they represent parti-
cles whose momentum (hence, energy) is known precisely; on the other,
they become the building blocks for constructing wavefunctions satisfying
any initial condition. From this perspective, the question naturally arises:
Do analogous functions exist when forces are present? The answer is yes! To
obtain them we look for solutions to the Schrédinger equation having the
separable form*

W(x, 1) = (x) (1) (6.11)

where ¢(x) is a function of x only and ¢(¢) is a function of ¢ only. (Note
that the plane waves have just this form, with (x) = ¢** and ¢(1) = ¢ L)
Substituting Equation 6.11 into Equation 6.10 and dividing through by

#(x) d(1) gives

R e e
om wm 0@ =g

where primes denote differentiation with respect to the arguments. Now
the LHS of this equation is a function of x only,® and the RHS is a function
of ¢ only. Since we can assign any value of x independently of ¢, the two sides
of the equation can be equal only if each is equal to the same
constant, which we call E.% This yields two equations determining the
unknown functions (x) and ¢(f#). The resulting equation for the time-

3This straightforward approach suffers from numerical instabilities and does not, for example,
conserve probability. In practice, a more sophisticated discretization scheme is usually employed,
such as that provided by the Crank—Nicholson method. See, for example, section 17.2 of Numeri-
cal Recipes by W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Cambridge, U.K.,
Cambridge University Press, 1986.

“Obtaining solutions to partial differential equations in separable form is called separation of vari-
ables. On separating variables, a partial differential equation in, say, N variables is reduced to N
ordinary differential equations, each involving only a single variable. The technique is a general
one which may be applied to many (but not all!) of the partial differential equations encoun-
tered in science and engineering applications.

SImplicitly we have assumed that the potential energy U(x) is a function of x only. For potentials
that also depend on ¢ (for example, those arising from a time-varying electric field), solutions to
the Schrédinger equation in separable form generally do not exist.

%More explicitly, changing ¢ cannot affect the LHS because this depends only on x. Since the two
sides of the equation are equal, we conclude that changing ¢ cannot affect the RHS either. It fol-
lows that the RHS must reduce to a constant. The same argument with x replacing ¢ shows the
LHS also must reduce to this same constant.
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Wave equation for matter
waves in separable form

dependent function ¢(?) is

d
zh—¢ = Ep(1) (6.12)
dt
This can be integrated immediately to give ¢(f) = ¢ @ with w = E/f. Thus,
the time dependence is the same as that obtained for free particles! The equa-
tion for the space function (x) is

h?  d?
_Q—md—xg/ + U(x)P(x) = Ep(x) (6.13)

Equation 6.13 is called the time-independent Schrédinger equation. Ex-
plicit solutions to this equation cannot be written for an arbitrary potential en-
ergy function U(x). But whatever its form, )(x) must be well behaved because
of its connection with probabilities. In particular, {(x) must be everywhere fi-
nite, single-valued, and continuous. Furthermore, {(x) must be “smooth,” that
is, the slope of the wave di/ dx also must be continuous wherever U(x) has a fi-
nite value.”

For free particles we take U(x) = 0 in Equation 6.13 (to give IF'= —dU/dx =
0) and find that ¥(x) = ¢**is a solution with E = #2k?/2m. Thus, for free par-
ticles the separation constant I becomes the total particle energy; this identifi-
cation continues to be valid when forces are present. The wavefunction /(x)
will change, however, with the introduction of forces, because particle momen-
tum (hence, k) is no longer constant.

The separable solutions to Schrédinger’s equation describe conditions of
particular physical interest. One feature shared by all such wavefunctions is es-
pecially noteworthy: Because | ¢ @/ = ¢,

erivlgmiot = 0 = 1 we have
¥ (x, 0] = [(x)? (6.14)

This equality expresses the time independence of all probabilities calculated
from W(x, t). For this reason, solutions in separable form are called station-
ary states. Thus, for stationary states all probabilities are static and can
be calculated from the time-independent wavefunction (x).

64 THE PARTICLE IN A BOX

Of the problems involving forces, the simplest is that of particle confine-
ment. Consider a particle moving along the x-axis between the points x = 0
and x = L, where L is the length of the “box.” Inside the box the particle is
free; at the endpoints, however, it experiences strong forces that serve to

7On rearrangement, the Schrodinger equation specifies the second derivative of the wavefunction
d?y/ dx? at any point as
>y 2m .
Z ?[U(X) = E](x)

It follows that if U(x) is finite at x, the second derivative also is finite here and the slope di/ dx
will be continuous.
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6.4 THE PARTICLE IN A BOX 201

contain it. A simple example is a ball bouncing elastically between two im-
penetrable walls (Fig. 6.5). A more sophisticated one is a charged particle
moving along the axis of aligned metallic tubes held at different potentials,
as shown in Figure 6.6a. The central tube is grounded, so a test charge in-
side this tube has zero electric potential energy and experiences no electric
force. When both outer tubes are held at a high electric potential V, there
are no electric fields within them, but strong repulsive fields arise in the
gaps at 0 and L. The potential energy U(x) for this situation is sketched in
Figure 6.6b. As Vis increased without limit and the gaps are simultaneously
reduced to zero, we approach the idealization known as the infinite square
well, or “box” potential (Fig. 6.6¢).

From a classical viewpoint, our particle simply bounces back and forth be-
tween the confining walls of the box. Its speed remains constant, as does its ki-
netic energy. Furthermore, classical physics places no restrictions on the values
of its momentum and energy. The quantum description is quite different and
leads to the interesting phenomenon of energy quantization.

We are interested in the time-independent wavefunction (x) of our parti-
cle. Because it is confined to the box, the particle can never be found outside,
which requires ¢ to be zero in the exterior regions x < 0 and x > L. Inside the
box, U(x) = 0 and Equation 6.13 for {/(x) becomes, after rearrangement,

d*y _ 2mE
dx? h?

= — k(%) with k2

Independent solutions to this equation are sin kx and cos kx, indicating that
k is the wavenumber of oscillation. The most general solution is a linear

Vv \4

EE S 4+ttt

| q
R s e
(a)

Figure 6.6 (a) Aligned metallic cylinders serve to confine a charged particle. The in-
ner cylinder is grounded, while the outer ones are held at some high electric potential
V. A charge ¢ moves freely within the cylinders, but encounters electric forces in the
gaps separating them. (b) The electric potential energy seen by this charge. A charge
whose total energy is less than ¢V'is confined to the central cylinder by the strong re-
pulsive forces in the gaps at x = 0 and x = L. (c) As Vis increased and the gaps be-
tween cylinders are narrowed, the potential energy approaches that of the infinite
square well.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

Figure 6.5 A particle of mass
m and speed v bouncing elasti-
cally between two impenetrable
walls.
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202 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

n combination of these two,

d——— =165 $(x) = Asinkx + Beoskx  for0 < x< L (6.15)

This interior wave must match the exterior wave at the walls of the box for
¥(x) to be continuous everywhere.® Thus, we require the interior wave to van-
ishatx=0and x = L:

$(0) =B=0
Y(L) = Asin kL = 0

g————————— £, - 9E,

Energy

(continuity at x = 0) (6.16)

g B, =4E, (continuity at x = L)

The last condition requires that kL = n, where n is any positive integer.”
Because k = 2m/A, this is equivalent to fitting an integral number of half-
wavelengths into the box (see Fig. 6.9a). Using k = nw/L, we find that the par-

ticle energies are quantized, being restricted to the values

|——

Zero-point energy > 0

Figure 6.7 Energylevel dia-
gram for a particle confined to E,
a one-dimensional box of width
L. The lowest allowed energy is
Ey, with value w2h2/2mI2.

ﬁ2k2 2 2ﬁ2
= =1 _ n=1,2, ...

2m Qml 2

(6.17)

The lowest allowed energy is given by n = 1 and is E; = w?4%/2ml?. This is
the ground state. Because E, = n?E), the excited states for which n = 2, 3,
4, ... have energies 4F;, 9F;, 16E;, ... An energy-level diagram is given in
Figure 6.7. Notice that E = 0 is not allowed; that is, the particle can never be at
rest. The least energy the particle can have, £y, is called the zero-point energy.
This result clearly contradicts the classical prediction, for which £ = 0 is an ac-
ceptable energy, as are all positive values of E. The following example illus-
trates how this contradiction is reconciled with our everyday experience.

Allowed energies for a
particle in a box

EXAMPLE 6.5 Energy Quantization for a
Macroscopic Object

A small object of mass 1.00 mg is confined to move be-
tween two rigid walls separated by 1.00 cm. (a) Calculate
the minimum speed of the object. (b) If the speed of the
object is 3.00 cm/s, find the corresponding value of n.

Solution Treating this as a particle in a box, the energy
of the particle can only be one of the values given by
Equation 6.17, or
nlmlh?  n2n?

Sml?

" ol

The minimum energy results from taking n = 1. For
m = 1.00 mg and L = 1.00 cm, we calculate

(6.626 X 10734]-5)2
8.00 X 10710 kg-m?

E = =549 X 107°%]

Because the energy is all kinetic, £} = mv%/‘z and the
minimum speed v; of the particle is

v = V2(5.49 X 1078 ]) /(1.00 X 106 kg)
=3.31 X 1072 m/s

This speed is immeasurably small, so that for practical
purposes the object can be considered to be at rest.
Indeed, the time required for an object with this speed
to move the 1.00 cm separating the walls is about

8Al[hough P(x) must be continuous everywhere, the slope of dis/dx is not continuous at the walls
of the box, where U(x) becomes infinite (cf. footnote 7).

IYFor n=0 (E=0), Schrodinger’s equation requires d?y/ dx*> = 0, whose solution is given by
(x) = Ax + B for some choice of constants A and B. For this wavefunction to vanish at
x = 0and x = L, both A and B must be zero, leaving ¢(x) = 0 everywhere. In such a case the par-
ticle is nowhere to be found; that is, no description is possible when £ = 0. Also, the inclusion of
negative integers n < 0 produces no new states, because changing the sign of n merely changes
the sign of the wavefunction, leading to the same probabilities as for positive integers.
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8 X 10%s, or about 1 million times the present age of
the Universe! It is reassuring to verify that quantum me-
chanics applied to macroscopic objects does not contra-
dict our everyday experiences.

If, instead, the speed of the particle is v = 3.00 cm/s,
then its energy is

mv>  (1.00 X 10”5 kg) (3.00 X 1072 m/s)?
2 2
=450 X 107107

E =

This, too, must be one of the special values E,. To find
which one, we solve for the quantum number #, obtaining

\8mI2E
h

~ V(8.00 X 10710 kg-m?) (4.50 X 10~10])
6.626 X 10734 s

n =

=9.05 X 1023

Notice that the quantum number representing a typical
speed for this ordinary-size object is enormous. In fact,
the value of 7 is so large that we would never be able to
distinguish the quantized nature of the energy levels.
That is, the difference in energy between two consecutive
states with quantum numbers 7; = 9.05 X 102® and ny =
9.05 X 10%® + 1 is only about 10733 J, much too small to
be detected experimentally. This is another example that
illustrates the working of Bohr’s correspondence princi-
ple, which asserts that quantum predictions must agree
with classical results for large masses and lengths.

EXAMPLE 6.6 Model of an Atom

An atom can be viewed as a number of electrons moving
around a positively charged nucleus, where the electrons
are subject mainly to the Coulombic attraction of the nu-
cleus (which actually is partially “screened” by the inter-
vening electrons). The potential well that each electron
“sees” is sketched in Figure 6.8. Use the model of a parti-
cle in a box to estimate the energy (in eV) required to
raise an atomic electron from the state n = 1 to the state
n = 2, assuming the atom has a radius of 0.100 nm.

Solution Taking the length L of the box to be 0.200 nm
(the diameter of the atom), m. = 511 keV/¢?, and fic =
197.3 eV - nm for the electron, we calculate

6.4 THE PARTICLE IN A BOX 203

Figure 6.8 (Example 6.6) Model of the potential en-
ergy versus r for the one-electron atom.

w2h?
N 2m 2
w2(197.3 eV-nm/¢)?
2(511 X 10% eV/c2) (0.200 nm)?2
9.40 eV

E

and
Ey = (2)%E; = 4(9.40 eV) = 37.6 eV

Therefore, the energy that must be supplied to the elec-
tron is

AE = Ey — Ey = 37.6 eV — 9.40 eV = 28.2 eV

We could also calculate the wavelength of the photon
that would cause this transition by identifying AE with the
photon energy hc/ A, or

A= he/AE = (1.24 X 103 eV-nm)/(28.2 V) = 44.0 nm

This wavelength is in the far ultraviolet region, and it is
interesting to note that the result is roughly correct. Al-
though this oversimplified model gives a good estimate
for transitions between lowest-lying levels of the atom,
the estimate gets progressively worse for higher-energy
transitions.

Exercise 1 Calculate the minimum speed of an atomic electron modeled as a particle
in a box with walls that are 0.200 nm apart.

Answer 1.82 X 105 m/s.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

Stationary states for a
particle in a box

Returning to the wavefunctions, we have from Equation 6.15 (with
k= mnm/Land B = 0)

¥, (x) = Asin (%) for0<x<Landn=1,2,... (6.18)

For each value of the quantum number 7 there is a specific wavefunc-
tion ,(x) describing the state of the particle with energy E,. Figure 6.9
shows plots of i, versus x and of the probability density |¢,|> versus x for
n = 1, 2, and 3, corresponding to the three lowest allowed energies for the
particle. For n = 1, the probability of finding the particle is largest at
x = L/2—this is the most probable position for a particle in this state. For n = 2,
|¢|? is a maximum at x = L/4 and again at x = 3L/4: Both points are equally
likely places for a particle in this state to be found.

There are also points within the box where it is impossible to find the parti-
cle. Again for n = 2, t//|2 is zero at the midpoint, x = L/2; for n = 3, (//|2 is
zero at x = L/3 and at x = 2L/3, and so on. But this raises an interesting ques-
tion: How does our particle get from one place to another when there is no
probability for its ever being at points in between? It is as if there were no path
at all, and not just that the probabilities |/|> express our ignorance about a
world somehow hidden from view. Indeed, what is at stake here is the very
essence of a particle as something that gets from one place to another by occu-
pying all intervening positions. The objects of quantum mechanics are not par-
ticles, but more complicated things having both particle and wave attributes.

Actual probabilities can be computed only after i, is normalized, that is, we
must be sure that all probabilities sum to unity:

o L
1= f | () |2 dx = AQJ sin? (%) dx
— 0

(a) (b)

Figure 6.9 The first three allowed stationary states for a particle confined to a one-
dimensional box. (a) The wavefunctions for n = 1, 2, and 3. (b) The probability distri-
butions for n = 1, 2, and 3.
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6.4 THE PARTICLE IN A BOX

The integral is evaluated with the help of the trigonometric identity 2 sin?6 =
1 — cos 26:

JAL in® ( /n’n-x) 1 J‘L
sin dx = — [1 — cos(2nmx/L)] dx
L 2 Jo

0

Only the first term contributes to the integral, because the cosine integrates to
sin(2nmx/ L), which vanishes at the limits 0 and L. Thus, normalization re-

quires 1 = A%L/2, or
A= \f% (6.19)

EXAMPLE 6.7 Probabilities for a Particle

in a Box
A particle is known to be in the ground state of an infi- 1\l L L\ . 3L/4
nite square well with length L. Calculate the probability = (T)[? - (2_7T> sin(27x/ L) L/4
that this particle will be found in the middle half of the
well, that is, between x = L/4 and x = 3L/4. — l _ (L) [—1 —1] = 0.818
2 2m

Solution The probability density is given by |d,|> with
n = 1 for the ground state. Thus, the probability is

3L/4 3L/4 ..
pP= f / |y |2 dx = <1> f / sin2(mx/L) dx equal time in all parts of the well.
L/4 L) Ji/4
1 3L/4
= <—>f [1 — cos(2mx/L)] dx
L) Ji/4

205

Notice that this is considerably larger than %, which
would be expected for a classical particle that spends

Exercise 2 Repeat the calculation of Example 6.7 for a particle in the nth state of the
infinite square well, and show that the result approaches the classical value % in the
limit n — oo,

Charge-Coupled Devices (CCDs)

Potential wells are essential to the operation of many modern electronic de-
vices, though rarely is the well shape so simple that it can be accurately mod-
eled by the infinite square well discussed in this section. The charge-coupled
device, or CCD, uses potential wells to trap electrons and create a faithful elec-
tronic reproduction of light intensity across the active surface.

For more than two decades now, CCDs have been helping astronomers see
amazing detail in distant galaxies using much shorter exposure times than
with traditional photographic emulsions (Fig. 6.10). These devices consist of a
two-dimensional array of moveable electron boxes (or wells) created beneath
a set of electrodes formed on the surface of a thin silicon chip (Fig. 6.11). The
silicon serves the dual purpose of emitting an electron when struck by a pho-
ton and acting as a local trap for electrons. The potential energy seen by an
electron in this environment is shown by the curve on the right in Figure 6.11,
with the depth coordinate increasing downward. Though far removed from a

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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206 CHAPTER 6

Figure 6.10 Researchers at
Arizona State University, using
NASA’s Hubble Space Tele-
scope, believe they are seeing
the conclusion of the cosmic
epoch where the young galaxies
started to shine in significant
numbers, about 13 billion years
ago. The image shows some of
the objects that the team discov-
ered using Hubble’s new Ad-
vanced Camera for Surveys
(ACS), based on CCD technol-
ogy. Astronomers believe that
these numerous objects are
faint young starforming galax-
ies seen when the universe was
seven times smaller than it is
today (at redshifts of about 6)
and less than a billion years old.
(H-J. Yan, R. Windhorst and
S. Cohen, Arizona State University
and NASA).

Figure 6.11 Structure of a single picture element (pixel) /e
in a CCD array. The sketch on the right shows how the
potential energy of an electron varies with depth in the

device.

QUANTUM MECHANICS IN ONE DIMENSION

“box” potential, the well shape nevertheless serves to confine the emitted elec-
trons in the depth dimension. [Each well or picture element (pixel) in the ar-
ray also is isolated electrically from its neighbors, in effect confining the elec-
trons in the remaining two dimensions perpendicular to the figure.] The
number of electrons in a given well, and consequently the number of photons
striking a particular point on the chip, may be read out electronically and the
signal processed by computer to enhance the image. The name “charge-
coupled device” was coined to describe the way the signals are read from the
individual wells. A row of wells containing trapped electrons is moved verti-
cally one step at a time by changing the voltage on the vertical electrodes in a
progressive manner. When a row reaches the output register, the pixels are
moved horizontally by systematically changing the voltage on the horizontal
electrodes. In this way an entire row is read out in serial fashion by an ampli-
fier at the end of the output register. Figure 6.12 illustrates the operating prin-
ciple. CCD development has been impressive over the past two decades, and
currently square arrays of over 4 million pixels (2048 pixels on a side) packed
into a chip of several square centimeters are available. An entire CCD sensor is
shown in Figure 6.13a; Figure 6.13b shows the cross section of a single pixel in
a CCD image sensor, enlarged 5000 times.

CCD imagers possess several advantages over other light detectors. Because
CCDs detect as many as 90% of the photons hitting their surface, they are far
more sensitive than the best photographic emulsions, which can detect only
2-3% of those bone-weary photons that have traveled millions of lightyears
from distant galaxies. In addition, CCDs can accurately measure the exact
brightness of an object, since their voltage output is directly proportional to
light input over a very wide brightness range. Another great feature of CCDs is
their ability to measure accurately both faint and bright objects in the same
frame. This is not true for photographic emulsions, where bright objects wash
out faint details. Faint objects are recorded by cooling the CCD with liquid
nitrogen to keep competing thermally generated electrons (noise) to a mini-
mum. The simultaneous measurement of bright images is limited only by the
filling of potential wells with electrons. State-of-the-art CCDs can hold as many
as 100,000 electrons in a single well and are about 100 times better than pho-
tographic plates at simultaneously recording bright and faint objects. The abil-
ity to record where an incident photon strikes also is important for locating
the exact position of a faint star. CCDs afford exceptional geometric accuracy
because each pixel position is defined by the rigid physical structure of the

Polysilicon gate

Silicon oxide
Silicon nitride V(x)

n-type Silicon

ptype Silicon
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Image not available due to copyright restrictions
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Images not available due to copyright restrictions

chip. (Because of their high resolution and geometric accuracy, CCDs also
are used to record the paths of energetic elementary particles by collecting
the electrons generated along their tracks.) Finally, overall noise and signal

Image not available due to copyright restrictions

(b)

Figure 6.14 The “clover leaf,” the quadruply lensed quasar H1413+117. The four im-
ages of comparable brightness are only 1 arcsec apart. The spectra of two of the images
are identical, except for some absorption lines in one that presumably come from differ-
ent gas clouds that are in the other’s line of sight. The redshift is 2.55. The rare configu-
ration and identical spectra show that we are seeing gravitational lensing rather than a
cluster of quasars.

(b) A Hubble Space Telescope view, in which the lensing galaxy is revealed. (NASA/ESA)

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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degradation have decreased so markedly in CCDs that as many as 99.9999% of
the electrons are transferred in each well shift. This is crucial since image
readout involves thousands of such transfers.

Figure 6.14a shows a remarkable quadruply lensed quasar. The multiple
images result when light from a single quasar is deflected by gravita-
tional forces as it passes near an intervening galaxy on its journey to Earth.
Figure 16.14b shows the lensing galaxy, beautifully resolved by the CCD
imager on board the Hubble Space Telescope. These, and similar images of-
fer conclusive proof of the superior ability of CCDs to make extremely
accurate position measurements of faint objects in the presence of much
brighter ones.

6.5 THE FINITE SQUARE WELL

The “box” potential is an oversimplification that is never realized in practice. Given
sufficient energy, a particle can escape the confines of any well. The potential en-
ergy for a more realistic situation—the finite square well—is shown in Figure 6.15,
and essentially is that depicted in Figure 6.6b before taking the limit V— . A clas-
sical particle with energy I greater than the well height U can penetrate the gaps at
x= 0 and x = L to enter the outer region. Here it moves freely, but with reduced
speed corresponding to a diminished kinetic energy E — U.

A classical particle with energy E less than Uis permanently bound to the region
0 < x < L. Quantum mechanics asserts, however, that there is some probability that
the particle can be found outside this region! That is, the wavefunction generally is
nonzero outside the well, and so the probability of finding the particle here also is
nonzero. For stationary states, the wavefunction #(x) is found from the time-
independent Schrodinger equation. Outside the well where U(x) = U, this is

d*ys

F=a2¢1(x) x<0Oand x> L
b

with &% = 2m(U — E)/#2 a constant. Because U > E, a2 necessarily is positive

+ax and

and the independent solutions to this equation are the real exponentials ¢
e~ **. The positive exponential must be rejected in region III where x > L to keep
Y(x) finite as x — oo; likewise, the negative exponential must be rejected in re-
gion I where x < 0 to keep (x) finite as x — —o. Thus, the exterior wave takes

the form
Y(x) = Aetox for x <0 (6.20)
Y(x) = Be ¥ for x > L

The coefficients A and B are determined by matching this wave smoothly onto
the wavefunction in the well interior. Specifically, we require {s(x) and its first deriva-
tive dify/ dx to be continuous at x = 0 and again at x = L. This can be done only for
certain values of F, corresponding to the allowed energies for the bound particle.
For these energies, the matching conditions specify the entire wavefunction except
for a multiplicative constant, which then is determined by normalization. Figure
6.16 shows the wavefunctions and probability densities that result for the three low-
est allowed particle energies. Note that in each case the waveforms join smoothly at
the boundaries of the potential well.

The fact that ¢ is nonzero at the walls increases the de Broglie wavelength in the
well (compared with that in the infinite well), and this in turn lowers the energy and
momentum of the particle. This observation can be used to approximate the

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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Figure 6.15 Potential-energy
diagram for a well of finite
height U and width L. The
energy E of the particle is less
than U.
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210 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

Penetration depth

Approximate energies for a
particle in a well of finite
height

() (b)

Figure 6.16 (a) Wavefunctions for the lowest three energy states for a particle in a
potential well of finite height. (b) Probability densities for the lowest three energy
states for a particle in a potential well of finite height.

allowed energies for the bound particle.!” The wavefunction penetrates the exterior
region on a scale of length set by the penetration depth §, given by

1 f
f=—=—5"-9- (6.21)

@ \2m(U — E)

Specifically, at a distance 6 beyond the well edge, the wave amplitude has fallen to
1/e of its value at the edge and approaches zero exponentially in the exterior re-
gion. That is, the exterior wave is essentially zero beyond a distance 6 on either side
of the potential well. If it were truly zero beyond this distance, the allowed energies
would be those for an infinite well of length L + 28 (compare Equation 6.17), or

2242

E,~ —Qm’&’lf; 5 n=12, ... (6.22)
The allowed energies for a particle bound to the finite well are given approximately
by Equation 6.22 so long as & is small compared with L. But § itself is energy depen-
dent according to Equation 6.21. Thus, Equation 6.22 becomes an implicit relation
for E that must be solved numerically for a given value of n. The approximation is
best for the lowestlying states and breaks down completely as E approaches U,
where 8 becomes infinite. From this we infer (correctly) that the number of bound
states is limited by the height U of our potential well. Particles with energies F ex-
ceeding U are not bound to the well, that is, they may be found with comparable
probability in the exterior regions. The case of unbound states will be taken up in
the following chapter.

19This specific approximation method was reported by S. Garrett in the Am. J. Phys.
47:195-196, 1979.
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6.6 THE QUANTUM OSCILLATOR

EXAMPLE 6.8 A Bound Electron

Estimate the ground-state energy for an electron confined to a potential well of
width 0.200 nm and height 100 eV.

Solution We solve Equations 6.21 and 6.22 together, using an iterative procedure.
Because we expect I << U(= 100 eV), we estimate the decay length 6 by first ne-
glecting E to get

5~ o (197.3 eV-nm/c)
NomU — V2(511 X 10% eV/2) (100 V)
= 0.0195 nm

Thus, the effective width of the (infinite) well is L + 26 = 0.239 nm, for which we
calculate the ground-state energy:

. 7%(197.3 eV-nm/)*

T 2(511 X 10% eV/¢2) (0.239 nm)?

= 6.58 eV

From this Ewe calculate U — E = 93.42 eV and a new decay length

197.3 eV~
5~ (197.3 eV-nm/c) = 0.0202 nm

V2(511 X 10° €V/2) (93.42 eV)

This, in turn, increases the effective well width to 0.240 nm and lowers the ground-
state energy to E= 6.53 eV. The iterative process is repeated until the desired
accuracy is achieved. Another iteration gives the same result to the accuracy reported.
This is in excellent agreement with the exact value, about 6.52 eV for this case.

Exercise 3 Bound-state waveforms and allowed energies for the finite
square well also can be found using purely numerical methods. Go to our compan-
ion Web site (http://info.brookscole.com/mp3e) and select QMTools Simulations
— Exercise 6.3. The applet shows the potential energy for an electron confined to a
finite well of width 0.200 nm and height 100 eV. Follow the on-site instructions to
add a stationary wave and determine the energy of the ground state. Repeat the pro-
cedure for the first excited state. Compare the symmetry and the number of nodes
for these two wavefunctions. Find the highest-lying bound state for this finite well.
Count nodes to determine which excited state this is, and thus deduce the total
number of bound states this well supports.

EXAMPLE 6.9 Energy of a Finite Well: Exact Treatment

Impose matching conditions on the interior and exterior wavefunctions and show
how these lead to energy quantization for the finite square well.

Solution The exterior wavefunctions are the decaying exponential functions
given by Equation 6.20 with decay constant & = [2m(U — E)/#2]'/2. The interior
wave is an oscillation with wavenumber k = (2mE/h2)1/2 having the same form as
that for the infinite well, Equation 6.15; here we write it as

Y(x) = Csinkx + D coskx for0 < x< L

To join this smoothly onto the exterior wave, we insist that the wavefunction and its
slope be continuous at the well edges x = 0 and x = L. At x = 0 the conditions for
smooth joining require

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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212 CHAPTER 6

a b
Stable Unstable

Stable

Figure 6.17 A general poten-
tial function U(x). The points
labeled a and ¢ are positions of
stable equilibrium, for which
dU/dx =0 and d?U/dx* > 0.
Point b is a position of unsta-
ble equilibrium, for which
AU/ dx = 0 and d*U/ dx* < 0.

QUANTUM MECHANICS IN ONE DIMENSION

A=D (continuity of )

di
aA = kC <C0ntinuity of—lp)
dx
Dividing the second equation by the first eliminates A, leaving

@) o

D k

In the same way, smooth joining at x = L requires

CsinkL + D coskL = Be™ L (continuity of )

d
kC coskL — kD sin kL = —aBe (continuity of d—"’)
X

Again dividing the second equation by the first eliminates B. Then replacing C/D
with a/k gives
(a/k)coskL — sinkl. «

(a/k)sinkL + coskl. &k

For a specified well height U and width L, this last relation can only be satisfied for
special values of E (E is contained in both %k and «). For any other energies, the
waveform will not match smoothly at the well edges, leaving a wavefunction that is
physically inadmissable. (Note that the equation cannot be solved explicitly for F;
rather, solutions must be obtained using numerical or graphical methods.)

Exercise 4 Use the result of Example 6.9 to verify that the ground-state energy for
an electron confined to a square well of width 0.200 nm and height 100 eV is about
6.52 eV.

6.6 THE QUANTUM OSCILLATOR

As a final example of a potential well for which exact results can be obtained,
let us examine the problem of a particle subject to a linear restoring force
F= —Kx. Here xis the displacement of the particle from equilibrium (x = 0)
and K is the force constant. The corresponding potential energy is given by
U(x) = %sz. The prototype physical system fitting this description is a mass
on a spring, but the mathematical description actually applies to any object
limited to small excursions about a point of stable equilibrium.

Consider the general potential function sketched in Figure 6.17. The posi-
tions a, b, and c all label equilibrium points where the force FF= —dU/dx is
zero. Further, positions @ and ¢ are examples of stable equilibria, but b is unsta-
ble. The stability of equilibrium is decided by examining the forces in the
immediate neighborhood of the equilibrium point. Just to the left of a, for ex-
ample, FF'= —dU/dx is positive, that is, the force is directed to the right; con-
versely, to the right of a the force is directed to the left. Therefore, a particle
displaced slightly from equilibrium at @ encounters a force driving it back to
the equilibrium point (restoring force). Similar arguments show that the equi-
librium at ¢ also is stable. On the other hand, a particle displaced in either di-
rection from point b experiences a force that drives it further away from
equilibrium—an unstable condition. In general, stable and unstable equilib-
ria are marked by potential curves that are concave or convex, respectively, at

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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6.6 THE QUANTUM OSCILLATOR 213

the equilibrium point. To put it another way, the curvature of U(x) is
positive (d?U/dx* > 0) at a point of stable equilibrium, and negative
(d*Uldx? < 0) at a point of unstable equilibrium.

Near a point of stable equilibrium such as a (or ¢), U(x) can be fit quite well
by a parabola:

U(x) = U(a) + 3K(x — a)* (6.23)

Of course, the curvature of this parabola (= K) must match that of U(x) at
the equilibrium point x = a:
d*U

K=" (6.24)

Further, U(a), the potential energy at equilibrium, may be taken as zero if we
agree to make this our energy reference, that is, if we subsequently measure all
energies from this level. In the same spirit, the coordinate origin may be placed
at x = a, in effect allowing us to set @ = 0. With U(a) = 0 and a = 0, Equation
6.23 becomes the spring potential once again; in other words, a particle lim-
ited to small excursions about any stable equilibrium point behaves as if
it were attached to a spring with a force constant K prescribed by the cur-
vature of the true potential at equilibrium. In this way the oscillator becomes
a first approximation to the vibrations occurring in many real systems.

The motion of a classical oscillator with mass m is simple harmonic vibra-
tion at the angular frequency w = VK/m. If the particle is removed from equi-
librium a distance A and released, it oscillates between the points x = —A and
x=+A (A is the amplitude of vibration), with total energy E = %KAQ. By
changing the initial point of release A, the classical particle can in principle be
given any (nonnegative) energy whatsoever, including zero.

The quantum oscillator is described by the potential energy U(x) = %KxQ =

%mwaQ in the Schrodinger equation. After a little rearrangement we get

2
‘fix‘é’ = i—’; (%maﬂx? = E) () (6.25)

as the equation for the stationary states of the oscillator. The mathematical
technique for solving this equation is beyond the level of this text. (The expo-
nential and trigonometric forms for ¢ employed previously will not work here
because of the presence of x? in the potential.) It is instructive, however, to
make some intelligent guesses and verify their accuracy by direct substitution.
The ground-state wavefunction should possess the following attributes:

1. ¢yshould be symmetric about the midpoint of the potential well x = 0.
2. ¢ should be nodeless, but approaching zero for | x| large.

Both expectations are derived from our experience with the lowest energy
states of the infinite and finite square wells, which you might want to review at
this time. The symmetry condition (1) requires i to be some function of x?;
further, the function must have no zeros (other than at infinity) to meet the
nodeless requirement (2). The simplest choice fulfilling both demands is the
Gaussian form

Y(x) = Coe™ (6.26)

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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214 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

o () 12

|

|

|

|

|

:

|
| 0 |
(b)

Figure 6.18 (a) Wavefunction
for the ground state of a parti-
cle in the oscillator potential
well. (b) The probability density
for the ground state of a parti-
cle in the oscillator potential
well. The dashed vertical lines
mark the limits of vibration for
a classical particle with the same
energy, x = TA = =\h/mo.

in the preceding paragraph.

1, leading to

Solution With y(x) = Coef”‘“’x(z/ 2 the integrated

Normalization requires this integrated probability to be

- _(mw
0 Th

for some as-yet-unknown constants Cp and «. Taking the second derivative of
Y¥(x) in Equation 6.26 gives (as you should verify)

dQ('[I 2P —ax? 2.2
Pl {4a°x* — 20} Cpe = {4ax* — 2a)if(x)

which has the same structure as Equation 6.25. Comparing like terms between
them, we see that we have a solution provided that both

1
4a? = i_n; ) mw? or a = % (6.27)
and
2mE mw
= 2a=—— o E= sho (6.28)

In this way we discover that the oscillator ground state is described by
the wavefunction iy(x) = Coexp(—mwx>/2%) and that the energy of this state
is By = %ﬁw. The constant Cy is reserved for normalization (see Example 6.10).
The ground-state wave i and associated probability density |¢|*> are
illustrated in Figure 6.18. The dashed vertical lines mark the limits of vibration
for a classical oscillator with the same energy. Note the considerable penetra-
tion of the wave into the classically forbidden regions x > A and x < —A. A
detailed analysis shows that the particle can be found in these nonclassical
regions about 16% of the time (see Example 6.12).

EXAMPLE 6.10 Normalizing the Oscillator EXAMPLE 6.11 Limits of Vibration for a
Ground State Wavefunction Classical Oscillator
Normalize the oscillator ground-state wavefunction found Obtain the limits of vibration for a classical oscillator hav-

ing the same total energy as the quantum oscillator in its
ground state.

probability is Solution The ground-state energy of the quantum oscil-
- - lator is £y = %ﬁw. At its limits of vibration x = = A, the clas-
j |;J;0(x) |2 dx = C(% f g_mwxz/ i dx sical oscillator has transformed all this energy into elastic
- _°° potential energy of the spring, given by %KA2 = %mwQAQ.
Evaluation of the integral requires advanced techniques. Therefore,
We shall be content here simply to quote the formula \/7
Yho = Lmw?A? or A=\—
o 2 2
J e dx = \/E a>0 e
e a The classical oscillator vibrates in the interval given by
In our case we identify ¢ with mw/# and obtain —A = x= A, having insufficient energy to exceed these

. - limits.
< T
f [go(x) [2 dx = C§ \/—
o mw

EXAMPLE 6.12 The Quantum Oscillator in the
Nonclassical Region

Calculate the probability that a quantum oscillator in its

>1/4 ground state will be found outside the range permitted

for a classical oscillator with the same energy.
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Solution Because the classical oscillator is confined to
the interval —A = x = A, where A is its amplitude of vibra-
tion, the question is one of finding the quantum oscillator
outside this interval. From the previous example we have
A = \h/mo for a classical oscillator with energy %hw. The
quantum oscillator with this energy is described by
the wavefunction i(x) = Coexp(—mwxg/ 2#h), with Cy =
(mw/wh)1/* from Example 6.10. The probability in ques-
tion is found by integrating the probability density |[? in
the region beyond the classical limits of vibration, or

_A o]
p= | twracs [okas
% A

From the symmetry of ), the two integrals contribute

6.6 THE QUANTUM OSCILLATOR 215

1/2 [
P=29 <ﬂ> / f efmwa/h dx
7h A

Changing variables from x to z = Vmw/A x and using
A = \fi/mo (corresponding to z = 1) leads to

2 F,z
P=— e * dz
Va

Expressions of this sort are encountered frequently in
probability studies. With the lower limit of integration
changed to a variable—say, y—the result for P defines
the complementary ervor function erfc(y). Values of the error
function may be found in tables. In this way we obtain
P = erfc(l) = 0.157, or about 16%.

equally to P, so

To obtain excited states of the oscillator, a procedure can be followed simi-
lar to that for the ground state. The first excited state should be antisymmetric
about the midpoint of the oscillator well (x = 0) and display exactly one node.
By virtue of the antisymmetry, this node must occur at the origin, so that a suit-
able trial solution would be (x) = x exp(—ax2). Substituting this form into
Equation 6.25 yields the same « as before, along with the first excited-state
energy I = %ﬁw.

Continuing in this manner, we could generate ever-higher-lying oscillator
states with their respective energies, but the procedure rapidly becomes too la-
borious to be practical. What is needed is a systematic approach, such as that
provided by the method of power series expansion.11 Pursuing this method
would take us too far afield, but the result for the allowed oscillator energies is
quite simple and sufficiently important that it be included here:

E,= (n+ Hho n=0,1,2,... (6.29)

The energy-level diagram following from Equation 6.29 is given in Figure
6.19. Note the uniform spacing of levels, widely recognized as the hallmark of
the harmonic oscillator spectrum. The energy difference between adjacent
levels is just AE = fiw. In these results we find the quantum justification for
Planck’s revolutionary hypothesis concerning his cavity resonators (see Section
3.2). In deriving his blackbody radiation formula, Planck assumed that these
resonators (oscillators), which made up the cavity walls, could possess only
those energies that were multiples of 4f = fiw. Although Planck could not have
foreseen the zero-point energy fiw/2, it would make no difference: His res-
onators still would emit or absorb light energy in the bundles AE = &f neces-
sary to reproduce the blackbody spectrum.

'The method of power series expansion as applied to the problem of the quantum oscillator is
developed in any more advanced quantum mechanics text. See, for example, E. E. Anderson,
Modern Physics and Quantum Mechanics, Philadelphia, W. B. Saunders Company, 1971.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

Energy levels for the
harmonic oscillator

U(x)
Ey=Yho
Ej=3ho
Ey=1ho
Ey=3ho
2
AE=hw
B =3ho
Ey=3ho .
0

Figure 6.19 Energylevel dia-
gram for the quantum oscilla-
tor. Note that the levels are
equally spaced, with a separa-
tion equal to Aw. The ground
state energy is F.
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CHAPTER 6

QUANTUM MECHANICS IN ONE DIMENSION

I, 2

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 6.20 Probability densities for a few states of the quantum oscillator. The
dashed curves represent the classical probabilities corresponding to the same energies.

The probability densities for some of the oscillator states are plotted in Fig-
ure 6.20. The dashed lines, representing the classical probability densities for
the same energy, are provided for comparison (see Problem 28 for the calcula-
tion of classical probabilities). Note that as n increases, agreement between
the classical and quantum probabilities improves, as expected from the corre-
spondence principle.
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EXAMPLE 6.13 Quantization of
Vibrational Energy

The energy of a quantum oscillator is restricted to be one
of the values (n + %)hw. How can this quantization apply
to the motion of a mass on a spring, which seemingly can
vibrate with any amplitude (energy) whatever?

Solution The discrete values for the allowed energies
of the oscillator would go unnoticed if the spacing
between adjacent levels were too small to be detected.
At the macroscopic level, a laboratory mass m
of, say, 0.0100 kg on a spring having force constant
K= 0.100 N/m (a typical value) would oscillate with an-
gular frequency o = \VK/m = 3.16 rad/s. The corre-
sponding period of vibration is T = 27/w = 1.99s. In
this case the quantum level spacing is only

AE = fiw = (6.582 X 10716 V-5)(3.16 rad/s)
=208 X 10715 eV

6.7 EXPECTATION VALUES 217

Such small energies are far below present limits of detec-
tion.

At the atomic level, however, much higher frequencies
are commonplace. Consider the vibrational frequency of
the hydrogen molecule. This behaves as an oscillator with
K= 510.5 N/m and reduced mass u = 8.37 X 10728 kg.
The angular frequency of oscillation is therefore

.| K 510.5 N/m
©= N TN B3 x 10 Big
=7.81 X 10 rad/s

At such frequencies, the quantum of energy fw is
0.513 eV, which can be measured easily!

6.7 EXPECTATION VALUES

It should be evident by now that two distinct types of measurable quantities
are associated with a given wavefunction W (x, ). One type—like the energy £
for the stationary states—is fixed by the quantum number labeling the wave.
Therefore, every measurement of this quantity performed on the system de-
scribed by W yields the same value. Quantities such as £ we call sharp to distin-
guish them from others—Ilike the position x—for which the wavefunction ¥
furnishes only probabilities. We say x is an example of a dynamic quantity that

is fuzzy. In the following paragraphs we discuss what more can be learned

about these “fuzzy” quantities.

Sharp and fuzzy variables

A particle described by the wavefunction ¥ may occupy various places x with
probability given by the wave intensity there, |W(x)[% Predictions made this way
from ¥ can be tested by making repeated measurements of the particle position.
Table 6.1 shows results that might be obtained in a hypothetical experiment of
this sort. The table consists of 18 entries, each one representing the actual posi-
tion of the particle recorded in that particular measurement. We see that the

Table 6.1 Hypothetical Data Set for Position of a Particle

as Recorded in Repeated Trials

Position Position Position
Trial  (arbitrary units) Trial (arbitrary units) Trial (arbitrary units)

1 x; = 2.5 7 x7 = 8.0 13 x13 = 4.2
2 xg = 3.7 8 xg = 6.4 14 x4 = 8.8
3 X3 = 1.4 9 X9 = 4.1 15 X15 = 6.2
4 X4 = 7.9 10 X10 — 5.4 16 X16 — 7.1
5 X5 = 6.2 11 X11 = 7.0 17 X17 = 5.4
6 X6 = 5.4 12 x19 = 3.3 18 x18 = 5.3
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218 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

Average position of a particle

entry 5.4 occurs most often (in 3 of the 18 trials); it represents the most probable
position based on the data available. The probability associated with this position,
again based on the available data, is 3/18 = 0.167. These numbers will fluctuate
as additional measurements are taken, but they should approach limiting values.
The theoretical predictions refer to these limiting values. A good test of the the-
ory would require much more data than we have shown in this illustration.

The information in Table 6.1 also can be used to find the average position
of the particle:

(25 + 387+ 14+ -+ + 54+ 5.3)
18

BE = 5.46

This same number can be found in a different way. First, order the table
entries by value, starting with the smallest: 1.4, 2.5, 3.3, ..., 5.4, 6.2, ...,
8.0, 8.8. Now take each value, multiply by its frequency of occurrence, and
sum the results:

1.4 (L) + 25 <L> + - +54 (i>
18 18 18

2 1
+62|—|+ - +88(—=])=5.
62(18) 88(18) 5.46

The two procedures are equivalent, but the latter involves a sum over ordered
values rather than individual table entries. We may generalize this last expres-
sion to include other values for the position of the particle, provided we
weight each one by its observed frequency of occurrence (in this case, zero).
This allows us to write a general prescription to calculate the average particle
position from any data set:

%= X xP, (6.30)

The sum now includes all values of x, each weighted by its frequency or proba-
bility of occurrence P,. Because the possible values of x are distributed contin-
uously over the entire range of real numbers, the sum in Equation 6.30 really
should be an integral and P, should refer to the probability of finding the par-
ticle in the infinitesimal interval dx about the point x; that is, the probability
P, — P(x)dx, where P(x) is the probability density. In quantum mechanics,
P(x) = |¥[? and the average value of x, written in quantum mechanics as (x),
is called the expectation value. Then,

(x) = F x| W (x, 1) |? dx (6.31)

Notice that {x) may be a function of time. For a stationary state, however, \I’|2
is static and, as a consequence, {x) is independent of .
In similar fashion we find that the average or expectation value for any

function of x, say f(x), is

()= Lj(x)l [ dx (6.32)

With f(x) = U(x), Equation 6.32 becomes (U ), the average potential energy of
the particle. With f(x) = x% the quantum uncertainty in particle position may
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6.7 EXPECTATION VALUES

be found. To see how this is done, we return to Table 6.1 and notice that the
entries scatter about the average value. The amount of scatter is measured by
the standard deviation, o, of the data, defined as

C— )2
o= \/Lxl % (6.33)
N

where Nis the number of data points—in this case, 18. Writing out the square
under the radical gives

S(x)? 2 (x;)

N m®—77~+@ﬂ2<%> (%) —2®® + (%2

=9 - @
and so
o=V - ®°

From Equation 6.33 we see that if the standard deviation were zero, all data
entries would be identical and equal to the average. In that case the distribu-
tion is sharp; otherwise, the data exhibit some spread (as in Table 6.1) and the
standard deviation is greater than zero. In quantum mechanics the standard
deviation, written Ax, is often called the uncertainty in position. The preceding

development implies that the quantum uncertainty in position can be calcu-
lated from expectation values as

Ax = (x?) — (x)? (6.34)

The degree to which particle position is fuzzy is given by the magnitude of Ax;
note that the position is sharp only if Ax = 0.

219

from Averages

EXAMPLE 6.14 Standard Deviation w 9 L X
(x) = f x| W2 dx = (T) f x sin? (T) dx
o0 0

Compute (x*) and the standard deviation for the data
given in Table 6.1.

Solution Squaring the data entries of Table 6.1
and adding the results gives X(x;)2 = 603.91. Dividing
this by the number of data points, N= 18, we find
(x?) = 603.91/18 = 33.55. Then,

o =1\33.55 — (5.46)2 = 1.93

for this case.

EXAMPLE 6.15 Location of a Particle in a Box

Compute the average position (x) and the quantum un-
certainty in this value, Ax, for the particle in a box, as-
suming it is in the ground state.

Solution The possible particle positions within the
box are weighted according to the probability
density given by |W|? = (2/L)sin®(nmx/L), with n = 1
for the ground state. The average position is calculated
as

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

Making the change of variable 6 = 7x/L (so that df =
mdx/ L) gives

C L ™

(x) = 22 f 6 sin® 0 do
T Jo

The integral is evaluated with the help of the trigonomet-

ric identity 2 sin® § = 1 — cos 26, giving

14 o w
(x>=—2 (J Odé)*f 9C0520d0>
T 0 0

An integration by parts shows that the second integral
vanishes, whereas the first integrates to m2/2. Thus,
the average particle position is the midpoint (x) = L/2 as
expected, because there is equal probability of finding
the particle in the left half or the right half of the box.

(x?) is computed in much the same way, but with an
extra factor of x in the integrand. After changing vari-
ables to 0 = mx/ L, we get

. L? T T
(&%) = —5 ( 6> do — | 6% cos 20 d0>
m 0 0
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The first integral evaluates to 7°/3; the second may be
integrated twice by parts to get

T : w
f 02c0520d9=7j 6sin 20 d
0 0

= %0c0s26|g= /2

Then,

o L2 (m m\_ 12 I?
D=\ 5 %) "5 T
7 \3 2 3 2w

Finally, the uncertainty in position for this particle is

QUANTUM MECHANICS IN ONE DIMENSION

This is an appreciable figure, amounting to nearly one-
fifth the size of the box. Consequently, the whereabouts
of such a particle are largely unknown. With some confi-
dence, we may assert only that the particle is likely to be
in the range /2 = 0.181L.

Finally, notice that none of these results depends on the
time, because in a stationary state ¢ enters only through the
exponential factor ¢ ., which cancels when ¥ is com-
bined with W* in the calculation of averages. Therefore, it
is generally true that, in a stationary state, all averages,
as well as probabilities, are time independent.

We have learned how to predict the average position of a particle, (x);
the uncertainty in this position, Ax; the average potential energy of the
particle, (U); and so on. But what about the average momentum {p) of the par-
ticle or its average kinetic energy (K)? These could be calculated if p(x), the
momentum as a function of x, were known. In classical mechanics, p(x) may
be obtained from the equation for the classical path taken by the particle, x(¢).
Differentiating this function once gives the velocity v(#). Then inverting x(f) to
get ¢ as a function of x, and substituting this result into v(?), gives v(x) and the
desired relation p(x) = mv(x). In quantum mechanics, however, x and ¢ are in-
dependent variables—there is no path, nor any function connecting p with x! If
there were, then p could be found from x using p(x) and both x and p would
be known precisely, in violation of the uncertainty principle.

To obtain (p) we must try a different approach: We identify the time deriva-
tive of the average particle position with the average velocity of the particle.
After multiplication by m, this gives the average momentum (p):

Average momentum of a
particle

d(x)
dt

p=m (6.35)

Equation 6.35 cannot be derived from anything we have said previously. When
applied to macroscopic objects where the quantum uncertainties in position
and momentum are small, the averages (x) and (p) become indistinguishable
from “the” position and “the” momentum of the object, and Equation 6.35 re-
duces to the classical definition of momentum.

An equivalent expression for () follows from Equation 6.35 by substituting
(x) from Equation 6.31 and differentiating under the integral sign. Using
Schrodinger’s equation to eliminate time derivatives of ¥ and its conjugate W*
gives (after much manipulation!)

* h
o= v (5) e

o (6.36)

Exercise 5 Show that (p) = 0 for any state of a particle in a box.
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6.8 OBSERVABLES AND OPERATORS

6.8 OBSERVABLES AND OPERATORS

An observable is any particle property that can be measured. The position and
momentum of a particle are observables, as are its kinetic and potential ener-
gies.12 In quantum mechanics, we associate an operator with each of these ob-
servables. Using this operator, one can calculate the average value of the cor-
responding observable. An operator here refers to an operation to be
performed on whatever function follows the operator. The quantity operated
on is called the operand. In this language a constant ¢ becomes an operator,
whose meaning is understood by supplying any function f(x) to obtain ¢f(x).
Here the operator ¢ means “multiplication by the constant ¢.” A more compli-
cated operator is d/dx, which, after supplying an operand f(x), means
“take the derivative of f(x) with respect to x.” Still another example is
(d/dx)% = (d/dx)(d/ dx). Supplying the operand f(x) gives (d/dx)Qf(x) =
(d/ dx) (df/ dx) = d2f/dx2. Hence, (d/dx)%? means “take the second derivative
with respect to x, that is, take the indicated derivative twice.”

The operator concept is useful in quantum mechanics because all expecta-
tion values we have encountered so far can be written in the same general
form, namely,

(Q) = f W [Q]W dx (6.37)
In this expression, Qis the observable and [Q] is the associated operator. The
order of terms in Equation 6.37 is important; it indicates that the operand for [Q]
always is W. Comparing the general form with that for (p) in Equation 6.36
shows that the momentum operator is [p] = (%/4)(9/dx). Similarly, writing
x|¥[> = W#xV¥ in Equation 6.31 implies that the operator for position is [x] =
x. From [x] and [p] the operator for any other observable can be found. For
instance, the operator for x2 is just [x%2] = [x]%2 = 2. For that matter, the oper-
ator for potential energy is simply [U] = U([x]) = U(x), meaning that aver-
age potential energy is computed as

<U>=f ‘P*[U]‘Ifdx=f W U(x) W dx

Still another example is the kinetic energy K. Classically, K is a function of p:
K= t?/2m. Then the kinetic energy operator is [K] = ([p])?/2m =
(=h/2m) 0%2/9x2, and average kinetic energy is found from

oo o 2 2
(K) =f U [K]W dx=f P (—h— g f)dx
o 00 27’2 ax

To find the average total energy for a particle, we sum the average kinetic and
potential energies to get

< n2 92
(E) =(K) +(U) = f P {—— ~ o U(x)} ¥ dx (6.38)
o 2m  dx

2By contrast, the wavefunction W, although clearly indispensable to the quantum description, is
not directly measurable and so is not an observable.
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O PTTIONAL

Quantum uncertainty for any
observable O

Table 6.2 Common Observables and
Associated Operators

Observable Symbol Associated Operator
Position B B
h 9
Momentum p -
1 0x
Potential energy U U(x)
h? o 9?
Kineti K ———T"
netic energy om 92
n? 9
Hamiltoni H ——— —— T Ul
amiltonian om 9x (%)
L 0
Total energy /0 zﬁ;

The form of this result suggests that the term in the braces is the operator for
total energy. This operator is called the Hamiltonian, symbolized by [ H]:
h? 92

H] = — ——5 + Ul 6.39

[H] = —5— — + U (6.39)
The designation [E] is reserved for another operator, which arises as follows:
Inspection of Schrédinger’s equation (Equation 6.10) shows that it can be
written neatly as [H |V = ihoW¥/dt. Using this in Equation 6.38 gives an equiv-
alent expression for (£) and leads to the identification of the energy operator:

[E] = ih % (6.40)

Notice that [H] is an operation involving only the spatial coordinate «x,
whereas [E] depends only on the time ¢. That is, [H] and [E] really are two
different operators, but they produce identical results when applied to any
solution of Schrédinger’s equation. This is because the LHS of Schrodinger’s
equation is simply [H]W¥, while the RHS is none other than [E]¥ (compare
Equation 6.10)! Table 6.2 summarizes the observables we have discussed and
their associated operators.

QUANTUM UNCERTAINTY AND THE
EIGENVALUE PROPERTY

In Section 6.7 we showed how Ax, the quantum uncertainty in position, could be found
from the expectation values (x?) and (x). But the argument given there applies to any
observable, that is, the quantum uncertainty AQ for any observable Qis calculated as

AQ =V(Q) —(Q)? (6.41)

Again, if AQ = 0, Qs said to be a sharp observable and all measurements of Q yield
the same value. More often, however, AQ > 0 and repeated measurements reveal a
distribution of values—as in Table 6.1 for the observable x. In such cases, we say the
observable is fuzzy, suggesting that, prior to actual measurement, the particle cannot
be said to possess a unique value of Q.
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6.8 OBSERVABLES AND OPERATORS

In classical physics all observables are sharp.!® The extent to which sharp
observables can be specified in quantum physics is limited by uncertainty principles,
such as

AxAp = é h (6.42)

The uncertainties here are to be calculated from Equation 6.41. Equation 6.42 says
that no matter what the state of the particle, the spread in distributions obtained in
measurements of x and of p will be inversely related: when one is small, the other
will be large. Alternatively, if the position of the particle is quite “fuzzy,” its momen-
tum can be relatively “sharp,” and vice versa. The degree to which both may be si-
multaneously sharp is limited by the size of . The incredibly small value of % in SI
units is an indication that quantum ideas are unnecessary at the macroscopic level.

Despite restrictions imposed by uncertainty principles, some observables in quan-
tum physics may still be sharp. The energy E of all stationary states is one example.
In the free particle plane waves of Section 6.2 we have another: The plane wave with
wavenumber £,

\Ijk(x’ t) — ei(kx*cul)

describes a particle with momentum p = #k. Evidently, momentum is a sharp ob-
servable for this wavefunction. We find that the action of the momentum operator
in this instance is especially simple:

[P1Vy(x, 1) = (ii> R 73 T E))
1 dx

that is, the operation [p] returns the original function multiplied by a constant. This
is an example of an eigenvalue problem for the operator [p].!* The wavefunction
W, is the eigenfunction, and the constant, in this case #ik, is the eigenvalue. Notice that
the eigenvalue is just the sharp value of particle momentum for this wave. This con-
nection between sharp observables and eigenvalues is a general one: For an observ-
able Q to be sharp, the wavefunction must be an eigenfunction of the opera-
tor for Q. Further, the sharp value for Q in this state is the eigenvalue. In this
way the eigenvalue property can serve as a simple test for sharp observables, as the
following examples illustrate.

EXAMPLE 6.16 Plane Waves and Sharp Observables

Use the eigenvalue test to show that the plane wave W(x, ¢) = =0 j5 one for which
total energy is a sharp observable. What value does the energy take in this case?

Solution To decide the issue we examine the action of the energy operator [E] on
the candidate function ¢*~ @) Since taking a derivative with respect to ¢ of this
function is equivalent to multiplying the function by —iw, we have

[E] ei(kx*(ul) — (lﬁ%) ei(kx*wl) — hwei(kxfwl)

13We discount in this discussion any random errors of measurement. In principle at least, the
imprecision resulting from such errors can be reduced to arbitrarily low levels.

14The eigenvalue problem for any operator [Q] is [Q]¢ = qi; that is, the result of the opera-
tion [Q] on some function i is simply to return a multiple ¢ of the same function. This is
possible only for certain special functions i, the eigenfunctions, and then only for certain spe-
cial values of ¢, the eigenvalues. Generally, [Q] is known; the eigenfunctions and eigenvalues
are found by imposing the eigenvalue condition.
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showing that ¢/**~®) is an eigenfunction of the energy operator [E] and the eigen-
value is fw. Thus, energy is a sharp observable and has the value Ao in this state.

It is instructive to compare this result with the outcome found by using the other
energy operator, [H]. The Hamiltonian for a free particle is simply the kinetic en-
ergy operator [K], because the potential energy is zero in this case. Then

2 2
[H] ei(kx*(ul) — (, h 9 5 > ei(kx* wl)
2m  9x

2
= <_h_> (ik) 2 ,i(kx— wl)
2m

Again, the operation returns the original function with a multiplier, so that e
also is an eigenfunction of [H]. The eigenvalue in this case is #2k?/2m, which also
must be the sharp value of particle energy. The equivalence with 7w follows from
the dispersion relation for free particles (see footnote 1).

i(kx— wt)

Exercise 6 Show that total energy is a sharp observable for any stationary state.

EXAMPLE 6.17 Sharp Observables for a Particle in a Box

Are the stationary states of the infinite square well eigenfunctions of [p]? of [p]%? If
so, what are the eigenvalues? Discuss the implications of these results.

Solution The candidate function in this case is any one of the square well wave-
functions V(x, {) = \/2/_Lsin(n7rx/ Lye t/h Because the first derivative gives
(d/ dx)sin(nmx/L) = (nmw/L)cos(nmx/L), we see at once that the operator [p] will
not return the original function ¥, and so these are not eigenfunctions of the mo-
mentum operator. They are, however, eigenfunctions of [p]% In particular, we have
(d?/dx?)sin(nmx/L) = — (nar/L)%sin(nmx/ L), so that

2
(P12 (x, 1) = —(7/)? ("—Z) W (x, 1)

_<mﬁ

9
7 ) W (x, )

The eigenvalue is the multiplier (nmh/L)%. Thus, the squared momentum (or
magnitude of momentum) is sharp for such states, and repeated measurements of
72 (or |p|) for the state labeled by n will give identical results equal to (nwfi/L)?
(or nah/L). By contrast, the momentum itself is not sharp, meaning that different
values for p will be obtained in successive measurements. In particular, it is the sign
or direction of momentum that is fuzzy, consistent with the classical notion of a par-
ticle bouncing back and forth between the walls of the “box.”

SUMMARY

In quantum mechanics, matter waves (or de Broglie waves) are represented
by a wavefunction W(x, ¢). The probability that a particle constrained to
move along the x-axis will be found in an interval dx at time ¢ is given by
|W|?dx. These probabilities summed over all values of x must total 1 (cer-
tainty). That is,
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