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Matter Waves

5.1 The Pilot Waves of de Broglie
De Broglie’s Explanation of

Quantization in the
Bohr Model

5.2 The Davisson–Germer Experiment
The Electron Microscope

5.3 Wave Groups and Dispersion
Matter Wave Packets

5.4 Fourier Integrals (Optional)
Constructing Moving Wave Packets

5.5 The Heisenberg Uncertainty
Principle
A Different View of the Uncertainty

Principle

5.6 If Electrons Are Waves, 
What’s Waving?

5.7 The Wave–Particle Duality
The Description of Electron Diffraction

in Terms of �
A Thought Experiment: Measuring

Through Which Slit the Electron
Passes

5.8 A Final Note

Summary

Chapter Outline

In the previous chapter we discussed some important discoveries and theo-
retical concepts concerning the particle nature of matter. We now point out
some of the shortcomings of these theories and introduce the fascinating
and bizarre wave properties of particles. Especially notable are Count Louis de
Broglie’s remarkable ideas about how to represent electrons (and other
particles) as waves and the experimental confirmation of de Broglie’s
hypothesis by the electron diffraction experiments of Davisson and Germer.
We shall also see how the notion of representing a particle as a localized
wave or wave group leads naturally to limitations on simultaneously mea-
suring position and momentum of the particle. Finally, we discuss the
passage of electrons through a double slit as a way of “understanding” the
wave – particle duality of matter.
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5.1 THE PILOT WAVES OF DE BROGLIE

By the early 1920s scientists recognized that the Bohr theory contained many
inadequacies:

• It failed to predict the observed intensities of spectral lines.
• It had only limited success in predicting emission and absorption wave-

lengths for multielectron atoms.
• It failed to provide an equation of motion governing the time develop-

ment of atomic systems starting from some initial state.
• It overemphasized the particle nature of matter and could not explain

the newly discovered wave–particle duality of light.
• It did not supply a general scheme for “quantizing” other systems, espe-

cially those without periodic motion.

The first bold step toward a new mechanics of atomic systems was taken by
Louis Victor de Broglie in 1923 (Fig. 5.1). In his doctoral dissertation he pos-
tulated that because photons have wave and particle characteristics, perhaps all forms
of matter have wave as well as particle properties. This was a radical idea with no
experimental confirmation at that time. According to de Broglie, electrons
had a dual particle–wave nature. Accompanying every electron was a wave
(not an electromagnetic wave!), which guided, or “piloted,” the electron
through space. He explained the source of this assertion in his 1929 Nobel
prize acceptance speech:

On the one hand the quantum theory of light cannot be considered satisfactory
since it defines the energy of a light corpuscle by the equation E � hf containing the
frequency f. Now a purely corpuscular theory contains nothing that enables us to
define a frequency; for this reason alone, therefore, we are compelled, in the case of
light, to introduce the idea of a corpuscle and that of periodicity simultaneously. On
the other hand, determination of the stable motion of electrons in the atom intro-
duces integers, and up to this point the only phenomena involving integers in
physics were those of interference and of normal modes of vibration. This fact sug-
gested to me the idea that electrons too could not be considered simply as corpus-
cles, but that periodicity must be assigned to them also.

Let us look at de Broglie’s ideas in more detail. He concluded that the
wavelength and frequency of a matter wave associated with any moving object
were given by

(5.1)

and

(5.2)

where h is Planck’s constant, p is the relativistic momentum, and E is the total rel-
ativistic energy of the object. Recall from Chapter 2 that p and E can be written as

(5.3)

and

(5.4)E2 � p2c2 � m2c4 � �2m2c4

p � �mv

f �
E

h

� �
h

p
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Figure 5.1 Louis de Broglie
was a member of an aristocratic
French family that produced
marshals, ambassadors, foreign
ministers, and at least one duke,
his older brother Maurice de
Broglie. Louis de Broglie came
rather late to theoretical physics,
as he first studied history. Only
after serving as a radio operator
in World War I did he follow the
lead of his older brother and
begin his studies of physics.
Maurice de Broglie was an out-
standing experimental physicist
in his own right and conducted
experiments in the palatial fam-
ily mansion in Paris. (AIP Meggers

Gallery of Nobel Laureates)

De Broglie wavelength
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where � � (1 � v2/c2)�1/2 and v is the object’s speed. Equations 5.1 and 5.2
immediately suggest that it should be easy to calculate the speed of a de
Broglie wave from the product �f . However, as we will show later, this is not
the speed of the particle. Since the correct calculation is a bit complicated, we
postpone it to Section 5.3. Before taking up the question of the speed of
matter waves, we prefer first to give some introductory examples of the use of
� � h/p and a brief description of how de Broglie waves provide a physical
picture of the Bohr theory of atoms.

De Broglie’s Explanation of Quantization
in the Bohr Model

Bohr’s model of the atom had many shortcomings and problems. For exam-
ple, as the electrons revolve around the nucleus, how can one understand
the fact that only certain electronic energies are allowed? Why do all atoms
of a given element have precisely the same physical properties regardless of
the infinite variety of starting velocities and positions of the electrons in
each atom?

De Broglie’s great insight was to recognize that although these are deep
problems for particle theories, wave theories of matter handle these problems
neatly by means of interference. For example, a plucked guitar string,
although initially subjected to a wide range of wavelengths, supports only
standing wave patterns that have nodes at each end. Thus only a discrete set
of wavelengths is allowed for standing waves, while other wavelengths not
included in this discrete set rapidly vanish by destructive interference. This
same reasoning can be applied to electron matter waves bent into a circle
around the nucleus. Although initially a continuous distribution of wave-
lengths may be present, corresponding to a distribution of initial electron
velocities, most wavelengths and velocities rapidly die off. The residual stand-
ing wave patterns thus account for the identical nature of all atoms of a given
element and show that atoms are more like vibrating drum heads with discrete
modes of vibration than like miniature solar systems. This point of view is
emphasized in Figure 5.2, which shows the standing wave pattern of the
electron in the hydrogen atom corresponding to the n � 3 state of the Bohr
theory.

Another aspect of the Bohr theory that is also easier to visualize physically
by using de Broglie’s hypothesis is the quantization of angular momentum.
One simply assumes that the allowed Bohr orbits arise because the elec-
tron matter waves interfere constructively when an integral number of
wavelengths exactly fits into the circumference of a circular orbit. Thus

n� � 2�r (5.5)

where r is the radius of the orbit. From Equation 5.1, we see that � � h/mev.
Substituting this into Equation 5.5, and solving for mevr, the angular momen-
tum of the electron, gives

(5.6)

Note that this is precisely the Bohr condition for the quantization of angular
momentum.

mevr � n�
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r

λ

Figure 5.2 Standing waves fit
to a circular Bohr orbit. In this
particular diagram, three wave-
lengths are fit to the orbit, cor-
responding to the n � 3 energy
state of the Bohr theory.
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154 CHAPTER 5 MATTER WAVES

(b) Calculate � if the particle is an electron and
V � 50 V.

Solution The de Broglie wavelength of an electron
accelerated through 50 V is

This wavelength is of the order of atomic dimensions and
the spacing between atoms in a solid. Such low-energy
electrons are routinely used in electron diffraction exper-
iments to determine atomic positions on a surface.

Exercise 1 (a) Show that the de Broglie wavelength for
an electron accelerated from rest through a large poten-
tial difference, V, is

(5.7)

where � is in angstroms (Å) and V is in volts. (b) Calcu-
late the percent error introduced when � � 12.27/V 1/2

is used instead of the correct relativistic expression for
10 MeV electrons.

Answer (b) 230%.

� �
12.27

V 1/2 � Ve

2mec2 � 1�
�1/2

� 1.7 	 10�10 m � 1.7 Å

�
6.63 	 10�34 J
s

√2(9.11 	 10�31 kg)(1.6 	 10�19 C)(50 V)

� �
h

√2meqV

� �
h

p
�

h

√2mqV

EXAMPLE 5.1 Why Don’t We See the Wave
Properties of a Baseball?

An object will appear “wavelike” if it exhibits interference
or diffraction, both of which require scattering objects or
apertures of about the same size as the wavelength. A
baseball of mass 140 g traveling at a speed of 60 mi/h
(27 m/s) has a de Broglie wavelength given by

Even a nucleus (whose size is � 10�15 m) is much too
large to diffract this incredibly small wavelength! This
explains why all macroscopic objects appear particle-like.

EXAMPLE 5.2 What Size “Particles” Do 
Exhibit Diffraction?

A particle of charge q and mass m is accelerated from
rest through a small potential difference V. (a) Find its
de Broglie wavelength, assuming that the particle is non-
relativistic.

Solution When a charge is accelerated from rest through
a potential difference V, its gain in kinetic energy, mv2,
must equal the loss in potential energy qV. That is,

Because p � mv, we can express this in the form

Substituting this expression for p into the de Broglie rela-
tion � � h/p gives

p2

2m
� qV  or  p � √2mqV

1
2 mv2 � qV

1
2

� �
h

p
�

6.63 	 10�34 J
s

(0.14 kg)(27 m/s)
� 1.7 	 10�34 m

5.2 THE DAVISSON–GERMER EXPERIMENT

Direct experimental proof that electrons possess a wavelength � � h/p was
furnished by the diffraction experiments of American physicists Clinton J.
Davisson (1881–1958) and Lester H. Germer (1896–1971) at the Bell Labora-
tories in New York City in 1927 (Fig. 5.3).1 In fact, de Broglie had already sug-
gested in 1924 that a stream of electrons traversing a small aperture should
exhibit diffraction phenomena. In 1925, Einstein was led to the necessity of
postulating matter waves from an analysis of fluctuations of a molecular gas. In
addition, he noted that a molecular beam should show small but measurable
diffraction effects. In the same year, Walter Elsasser pointed out that the slow

1C. J. Davisson and L. H. Germer, Phys. Rev. 30:705, 1927.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight



electron scattering experiments of C. J. Davisson and C. H. Kunsman at the
Bell Labs could be explained by electron diffraction.

Clear-cut proof of the wave nature of electrons was obtained in 1927 by the
work of Davisson and Germer in the United States and George P. Thomson
(British physicist, 1892–1975, the son of J. J. Thomson) in England. Both
cases are intriguing not only for their physics but also for their human inter-
est. The first case was an accidental discovery, and the second involved the
discovery of the particle properties of the electron by the father and the wave
properties by the son.

The crucial experiment of Davisson and Germer was an offshoot of an at-
tempt to understand the arrangement of atoms on the surface of a nickel sam-
ple by elastically scattering a beam of low-speed electrons from a polycrys-
talline nickel target. A schematic drawing of their apparatus is shown in Figure
5.4. Their device allowed for the variation of three experimental parameters—
electron energy; nickel target orientation, �; and scattering angle, �. Before a
fortunate accident occurred, the results seemed quite pedestrian. For constant
electron energies of about 100 eV, the scattered intensity rapidly decreased as
� increased. But then someone dropped a flask of liquid air on the glass vac-
uum system, rupturing the vacuum and oxidizing the nickel target, which had
been at high temperature. To remove the oxide, the sample was reduced by
heating it cautiously2 in a flowing stream of hydrogen. When the apparatus
was reassembled, quite different results were found: Strong variations in the
intensity of scattered electrons with angle were observed, as shown in Figure
5.5. The prolonged heating had evidently annealed the nickel target, causing
large single-crystal regions to develop in the polycrystalline sample. These crys-
talline regions furnished the extended regular lattice needed to observe elec-
tron diffraction. Once Davisson and Germer realized that it was the elastic
scattering from single crystals that produced such unusual results (1925), they
initiated a thorough investigation of elastic scattering from large single crystals

5.2 THE DAVISSON–GERMER EXPERIMENT 155

Figure 5.3 Clinton J. Davisson (left) and Lester H. Germer (center) at Bell Laborato-
ries in New York City. (Bell Laboratories, courtesy AIP Emilio Segrè Visual Archives)

2At present this can be done without the slightest fear of “stinks or bangs,” because 5% hydro-
gen–95% argon safety mixtures are commercially available.
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with predetermined crystallographic orientation. Even these experiments were
not conducted at first as a test of de Broglie’s wave theory, however. Following
discussions with Richardson, Born, and Franck, the experiments and their
analysis finally culminated in 1927 in the proof that electrons experience dif-
fraction with an electron wavelength that is given by � � h/p.

156 CHAPTER 5 MATTER WAVES

Figure 5.5 A polar plot of scattered intensity versus scattering angle for 54-eV elec-
trons, based on the original work of Davisson and Germer. The scattered intensity is
proportional to the distance of the point from the origin in this plot.
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Figure 5.4 A schematic diagram of the Davisson–Germer apparatus.
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The idea that electrons behave like waves when interacting with the atoms
of a crystal is so striking that Davisson and Germer’s proof deserves closer
scrutiny. In effect, they calculated the wavelength of electrons from a
simple diffraction formula and compared this result with de Broglie’s formula
� � h/p. Although they tested this result over a wide range of target orienta-
tions and electron energies, we consider in detail only the simple case shown
in Figures 5.4 and 5.5 with � � 90.0
, V � 54.0 V, and � � 50.0
, correspond-
ing to the n � 1 diffraction maximum. In order to calculate the de Broglie
wavelength for this case, we first obtain the velocity of a nonrelativistic elec-
tron accelerated through a potential difference V from the energy relation

Substituting into the de Broglie relation gives

(5.8)

Thus the wavelength of 54.0-V electrons is

The experimental wavelength may be obtained by considering the nickel
atoms to be a reflection diffraction grating, as shown in Figure 5.6. Only the
surface layer of atoms is considered because low-energy electrons, unlike 
x-rays, do not penetrate deeply into the crystal. Constructive interference oc-
curs when the path length difference between two adjacent rays is an integral
number of wavelengths or

d sin � � n� (5.9)

As d was known to be 2.15 Å from x-ray diffraction measurements, Davisson
and Germer calculated � to be

� � (2.15 Å)(sin 50.0
) � 1.65 Å

in excellent agreement with the de Broglie formula.

� 1.67 	 10�10 m � 1.67 Å

� �
6.63 	 10�34 J
s

√2(54.0 V)(1.60 	 10�19 C)(9.11 	 10�31 kg)

� �
h

mev
�

h

√2Veme

v � √2Ve/me

1
2 mev

2 � eV
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Figure 5.6 Constructive interference of electron matter waves scattered from a single
layer of atoms at an angle �.

φ
φ

B
A

d

AB =  d sin     = nλφ

Figure 5.7 Diffraction of 50-kV
electrons from a film of
Cu3Au. The alloy film was
400 Å thick. (Courtesy of the late

Dr. L. H. Germer)
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It is interesting to note that while the diffraction lines from low-energy
reflected electrons are quite broad (see Fig. 5.5), the lines from high-
energy electrons transmitted through metal foils are quite sharp (see Fig.
5.7). This effect occurs because hundreds of atomic planes are penetrated
by high-energy electrons, and consequently Equation 5.9, which treats
diffraction from a surface layer, no longer holds. Instead, the Bragg law,
2d sin � � n�, applies to high-energy electron diffraction. The maxima are
extremely sharp in this case because if 2d sin � is not exactly equal to n�,
there will be no diffracted wave. This occurs because there are scattering
contributions from so many atomic planes that eventually the path length
difference between the wave from the first plane and some deeply buried
plane will be an odd multiple of �/2, resulting in complete cancellation of
these waves (see Problem 13).

If de Broglie’s postulate is true for all matter, then any object of mass m has
wavelike properties and a wavelength � � h/p. In the years following Davisson
and Germer’s discovery, experimentalists tested the universal character of
de Broglie’s postulate by searching for diffraction of other “particle” beams.
In subsequent experiments, diffraction was observed for helium atoms
(Estermann and Stern in Germany) and hydrogen atoms ( Johnson in the
United States). Following the discovery of the neutron in 1932, it was shown
that neutron beams of the appropriate energy also exhibit diffraction when
incident on a crystalline target (Fig. 5.8).

158 CHAPTER 5 MATTER WAVES

ticle in thermal equilibrium is for each indepen-
dent direction of motion, neutrons at room temperature
(300 K) possess a kinetic energy of

Thus “thermal neutrons,” or neutrons in thermal equilib-
rium with matter at room temperature, possess energies of
the right order of magnitude to diffract appreciably from
single crystals. Neutrons produced in a nuclear reactor are
far too energetic to produce diffraction from crystals and
must be slowed down in a graphite column as they leave
the reactor. In the graphite moderator, repeated collisions
with carbon atoms ultimately reduce the average neutron
energies to the average thermal energy of the carbon
atoms. When this occurs, these so-called thermalized neu-
trons possess a distribution of velocities and a correspond-
ing distribution of de Broglie wavelengths with average
wavelengths comparable to crystal spacings.

� 0.0388 eV

K � 3
2 kBT � (1.50)(8.62 	 10�5 eV/K)(300 K)

1
2 kBT

EXAMPLE 5.3 Thermal Neutrons

What kinetic energy (in electron volts) should neutrons
have if they are to be diffracted from crystals?

Solution Appreciable diffraction will occur if the de
Broglie wavelength of the neutron is of the same order of
magnitude as the interatomic distance. Taking � � 1.00 Å,
we find

The kinetic energy is given by

Note that these neutrons are nonrelativistic because K is
much less than the neutron rest energy of 940 MeV,
and so our use of the classical expression K � p2/2mn

is justified. Because the average thermal energy of a par-

� 1.32 	 10�20 J � 0.0825 eV

K �
p2

2mn
�

(6.63 	 10�24 J
s)2

2(1.66 	 10�27 kg)

p �
h

�
�

6.63 	 10�34 J
s

1.00 	 10�10 m
� 6.63 	 10�24 kg
m/s
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The Electron Microscope

The idea that electrons have a controllable wavelength that can be made much
shorter than visible light wavelengths and, accordingly, possess a much better
ability to resolve fine details was only one of the factors that led to the develop-
ment of the electron microscope. In fact, ideas of such a device were tossed
about in the cafés and bars of Paris and Berlin as early as 1928. What really made
the difference was the coming together of several lines of development—elec-
tron tubes and circuits, vacuum technology, and electron beam control—all pio-
neered in the development of the cathode ray tube (CRT). These factors led to
the construction of the first transmission electron microscope (TEM) with mag-
netic lenses by electrical engineers Max Knoll and Ernst Ruska in Berlin in 1931.
The testament to the fortitude and brilliance of Knoll and Ruska in overcoming
the “cussedness of objects” and building and getting such a complicated experi-
mental device to work for the first time is shown in Figure 5.10. It is remarkable
that although the overall performance of the TEM has been improved thousands
of times since its invention, it is basically the same in principle as that first de-
signed by Knoll and Ruska: a device that focuses electron beams with magnetic
lenses and creates a flat-looking two-dimensional shadow pattern on its screen,
the result of varying degrees of electron transmission through the object. Figure
5.11a is a diagram showing this basic design and Figure 5.11b shows, for compari-
son, an optical projection microscope. The best optical microscopes using ultravi-
olet light have a magnification of about 2000 and can resolve two objects sepa-
rated by 100 nm, but a TEM using electrons accelerated through 100 kV has a
magnification of as much as 1,000,000 and a maximum resolution of 0.2 nm. In
practice, magnifications of 10,000 to 100,000 are easier to use. Figure 5.12 shows
typical TEM micrographs of microbes, Figure 5.12b showing a microbe and its
DNA strands magnified 40,000 times. Although it would seem that increasing
electron energy should lead to shorter electron wavelength and increased resolu-
tion, imperfections or aberrations in the magnetic lenses actually set the limit of
resolution at about 0.2 nm. Increasing electron energy above 100 keV does not
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Neutrons with a
range of velocities

Disk A

0.5 m

Disk B

ω

Figure 5.9 A neutron velocity selector. The slot in disk
B lags the slot in disk A by 10
.

Exercise 2 Monochromatic Neutrons. A beam of neutrons
with a single wavelength may be produced by means of a
mechanical velocity selector of the type shown in Figure
5.9. (a) Calculate the speed of neutrons with a wave-
length of 1.00 Å. (b) What rotational speed (in rpm)
should the shaft have in order to pass neutrons with
wavelength of 1.00 Å?

Answers (a) 3.99 	 103 m/s. (b) 13,300 rev/min.

Ernst Ruska played a major role
in the invention of the TEM. He
was awarded the Nobel prize in
physics for this work in 1986.
(AIP Emilio Segre Visual Archives,

W. F. Meggers Gallery of Nobel

Laureates)
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160 CHAPTER 5 MATTER WAVES

Figure 5.11 (a) Schematic drawing of a transmission electron microscope with mag-
netic lenses. (b) Schematic of a light-projection microscope.

Electron Source Light Source

Condenser lens Condenser lens

Intermediate image

Projector lens

Photographic plate
or

Fluorescent Screen

Objective lens
Objective lens

Object

Screen

Object on fine grid

Projector lens

(a) (b)
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5.2 THE DAVISSON–GERMER EXPERIMENT 161

improve resolution—it only permits electrons to sample regions deeper inside
an object. Figures 5.13a and 5.13b show, respectively, a diagram of a modern
TEM and a photo of the same instrument.

A second type of electron microscope with less resolution and magnifica-
tion than the TEM, but capable of producing striking three-dimensional
images, is the scanning electron microscope (SEM). Figure 5.14 shows dra-
matic three-dimensional SEM micrographs made possible by the large
range of focus (depth of field) of the SEM, which is several hundred times
better than that of a light microscope. The SEM was the brainchild of the
same Max Knoll who helped invent the TEM. Knoll had recently moved to
the television department at Telefunken when he conceived of the idea in
1935. The SEM produces a sort of giant television image by collecting elec-
trons scattered from an object, rather than light. The first operating scan-
ning microscope was built by M. von Ardenne in 1937, and it was extensively
developed and perfected by Vladimir Zworykin and collaborators at RCA
Camden in the early 1940s.

Figure 5.15 shows how a typical SEM works. Such a device might be oper-
ated with 20-keV electrons and have a resolution of about 10 nm and a magni-
fication ranging from 10 to 100,000. As shown in Figure 5.15, an electron
beam is sharply focused on a specimen by magnetic lenses and then scanned
(rastered) across a tiny region on the surface of the specimen. The high-
energy primary beam scatters lower-energy secondary electrons out of the
object depending on specimen composition and surface topography. These
secondary electrons are detected by a plastic scintillator coupled to a photo-
multiplier, amplified, and used to modulate the brightness of a simultaneously

(a) (b)

Figure 5.12 (a) A false-color TEM micrograph of tuberculosis bacteria. (b) A TEM
micrograph of a microbe leaking DNA (	40,000). (CNRI/Photo Researchers, Inc., Dr.

Gopal Murti/Photo Researchers, Inc.)
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162 CHAPTER 5 MATTER WAVES

(a) (b)

Figure 5.14 (a) A SEM micrograph showing blood cells in a tiny artery. (b) A SEM
micrograph of a single neuron (	4000). (P. Motta & S. Correr/Photo Researchers, Inc.,

David McCarthy/Photo Researchers, Inc.)

Figure 5.13 (a) Diagram of a transmission electron microscope. (b) A photo of the
same TEM. (W. Ormerod/Visuals Unlimited)

(a) (b)

Electron gun

Electromagnetic
condenser
lens

Screen

Visual
transmission

Vacuum

Core

Coil

Electron
beam

Specimen
goes
here

Projector
lens

Photo
chamber

Specimen
chamber
door

Anode

Electromagnetic
lens

Cathode

rastered display CRT. The ratio of the display raster size to the microscope
electron beam raster size determines the magnification. Modern SEM’s can
also collect x-rays and high-energy electrons from the specimen to detect
chemical elements at certain locations on the specimen’s surface, thus answer-
ing the bonus question, “Is the bitty bump on the bilayer boron or bismuth?”
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5.2 THE DAVISSON–GERMER EXPERIMENT 163

The newer, higher-resolution scanning tunneling microscope (STM)
and atomic force microscope (AFM), which can image individual
atoms and molecules, are discussed in Chapter 7. These instruments are excit-
ing not only for their superb pictures of surface topography and indi-
vidual atoms (see Figure 5.16 for an AFM picture) but also for their potential
as microscopic machines capable of detecting and moving a few atoms at a
time in proposed microchip terabit memories and mass spectrometers.

Figure 5.15 The working parts of a scanning electron microscope.
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Figure 5.16 World’s smallest electrical wire. An AFM image of a carbon nanotube
wire on platinum electrodes. The wire is 1.5 nm wide, a mere 10 atoms. The magnifica-
tion is 120,000. (Delft University of Technology/Photo Researchers, Inc.)
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5.3 WAVE GROUPS AND DISPERSION

The matter wave representing a moving particle must reflect the fact that
the particle has a large probability of being found in a small region of space
only at a specific time. This means that a traveling sinusoidal matter wave
of infinite extent and constant amplitude cannot properly represent a
localized moving particle. What is needed is a pulse, or “wave group,” of
limited spatial extent. Such a pulse can be formed by adding sinusoidal
waves with different wavelengths. The resulting wave group can then
be shown to move with a speed vg (the group speed) identical to the classi-
cal particle speed. This argument is shown schematically in Figure 5.17
and will be treated in detail after the introduction of some general ideas
about wave groups.

Actually, all observed waves are limited to definite regions of space and
are called pulses, wave groups, or wave packets in the case of matter waves. The
plane wave with an exact wavelength and infinite extension is an abstrac-
tion. Water waves from a stone dropped into a pond, light waves emerging
from a briefly opened shutter, a wave generated on a taut rope by a single
flip of one end, and a sound wave emitted by a discharging capacitor must
all be modeled by wave groups. A wave group consists of a superposition of
waves with different wavelengths, with the amplitude and phase of each com-
ponent wave adjusted so that the waves interfere constructively over a small
region of space. Outside of this region the combination of waves produces a
net amplitude that approaches zero rapidly as a result of destructive inter-
ference. Perhaps the most familiar physical example in which wave groups
arise is the phenomenon of beats. Beats occur when two sound waves of
slightly different wavelength (and hence different frequency) are com-
bined. The resultant sound wave has a frequency equal to the average of the
two combining waves and an amplitude that fluctuates, or “beats,” at a rate

164 CHAPTER 5 MATTER WAVES

(b)

vg  = vo

(a)

m

x
v0

Figure 5.17 Representing a particle with matter waves: (a) particle of mass m and
speed v0; (b) superposition of many matter waves with a spread of wavelengths cen-
tered on �0 � h/mv0 correctly represents a particle.
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given by the difference of the two original frequencies. This case is illus-
trated in Figure 5.18.

Let us examine this situation mathematically. Consider a one-dimensional
wave propagating in the positive x direction with a phase speed vp. Note that vp

is the speed of a point of constant phase on the wave, such as a wave crest or
trough. This traveling wave with wavelength �, frequency f, and amplitude A
may be described by

(5.10)

where � and f are related by

vp � �f (5.11)

A more compact form for Equation 5.10 results if we take � � 2�f (where � is
the angular frequency) and k � 2�/� (where k is the wavenumber). With these
substitutions the infinite wave becomes

y � A cos(kx � �t) (5.12)

with

(5.13)

Let us now form the superposition of two waves of equal amplitude both trav-
eling in the positive x direction but with slightly different wavelengths, fre-
quencies, and phase velocities. The resultant amplitude y is given by

y � y1 � y2 � A cos(k1x � �1t) � A cos(k2x � �2t)

Using the trigonometric identity

cos a � cos b � 2 cos 12 (a � b)
 cos 1
2 (a � b)

vp �
�

k

y � A cos � 2�x

�
� 2�ft�
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y
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Individual waves 180° out
of phase In phase

Figure 5.18 Beats are formed by the combination of two waves of slightly different
frequency traveling in the same direction. (a) The individual waves. (b) The combined
wave has an amplitude (broken line) that oscillates in time.

Phase velocity
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we find

(5.14)

For the case of two waves with slightly different values of k and �, we see that
�k � k2 � k1 and �� � �2 � �1 are small, but (k1 � k2) and (�1 � �2) are
large. Thus, Equation 5.14 may be interpreted as a broad sinusoidal envelope

limiting or modulating a high-frequency wave within the envelope

This superposition of two waves is shown in Figure 5.19.
Although our model is primitive and does not represent a pulse limited to a

small region of space, it shows several interesting features common to more
complicated models. For example, the envelope and the wave within the
envelope move at different speeds. The speed of either the high-frequency
wave or the envelope is given by dividing the coefficient of the t term by the
coefficient of the x term as was done in Equations 5.12 and 5.13. For the wave
within the envelope,

Thus, the high-frequency wave moves at the phase velocity v1 of one of
the waves or at v2 because v1 � v2. The envelope or group described by
2A cos[(�k/2)x � (��/2)t] moves with a different velocity however, the
group velocity given by

(5.15)vg �
(�2 � �1)/2

(k2 � k1)/2
�

��

�k

vp �
(�1 � �2)/2

(k1 � k2)/2
�

�1

k1
� v1

cos[ 1
2 (k1 � k2)x � 1

2 (�1 � �2)t]

2A cos � �k

2
x �

��

2
t�

y � 2A cos 12 {(k2 � k1)x � (�2 � �1)t } 
 cos 1
2 {(k1 � k2)x � (�1 � �2)t }
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∆k–––
2x 2A cos x( ) ( )

Figure 5.19 Superposition of two waves of slightly different wavelengths resulting in
primitive wave groups; t has been set equal to zero in Equation 5.14.
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Another general characteristic of wave groups for waves of any type is both
a limited duration in time, �t, and a limited extent in space, �x. It is found
that the smaller the spatial width of the pulse, �x, the larger the range of wave-
lengths or wavenumbers, �k, needed to form the pulse. This may be stated
mathematically as

(5.16)

Likewise, if the time duration, �t, of the pulse is small, we require a wide
spread of frequencies, ��, to form the group. That is,

(5.17)

In pulse electronics, this condition is known as the “response time–bandwidth
formula.”3 In this situation Equation 5.17 shows that in order to amplify a volt-
age pulse of time width �t without distortion, a pulse amplifier must equally
amplify all frequencies in a frequency band of width ��.

Equations 5.16 and 5.17 are important because they constitute “uncertainty
relations,” or “reciprocity relations,” for pulses of any kind—electromagnetic,
sound, or even matter waves. In particular, Equation 5.16 shows that �x, the
uncertainty in spatial extent of a pulse, is inversely proportional to �k, the
range of wavenumbers making up the pulse: both �x and �k cannot become
arbitrarily small, but as one decreases the other must increase.

It is interesting that our simple two-wave model also shows the general prin-
ciples given by Equations 5.16 and 5.17. If we call (rather artificially) the spa-
tial extent of our group the distance between adjacent minima (labeled �x in
Figure 5.12), we find from the envelope term the condition

or

(5.18)

Here, �k � k2 � k1 is the range of wavenumbers present. Likewise, if x is
held constant and t is allowed to vary in the envelope portion of Equation
5.14, the result is (�2 � �1) �t � �, or

�� �t � 2� (5.19)

Therefore, Equations 5.18 and 5.19 agree with the general principles, respec-
tively, of �k �x � 1 and �� �t � 1.

The addition of only two waves with discrete frequencies is instructive but
produces an infinite wave instead of a true pulse. In the general case, many
waves having a continuous distribution of wavelengths must be added to form
a packet that is finite over a limited range and really zero everywhere else. In
this case Equation 5.15 for the group velocity, vg becomes

(5.20)vg �
d�

dk �
k 0

1
2

�k �x � 2�

1
2 �k �x � �

2A cos(1
2 �kx)

�t �� � 1

�x �k � 1
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3It should be emphasized that Equations 5.16 and 5.17 are true in general and that the quantities
�x, �k, �t, and �� represent the spread in values present in an arbitrary pulse formed from the
superposition of two or more waves.

Group velocity
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where the derivative is to be evaluated at k0, the central wavenumber of the
many waves present. The connection between the group velocity and the phase
velocity of the composite waves is easily obtained. Because � � kvp, we find

(5.21)

where vp is the phase velocity and is, in general, a function of k or �. Materi-
als in which the phase velocity varies with wavelength are said to exhibit
dispersion. An example of a dispersive medium is glass, in which the index
of refraction varies with wavelength and different colors of light travel at
different speeds. Media in which the phase velocity does not vary with
wavelength (such as vacuum for electromagnetic waves) are termed nondis-
persive. The term dispersion arises from the fact that the individual har-
monic waves that form a pulse travel at different phase velocities and cause
an originally sharp pulse to change shape and become spread out, or
dispersed. As an example, dispersion of a laser pulse after traveling 1 km
along an optical fiber is shown in Figure 5.20. In a nondispersive medium
where all waves have the same velocity, the group velocity is equal to
the phase velocity. In a dispersive medium the group velocity can be less
than or greater than the phase velocity, depending on the sign of dvp/dk, as
shown by Equation 5.21.

vg �
d�

dk �
k0

� vp �
k0

� k
dvp

dk �
k0
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Figure 5.20 Dispersion in a
1-ns laser pulse. A pulse that
starts with the width shown by
the vertical lines has a time width
of approximately 30 ns after trav-
eling 1 km along an optical fiber.

where g is the acceleration of gravity and where the
minor contribution of surface tension has been ignored.
Show that in this case the velocity of a group of these
waves is one-half of the phase velocity of the central wave-
length.

Solution Because k � 2�/�, we can write vp as

Therefore, we find

� 1
2� g

k0
�

1/2

� 1
2 vp �

k 0

vg � vp �
k 0

� k
dvp

dk �
k 0

� � g

k0
�

1/2

� 1
2� g

k0
�

1/2

vp � � g

k �
1/2

vp � √ g�

2�

EXAMPLE 5.4 Group Velocity in a
Dispersive Medium

In a particular substance the phase velocity of waves
doubles when the wavelength is halved. Show that
wave groups in this system move at twice the central phase
velocity.

Solution From the given information, the dependence
of phase velocity on wavelength must be

for some constants A� and A. From Equation 5.21 we ob-
tain

Thus,

EXAMPLE 5.5 Group Velocity in Deep
Water Waves

Newton showed that the phase velocity of deep water
waves having wavelength � is given by

vg � 2vp �
k0

� Ak0 � Ak0 � 2Ak0vg � vp �
k0

� k
dvp

dk �
k0

vp �
A�

�
� Ak
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5.3 WAVE GROUPS AND DISPERSION 169

Matter Wave Packets

We are now in a position to apply our general theory of wave groups to
electrons. We shall show both the dispersion of de Broglie waves and the satis-
fying result that the wave packet and the particle move at the same velocity.
According to de Broglie, individual matter waves have a frequency f and a
wavelength � given by

where E and p are the relativistic energy and momentum of the particle,
respectively. The phase speed of these matter waves is given by

(5.22)

The phase speed can be expressed as a function of p or k alone by substituting
E � (p2c2 � m2c4)1/2 into Equation 5.22:

(5.23)

The dispersion relation for de Broglie waves can be obtained as a function of k
by substituting p � h/� � �k into Equation 5.23. This gives

(5.24)

Equation 5.24 shows that individual de Broglie waves representing a particle of
mass m show dispersion even in empty space and always travel at a speed that is
greater than or at least equal to c. Because these component waves travel at
different speeds, the width of the wave packet, �x, spreads or disperses as
time progresses, as will be seen in detail in Chapter 6. To obtain the group
speed, we use

and Equation 5.24. After some algebra, we find

(5.25)

Solving for the phase speed from Equation 5.22, we find

where v is the particle’s speed. Finally, substituting vp � c 2/v into Equation
5.25 for vg shows that the group velocity of the matter wave packet is the same
as the particle speed. This agrees with our intuition that the matter wave enve-
lope should move at the same speed as the particle.

vp �
E

p
�

�mc2

�mv
�

c2

v

vg �
c

�1 � � mc

�k0
�

2

�
1/2

�
c2

vp �
k0

vg � �vp � k
dvp

dk �
k0

vp � c √1 � � mc

�k �
2

vp � c √1 � � mc

p �
2

vp � f� �
E

p

f �
E

h
  and  � �

h

p

Phase velocity of matter

waves
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5.4 FOURIER INTEGRALS

In this section we show in detail how to construct wave groups, or pulses, that are

truly localized in space or time and also show that very general reciprocity relations

of the type �k�x � 1 and ���t � 1 hold for these pulses.

To form a true pulse that is zero everywhere outside of a finite spatial range �x

requires adding together an infinite number of harmonic waves with continuously

varying wavelengths and amplitudes. This addition can be done with a Fourier inte-

gral, which is defined as follows:

(5.26)

Here f(x) is a spatially localized wave group, a(k) gives the amount or amplitude of

the wave with wavenumber k � (2�/�) to be added, and e ikx � cos kx � i sin kx is

Euler’s compact expression for a harmonic wave. The amplitude distribution func-

tion a(k) can be obtained if f (x) is known by using the symmetric formula

(5.27)

Equations 5.26 and 5.27 apply to the case of a spatial pulse at fixed time, but it is

important to note that they are mathematically identical to the case of a time pulse

passing a fixed position. This case is common in electrical engineering and involves

adding together a continuously varying set of frequencies:

(5.28)

(5.29)

where V(t) is the strength of a signal as a function of time, and g(�) is the spectral

content of the signal and gives the amount of the harmonic wave with frequency �

that is present.

Let us now consider several examples of how to use Equations 5.26 through

5.29 and how they lead to uncertainty relationships of the type �� �t � 1

and �k �x � 1.

EXAMPLE 5.6

This example compares the spectral contents of infinite and truncated sinusoidal

waves. A truncated sinusoidal wave is a wave cut off or truncated by a shutter,

as shown in Figure 5.21. (a) What is the spectral content of an infinite sinusoidal

wave ? (b) Find and sketch the spectral content of a truncated sinusoidal wave

given by

(c) Show that for this truncated sinusoid �t �� � �, where �t and �� are the half-

widths of v(t) and g(�), respectively.

Solution (a) The spectral content consists of a single strong contribution at the

frequency �0.

V(t) � 0  otherwise

V(t) � ei�0t  �T � t � �T

ei�0t

g(�) �
1

√2�
���

��

V(t)e�i�tdt

V(t) �
1

√2�
���

��

g(�)ei�td�

a(k) �
1

√2�
���

��
f(x)e�ikxdk

f(x) �
1

√2�
���

��
a(k)eikxdk

170 CHAPTER 5 MATTER WAVES
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(b)

Because the sine term is an odd function and the cosine is even, the integral

reduces to

A sketch of g(�) (Figure 5.22) shows a typical sin Z/Z profile centered on �0. Note

that both positive and negative amounts of different frequencies must be added to

produce the truncated sinusoid. Furthermore, the strongest frequency contribution

comes from the frequency region near � � �0, as expected.

(c) �t clearly equals T and �� may be taken to be half the width of the main lobe of

g(�), �� � �/T. Thus, we get

�� �t �
�

T
	 T � �

g(�) �
2

√2�
�T

0
cos(�0 � �)t dt � √ 2

�

sin(�0 � �)T

(�0 � �)
� √ 2

�
(T )

sin(�0 � �)T

(�0 � �)T

�
1

√2�
��T

�T
[cos(�0 � �)t � i sin(�0 � �)t] dt

g(�) �
1

√2�
���

��

V(t)e�i�tdt �
1

√2�
��T

�T
ei(�0��)t dt
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V (t)

–T

tO

+T

Figure 5.21 (Example 5.6) The real part of a truncated sinusoidal wave.
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Figure 5.22 (Example 5.6) The Fourier transform of a truncated sinusoidal wave.
The curve shows the amount of a given frequency that must be added to produce
the truncated wave.
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We see that the product of the spread in frequency, ��, and the spread in time, �t,

is a constant independent of T.

EXAMPLE 5.7 A Matter Wave Packet

(a) Show that the matter wave packet whose amplitude distribution a(k) is a rec-

tangular pulse of height unity, width �k , and centered at k 0 (Fig. 5.23) has the

form

Solution

(b) Observe that this wave packet is a complex function. Later in this chapter we

shall see how the definition of probability density results in a real function, but for

the time being consider only the real part of f (x) and make a sketch of its behavior,

showing its envelope and the cosine function within. Determine �x, and show that

an uncertainty relation of the form �x �k � 1 holds.

Solution The real part of the wave packet is shown in Figure 5.24 where the

full width of the main lobe is �x � 4�/�k. This immediately gives the uncertainty

relation �x �k � 4�. Note that the constant on the right-hand side of the uncer-

tainty relation depends on the shape chosen for a(k) and the precise definition of

�x and �k.

Exercise 3 Assume that a narrow triangular voltage pulse V(t ) arises in some type

of radar system (see Fig. 5.25). (a) Find and sketch the spectral content g(�).

(b) Show that a relation of the type �� �t � 1 holds. (c) If the width of the pulse is

�
�k

√2�

sin(�k 
x/2)

(�k 
x/2)
eik0x

f (x) �
1

√2�
���

��
a(k)eikx dk �

1

√2�
�k0�(�k/2)

k0�(�k/2) eikx dk �
1

√2�

eik0x

x
 2 sin(�k 
x/2)

f (x) �
�k

√2�

sin(�k 
 x/2)

(�k 
 x/2)
eik0x
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a(k)

1

O
k

k0k0 – +
∆k—
2

∆k—
2

k0

Figure 5.23 (Example 5.7) A simple amplitude distribution specifying a uniform
contribution of all wavenumbers from k0 � �k/2 to k0 � �k/2. Although we have
used only positive k’s here, both positive and negative k values are allowed, in gen-
eral corresponding to waves traveling to the right (k � 0) or left (k � 0).
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2� � 10�9 s, what range of frequencies must this system pass if the pulse is to be

undistorted? Take �t � � and define �� similarly.

Answer (a) (b) �� �t � 2�. (c) 2�f �

4.00 	 109 Hz.

Constructing Moving Wave Packets

Figure 5.24 represents a snapshot of the wave packet at t � 0. To construct a moving

wave packet representing a moving particle, we replace kx in Equation 5.26 with

(kx � �t). Thus, the representation of the moving wave packet becomes

(5.30)

It is important to realize that here � � �(k), that is, � is a function of k and therefore

depends on the type of wave and the medium traversed. In general, it is difficult to

solve this integral analytically. For matter waves, the QMTools software available from

our companion Web site (http://info.brookscole.com/mp3e) produces the same re-

sult by solving numerically a certain differential equation that governs the behavior of

such waves. This approach will be explored further in the next chapter.

5.5 THE HEISENBERG UNCERTAINTY PRINCIPLE

In the period 1924–25, Werner Heisenberg, the son of a professor of Greek
and Latin at the University of Munich, invented a complete theory of
quantum mechanics called matrix mechanics. This theory overcame some of
the problems with the Bohr theory of the atom, such as the postulate of “un-
observable” electron orbits. Heisenberg’s formulation was based primarily on
measurable quantities such as the transition probabilities for electronic jumps
between quantum states. Because transition probabilities depend on the initial
and final states, Heisenberg’s mechanics used variables labeled by two sub-
scripts. Although at first Heisenberg presented his theory in the form of non-
commuting algebra, Max Born quickly realized that this theory could be more

f(x, t) �
1

√2�
���

��
a(k)ei(kx��t) dk

g(�) � (√2/�)(1/�2�)(1 � cos ��).
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2––
∆k

2––
∆k

π π

π

cos (k0x)

f (x)

∆k––
2

sin ( )2
∆k–– x

————

2
∆k–– x

x

–

Figure 5.24 (Example 5.7) The real part of the wave packet formed by the
uniform amplitude distribution shown in Figure 5.23.

V(t)

1

0 t+–τ τ

Figure 5.25 (Exercise 3).
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elegantly described by matrices. Consequently, Born, Heisenberg, and Pascual
Jordan soon worked out a comprehensive theory of matrix mechanics. Al-
though the matrix formulation was quite elegant, it attracted little attention
outside of a small group of gifted physicists because it was difficult to apply in
specific cases, involved mathematics unfamiliar to most physicists, and was
based on rather vague physical concepts.

Although we will investigate this remarkable form of quantum mechanics
no further, we shall discuss another of Heisenberg’s discoveries, the uncer-
tainty principle, elucidated in a famous paper in 1927. In this paper Heisen-
berg introduced the notion that it is impossible to determine simultane-
ously with unlimited precision the position and momentum of a particle.
In words we may state the uncertainty principle as follows:

174 CHAPTER 5 MATTER WAVES

Momentum–position

uncertainty principle

If a measurement of position is made with precision �x and a simultane-
ous measurement of momentum in the x direction is made with preci-
sion �px, then the product of the two uncertainties can never be smaller
than ��2. That is,

(5.31)�px �x �
�

2

In his paper of 1927, Heisenberg was careful to point out that the
inescapable uncertainties �px and �x do not arise from imperfections in
practical measuring instruments. Rather, they arise from the need to use
a large range of wavenumbers, �k, to represent a matter wave packet local-
ized in a small region, �x. The uncertainty principle represents a sharp
break with the ideas of classical physics, in which it is assumed that,
with enough skill and ingenuity, it is possible to simultaneously measure a
particle’s position and momentum to any desired degree of precision. As
shown in Example 5.8, however, there is no contradiction between the
uncertainty principle and classical laws for macroscopic systems because of
the small value of �.

One can show that �px �x � �/2 comes from the uncertainty relation
governing any type of wave pulse formed by the superposition of waves with
different wavelengths. In Section 5.3 we found that to construct a wave group
localized in a small region �x, we had to add up a large range of wavenumbers
�k, where �k �x � 1 (Eq. 5.16). The precise value of the number on the right-
hand side of Equation 5.16 depends on the functional form f (x) of the wave
group as well as on the specific definition of �x and �k. A different choice of
f(x) or a different rule for defining �x and �k (or both) will give a slightly dif-
ferent number. With �x and �k defined as standard deviations, it can be
shown that the smallest number, , is obtained for a Gaussian wavefunction.4

In this minimum uncertainty case we have

�x�k � 1
2

1
2

4See Section 6.7 for a definition of the standard deviation and Problem 6.34 for a complete math-
ematical proof of this statement.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight



For any other choice of f (x),

(5.32)

and using �px � ��k, immediately becomes

(5.33)

The basic meaning of �p �x � �/2 is that as one uncertainty increases the
other decreases. In the extreme case as one uncertainty approaches �,
the other must approach zero. This extreme case is illustrated by a plane wave

that has a precise momentum �k0 and an infinite extent—that is, the
wavefunction is not concentrated in any segment of the x axis.

Another important uncertainty relation involves the uncertainty in energy
of a wave packet, �E, and the time, �t, taken to measure that energy. Starting
with as the minimum form of the time–frequency uncertainty prin-
ciple, and using the de Broglie relation for the connection between the matter
wave energy and frequency, E � ��, we immediately find the energy–time
uncertainty principle

(5.34)

Equation 5.34 states that the precision with which we can know the energy of
some system is limited by the time available for measuring the energy. A common
application of the energy–time uncertainty is in calculating the lifetimes of very
short-lived subatomic particles whose lifetimes cannot be measured directly, but
whose uncertainty in energy or mass can be measured. (See Problem 26.)

A Different View of the Uncertainty Principle

Although we have indicated that �px �x � �/2 arises from the theory of forming
pulses or wave groups, there is a more physical way to view the origin of the un-

�E �t �
�

2

�� �t � 1
2

eik0x

�px �x �
�

2

�x �k � 1
2

�x �k � 1
2
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Energy–time uncertainty

principle

T
his photograph of Werner
Heisenberg was taken around
1924. Heisenberg obtained his

Ph.D. in 1923 at the University of Mu-
nich where he studied under Arnold
Sommerfeld and became an enthusi-
astic mountain climber and skier.
Later, he worked as an assistant to
Max Born at Göttingen and Niels
Bohr in Copenhagen. While physi-
cists such as de Broglie and
Schrödinger tried to develop visualiz-
able models of the atom, Heisenberg,
with the help of Born and Pascual Jor-
dan, developed an abstract mathe-
matical model called matrix mechan-
ics to explain the wavelengths of
spectral lines. The more successful
wave mechanics of Schrödinger an-

nounced a few months later was
shown to be equivalent to Heisen-
berg’s approach. Heisenberg made
many other significant contributions
to physics, including his famous un-
certainty principle, for which he re-
ceived the Nobel prize in 1932, the
prediction of two forms of molecular
hydrogen, and theoretical models of
the nucleus. During World War II he
was director of the Max Planck Insti-
tute at Berlin where he was in charge
of German research on atomic
weapons. Following the war, he
moved to West Germany and became
director of the Max Planck Institute
for Physics at Göttingen.WERNER HEISENBERG

(1901–1976)
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certainty principle. We consider certain idealized experiments (called thought ex-
periments) and show that it is impossible to carry out an experiment that allows
the position and momentum of a particle to be simultaneously measured with an
accuracy that violates the uncertainty principle. The most famous thought experi-
ment along these lines was introduced by Heisenberg himself and involves the
measurement of an electron’s position by means of a microscope (Fig. 5.26),
which forms an image of the electron on a screen or the retina of the eye.

Because light can scatter from and perturb the electron, let us minimize
this effect by considering the scattering of only a single light quantum from an
electron initially at rest (Fig. 5.27). To be collected by the lens, the
photon must be scattered through an angle ranging from �� to ��, which
consequently imparts to the electron an x momentum value ranging from
�(h sin �)/� to �(h sin�)/�. Thus the uncertainty in the electron’s momen-
tum is �px � (2h sin�)/�. After passing through the lens, the photon lands
somewhere on the screen, but the image and consequently the position of the
electron is “fuzzy” because the photon is diffracted on passing through the
lens aperture. According to physical optics, the resolution of a microscope or
the uncertainty in the image of the electron, �x, is given by �x � �/(2 sin �).
Here 2� is the angle subtended by the objective lens, as shown in Figure 5.27.5

Multiplying the expressions for �px and �x, we find for the electron
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Figure 5.27 The Heisenberg microscope.

Figure 5.26 A thought experi-
ment for viewing an electron
with a powerful microscope.
(a) The electron is shown be-
fore colliding with the photon.
(b) The electron recoils (is dis-
turbed) as a result of the colli-
sion with the photon.

5The resolving power of the microscope is treated clearly in F. A. Jenkins and H. E. White, Funda-
mentals of Optics, 4th ed., New York, McGraw-Hill Book Co., 1976, pp. 332–334.

Incident
photon

Before
collision

Electron

(a)

Scattered
photon

After
collision

Recoiling
electron

(b)

x

y
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Scattered
 photon
p  = h/λ

λ

e – initially
at rest

Incident photon
p0  = h/ 0

∆x
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θ
α

Screen
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in agreement with the uncertainty relation. Note also that this principle is in-
escapable and relentless! If �x is reduced by increasing � or the lens size, there
is an equivalent increase in the uncertainty of the electron’s momentum.

Examination of this simple experiment shows several key physical proper-
ties that lead to the uncertainty principle:

• The indivisible nature of light particles or quanta (nothing less than a sin-
gle photon can be used!).

• The wave property of light as shown in diffraction.
• The impossibility of predicting or measuring the precise classical path of

a single scattered photon and hence of knowing the precise momentum
transferred to the electron.6

We conclude this section with some examples of the types of calculations
that can be done with the uncertainty principle. In the spirit of Fermi or
Heisenberg, these “back-of-the-envelope calculations” are surprising for their
simplicity and essential description of quantum systems of which the details
are unknown.

�px�x � � 2h

�
  sin ��� �

2 sin � � � h
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6Attempts to measure the photon’s position by scattering electrons from it in a Compton process
only serve to make its path to the lens more uncertain.

(b) If the ball were to suddenly move along the y axis
perpendicular to its well-defined classical trajectory along
x, how far would it move in 1 s? Assume that the ball
moves in the y direction with the top speed in the spread
�vy produced by the uncertainty principle.

Solution It is important to realize that uncertainty rela-
tions hold in the y and z directions as well as in the x

direction. This means that �px �x � �/2, �py �y � �/2,
and �pz �z � �/2 and because all the position uncertain-
ties are equal, all of the velocity spreads are equal. Conse-
quently, we have �vy � 3.5 	 10�35 m/s and the ball
moves 3.5 	 10�35 m in the y direction in 1 s. This dis-
tance is again an immeasurably small quantity, being
10�20 times the size of a nucleus!

Exercise 4 How long would it take the ball to
move 50 cm in the y direction? (The age of the
universe is thought to be 15 billion years, give or take a
few billion).

EXAMPLE 5.8 The Uncertainty Principle
Changes Nothing for
Macroscopic Objects

(a) Show that the spread of velocities caused by the un-
certainty principle does not have measurable conse-
quences for macroscopic objects (objects that are large
compared with atoms) by considering a 100-g racquetball
confined to a room 15 m on a side. Assume the ball is
moving at 2.0 m/s along the x axis.

Solution

Thus the minimum spread in velocity is given by

This gives a relative uncertainty of

which is certainly not measurable.

�vx

v x
�

3.5 	 10�35

2.0
� 1.8 	 10�35

�vx �
�px

m
�

3.05 	 10�36 kg
m/s

0.100 kg
� 3.5 	 10�35 m/s

�px �
�

2 �x
�

1.05 	 10�34 J
s

2 	 15 m
� 3.5 	 10�36 kg
m/s
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a particular excited state. (a) If � � 1.0 	 10�8 s (a
typical value), use the uncertainty principle to compute
the line width �f of light emitted by the decay of this
excited state.

Solution We use �E �t � �/2, where �E is the uncer-
tainty in energy of the excited state, and �t � 1.0 	 10�8 s
is the average time available to measure the excited state.
Thus,

�E � ��2 �t � ��(2.0 	 10�8 s)

Since �E is also the uncertainty in energy of a photon
emitted when the excited state decays, and �E � h�f for
a photon,

h �f � ��(2.0 	 10�8 s)

or

(b) If the wavelength of the spectral line involved in this
process is 500 nm, find the fractional broadening �f/f .

Solution First, we find the center frequency of this line
as follows:

Hence,

This narrow natural line width can be seen with a sen-
sitive interferometer. Usually, however, temperature
and pressure effects overshadow the natural line width
and broaden the line through mechanisms associated
with the Doppler effect and atomic collisions.

Exercise 5 Using the nonrelativistic Doppler formula,
calculate the Doppler broadening of a 500-nm line emit-
ted by a hydrogen atom at 1000 K. Do this by considering
the atom to be moving either directly toward or away
from an observer with an energy of kBT.

Answer 0.0083 nm, or 0.083 Å.

3
2

�f

f0
�

8.0 	 106 Hz

6.0 	 1014 Hz
� 1.3 	 10�8

f0 �
c

�
�

3.0 	 108 m/s

500 	 10�9 m
� 6.0 	 1014 Hz

�f �
1

4� 	 10�8 s
� 8.0 	 106 Hz

EXAMPLE 5.9 Do Electrons Exist Within
the Nucleus?

Estimate the kinetic energy of an electron confined
within a nucleus of size 1.0 	 10�14 m by using the un-
certainty principle.

Solution Taking �x to be the half-width of the confine-

ment length in the equation , we have

or

This means that measurements of the component of
momentum of electrons trapped inside a nucleus
would range from less than �20 MeV/c to greater than
�20 MeV/c and that some electrons would have momen-
tum at least as large as 20 MeV/c . Because this appears to
be a large momentum, to be safe we calculate the elec-
tron’s energy relativistically.

E2 � p2c2 � (mec2)2

� (20 MeV/c)2c2 � (0.511 MeV)2

� 400(MeV)2

or

E � 20 MeV

Finally, the kinetic energy of an intranuclear electron is

K � E � mec2 � 19.5 MeV

Since electrons emitted in radioactive decay of the nucleus
(beta decay) have energies much less than 19.5 MeV
(about 1 MeV or less) and it is known that no other mech-
anism could carry off an intranuclear electron’s energy
during the decay process, we conclude that electrons ob-
served in beta decay do not come from within the nucleus
but are actually created at the instant of decay.

EXAMPLE 5.10 The Width of Spectral Lines

Although an excited atom can radiate at any time from
t � 0 to t � �, the average time after excitation at which
a group of atoms radiates is called the lifetime, �, of

�px � 2.0 	 107 eV

c

�px �
6.58 	 10�16 eV
s

1.0 	 10�14 m
	

3.00 	 108 m/s

c

�px �
�

2 �x

5.6 IF ELECTRONS ARE WAVES, WHAT’S WAVING?

Although we have discussed in some detail the notion of de Broglie matter waves,
we have not discussed the precise nature of the field �(x, y, z , t) or wavefunc-
tion that represents the matter waves. We have delayed this discussion because �
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(Greek letter psi) is rather abstract. � is definitely not a measurable disturbance
requiring a medium for propagation like a water wave or a sound wave. Instead,
the stuff that is waving requires no medium. Furthermore, � is in general repre-
sented by a complex number and is used to calculate the probability of finding
the particle at a given time in a small volume of space. If any of this seems confus-
ing, you should not lose heart, as the nature of the wavefunction has been con-
fusing people since its invention. It even confused its inventor, Erwin
Schrödinger, who incorrectly interpreted �*� as the electric charge density.7

The great philosopher of the quantum theory, Bohr, immediately objected to this
interpretation. Subsequently, Max Born offered the currently accepted statistical
view of �*� in late 1926. The confused state of affairs surrounding � at that
time was nicely described in a poem by Walter Huckel:

Erwin with his psi can do
Calculations quite a few.
But one thing has not been seen
Just what does psi really mean?
(English translation by Felix Bloch)

The currently held view is that a particle is described by a function
�(x, y, z, t) called the wavefunction. The quantity �*� � �� �2 represents the
probability per unit volume of finding the particle at a time t in a small volume
of space centered on (x, y, z). We will treat methods of finding � in much
more detail in Chapter 6, but for now all we require is the idea that the
probability of finding a particle is directly proportional to �� �2.

5.7 THE WAVE–PARTICLE DUALITY

The Description of Electron Diffraction in Terms of �

In this chapter and previous chapters we have seen evidence for both the wave
properties and the particle properties of electrons. Historically, the particle prop-
erties were first known and connected with a definite mass, a discrete charge,
and detection or localization of the electron in a small region of space. Following
these discoveries came the confirmation of the wave nature of electrons in scat-
tering at low energy from metal crystals. In view of these results and because of
the everyday experience of seeing the world in terms of either grains of sand or dif-
fuse water waves, it is no wonder that we are tempted to simplify the issue and
ask, “Well, is the electron a wave or a particle?” The answer is that electrons are
very delicate and rather plastic—they behave like either particles or
waves, depending on the kind of experiment performed on them. In any
case, it is impossible to measure both the wave and particle properties
simultaneously.8 The view of Bohr was expressed in an idea known as comple-
mentarity. As different as they are, both wave and particle views are needed and
they complement each other to fully describe the electron. The view of
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7�* represents the complex conjugate of �. Thus, if � � a � ib, then �* � a � ib. In exponential
form, if � � Ae i�, then �* � Ae�i�. Note that �*� � ���2; a, b, A, and � are all real quantities.

8Many feel that the elder Bragg’s remark, originally made about light, is a more satisfying answer:
Electrons behave like waves on Mondays, Wednesdays, and Fridays, like particles on Tuesdays,
Thursdays, and Saturdays, and like nothing at all on Sundays.

Complementarity
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Feynman9 was that both electrons and photons behave in their own inimitable
way. This is like nothing we have seen before, because we do not live at the very
tiny scale of atoms, electrons, and photons.

Perhaps the best way to crystallize our ideas about the wave – particle du-
ality is to consider a “simple” double-slit electron diffraction experiment.
This experiment highlights much of the mystery of the wave – particle para-
dox, shows the impossibility of measuring simultaneously both wave and par-
ticle properties, and illustrates the use of the wavefunction, �, in determin-
ing interference effects. A schematic of the experiment with monoenergetic
(single-wavelength) electrons is shown in Figure 5.28. A parallel beam of
electrons falls on a double slit, which has individual openings much smaller
than D so that single-slit diffraction effects are negligible. At a distance from
the slits much greater than D is an electron detector capable of detecting
individual electrons. It is important to note that the detector always regis-
ters discrete particles localized in space and time. In a real experiment this
can be achieved if the electron source is weak enough (see Fig. 5.29): In all
cases if the detector collects electrons at different positions for a long
enough time, a typical wave interference pattern for the counts per
minute or probability of arrival of electrons is found (see Fig. 5.28). If
one imagines a single electron to produce in-phase “wavelets” at the slits,
standard wave theory can be used to find the angular separation, �, of the

180 CHAPTER 5 MATTER WAVES

9R. Feynman, The Character of Physical Law, Cambridge, MA, MIT Press, 1982.

D

A

B

θ

Electrons

θ

x

y

Electron
detector

counts
min

Figure 5.28 Electron diffraction. D is much greater than the individual slit widths
and much less than the distance between the slits and the detector.
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central probability maximum from its neighboring minimum. The mini-
mum occurs when the path length difference between A and B in Figure
5.28 is half a wavelength, or

D sin � � �/2

As the electron’s wavelength is given by � � h/px, we see that

(5.35)

for small �. Thus we can see that the dual nature of the electron is clearly
shown in this experiment: although the electrons are detected as particles
at a localized spot at some instant of time, the probability of arrival
at that spot is determined by finding the intensity of two interfering
matter waves.

But there is more. What happens if one slit is covered during the experi-
ment? In this case one obtains a symmetric curve peaked around the center
of the open slit, much like the pattern formed by bullets shot through a
hole in armor plate. Plots of the counts per minute or probability of arrival
of electrons with the lower or upper slit closed are shown in Figure 5.30.
These are expressed as the appropriate square of the absolute value of some
wavefunction, ��1 �2 � �1*�1 or ��2 �2 � �2*�2, where �1 and �2 repre-
sent the cases of the electron passing through slit 1 and slit 2, respectively.
If an experiment is now performed with slit 1 open and slit 2 blocked for
time T and then slit 1 blocked and slit 2 open for time T, the accumulated
pattern of counts per minute is completely different from the case with

sin� � � �
h

2px D
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both slits open. Note in Figure 5.31 that there is no longer a maximum
probability of arrival of an electron at � � 0. In fact, the interference
pattern has been lost and the accumulated result is simply the sum of
the individual results. The results shown by the black curves in Figure
5.31 are easier to understand and more reasonable than the interference ef-
fects seen with both slits open (blue curve). When only one slit is open at a
time, we know the electron has the same localizability and indivisibility at
the slits as we measure at the detector, because the electron clearly goes
through slit 1 or slit 2. Thus, the total must be analyzed as the sum of those
electrons that come through slit 1, ��1 �2, and those that come through slit
2, ��2 �2. When both slits are open, it is tempting to assume that the electron
goes through either slit 1 or slit 2 and that the counts per minute are again
given by ��1 �2 � ��2 �2. We know, however, that the experimental results
contradict this. Thus, our assumption that the electron is localized and goes
through only one slit when both slits are open must be wrong (a painful
conclusion!). Somehow the electron must be simultaneously present at both
slits in order to exhibit interference.

To find the probability of detecting the electron at a particular point on the
screen with both slits open, we may say that the electron is in a superposition
state given by

� � �1 � �2

182 CHAPTER 5 MATTER WAVES

2

1

2

1

counts/min

  22Ψ

  12Ψ

Figure 5.30 The probability of finding electrons at the screen with either the lower
or upper slit closed.
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Thus, the probability of detecting the electron at the screen is equal to the
quantity ��1 � �2 �2 and not ��1 �2 � ��2 �2. Because matter waves that start
out in phase at the slits in general travel different distances to the screen
(see Fig. 5.28), �1 and �2 will possess a relative phase difference � at the
screen. Using a phasor diagram (Fig. 5.32) to find ��1 � �2 �2 immediately
yields

�� �2 � ��1 � �2 �2 � ��1 �2 � ��2 �2 � 2��1 ���2 � cos�

Note that the term 2 ��1 ���2 � cos � is an interference term that predicts the
interference pattern actually observed in this case. For ease of comparison, a
summary of the results found in both cases is given in Table 5.1.
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D

2

1

  22

  1
2

Individual
counts/min

Accumulated
counts/min

  1
2 +   22Ψ

Ψ

Ψ Ψ

Figure 5.31 Accumulated results from the two-slit electron diffraction experiment
with each slit closed half the time. For comparison, the results with both slits open are
shown in color.

Ψ1 + Ψ2

Ψ1

Ψ2

φ

Figure 5.32 Phasor diagram to represent the addition of two complex wavefunctions,
�1 and �2, differing in phase by �.
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A Thought Experiment: Measuring Through
Which Slit the Electron Passes

Another way to view the electron double-slit experiment is to say that the elec-
tron passes through the upper or lower slit only when one measures the elec-
tron to do so. Once one measures unambiguously which slit the electron
passes through (yes, you guessed it . . . here comes the uncertainty principle
again . . .), the act of measurement disturbs the electron’s path enough to
destroy the delicate interference pattern.

Let us look again at our two-slit experiment to see in detail how the inter-
ference pattern is destroyed.10 To determine which slit the electron goes
through, imagine that a group of particles is placed right behind the slits, as
shown in Figure 5.33. If we use the recoil of a small particle to determine

184 CHAPTER 5 MATTER WAVES

10Although we shall use the uncertainty principle in its standard form, it is worth noting that an al-
ternative statement of the uncertainty principle involves this pivotal double-slit experiment: It is
impossible to design any device to determine through which slit the electron passes that will not at the same
time disturb the electron and destroy the interference pattern.

Figure 5.33 A thought experiment to determine through which slit the electron passes.

D

Detecting
particles

Scattered
electron

Unscattered
electron

px

py

θ

∆py

∆py

Screen

Table 5.1

Case Wavefunction Counts/Minute at Screen

Electron is measured to pass �1 or �2 ��1 �2 � ��2 �2

through slit 1 or slit 2
No measurements made on �1 � �2 ��1 �2 � ��2 �2 � 2��1 ���2 � cos �

electron at slits
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which slit the electron goes through, we must have the uncertainty in the de-
tecting particle’s position, �y � D. Also, during the collision the detecting
particle suffers a change in momentum, �py, equal and opposite to the change
in momentum experienced by the electron, as shown in Figure 5.33. An
undeviated electron landing at the first minimum and producing an interference
pattern has

from Equation 5.35. Thus, we require that an electron scattered by a detecting
particle have

or

if the interference pattern is not to be distorted. Because the change in mo-
mentum of the scattered electron is equal to the change in momentum of
the detecting particle, �py � h/ 2D also applies to the detecting particle.
Thus, we have for the detecting particle

or

This is a clear violation of the uncertainty principle. Hence we see that
the small uncertainties needed, both to observe interference and to
know which slit the electron goes through, are impossible, because they
violate the uncertainty principle. If �y is small enough to determine which
slit the electron goes through, �py is so large that electrons heading for the
first minimum are scattered into adjacent maxima and the interference
pattern is destroyed.

Exercise 6 In a real experiment it is likely that some electrons would miss the detect-
ing particles. Thus, we would really have two categories of electrons arriving at the de-
tector: those measured to pass through a definite slit and those not observed, or just
missed, at the slits. In this case what kind of pattern of counts per minute would be ac-
cumulated by the detector?

Answer A mixture of an interference pattern ��1 � �2 �2 (those not measured) and
��1 �2 � ��2 �2 (those measured) would result.

�py �y �
h

2

�py �y �
h

2D

 D

�py �
h

2D

�py

px
� � �

h

2pxD

tan� � � �
py

px
�

h

2pxD
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