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Chapter Outline

At the beginning of the 20th century, following the lead of Newton and
Maxwell, physicists might have rewritten the biblical story of creation as follows:

In the beginning He created the heavens and the earth—

and He said, “Let there be light”—

Actually, in addition to the twin pillars of mechanics and electromagnetism
erected by the giants Newton and Maxwell, there was a third sturdy support
for physics in 1900—thermodynamics and statistical mechanics. Classical
thermodynamics was the work of many men (Carnot, Mayer, Helmholtz,
Clausius, Lord Kelvin). It is especially notable because it starts with two simple
propositions and gives solid and conclusive results independent of detailed
physical mechanisms. Statistical mechanics, founded by Maxwell, Clausius,

� B �dA � 0  � B �ds � �0I � �0�0
d�E
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Boltzmann,1 and Gibbs, uses the methods of probability theory to calculate
averages and fluctuations from the average for systems containing many parti-
cles or modes of vibration. It is interesting that quantum physics started not
with a breakdown of Maxwell’s or Newton’s laws applied to the atom, but with a
problem of classical statistical mechanics—that of calculating the intensity of
radiation at a given wavelength from a heated cavity. The desperate solution to
this radiation problem was found by a thoroughly classical thermodynamicist,
Max Planck, in 1900. Indeed, it is significant that both Planck and Einstein
returned again and again to the simple and general foundation of thermody-
namics and statistical mechanics as the only certain bases for the new quantum
theory. Although we shall not follow the original thermodynamic arguments
completely, we shall see in this chapter how Planck arrived at the correct spec-
tral distribution for cavity radiation by allowing only certain energies for the
radiation-emitting oscillators in the cavity walls. We shall also see how Einstein
extended this quantization of energy to light itself, thereby brilliantly explain-
ing the photoelectric effect. We conclude our brief history of the quantum the-
ory of light with a discussion of the scattering of light by electrons (Compton
effect), which showed conclusively that the light quantum carried momentum
as well as energy. Finally, we describe the pull of gravity on light in Section 3.7.

3.1 HERTZ’S EXPERIMENTS—LIGHT AS AN
ELECTROMAGNETIC WAVE

It is ironic that the same experimentalist who so carefully confirmed that the
“newfangled” waves of Maxwell actually existed and possessed the same prop-
erties as light also undermined the electromagnetic wave theory as the com-
plete explanation of light. To understand this irony, let us briefly review the
theory of electromagnetism developed by the great Scottish physicist James
Clerk Maxwell between 1865 and 1873.

Maxwell was primarily interested in the effects of electric current oscillations
in wires. According to his theory, an alternating current would set up fluctuating
electric and magnetic fields in the region surrounding the original disturbance.
Moreover, these waves were predicted to have a frequency equal to the frequency
of the current oscillations. In addition, and most importantly, Maxwell’s theory pre-
dicted that the radiated waves would behave in every way like light: electromagnetic
waves would be reflected by metal mirrors, would be refracted by dielectrics like
glass, would exhibit polarization and interference, and would travel outward
from the wire through a vacuum with a speed of 3.0 	 108 m/s. Naturally this led
to the unifying and simplifying postulate that light was also a type of Maxwell
wave or electromagnetic disturbance, created by extremely high frequency elec-
tric oscillators in matter. At the end of the 19th century the precise nature of
these charged submicroscopic oscillators was unknown (Planck called them res-
onators), but physicists assumed that somehow they were able to emit light waves
whose frequency was equal to the oscillator’s frequency of motion.

Even at this time, however, it was apparent that this model of light emis-
sion was incapable of direct experimental verification, because the highest
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1On whose tombstone is written S � kB log W, a basic formula of statistical mechanics attributed
to Boltzmann.
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electrical frequencies then attainable were about 109 Hz and visible light was
known to possess a frequency a million times higher. But Heinrich Hertz (Fig.
3.1) did the next best thing. In a series of brilliant and exhaustive experi-
ments, he showed that Maxwell’s theory was correct and that an oscillating
electric current does indeed radiate electromagnetic waves that possess every
characteristic of light except the same wavelength as light. Using a simple
spark gap oscillator consisting of two short stubs terminated in small metal
spheres separated by an air gap of about half an inch, he applied pulses
of high voltage, which caused a spark to jump the gap and produce a high-
frequency electric oscillation of about 5 	 108 Hz. This oscillation, or ring-
ing, occurs while the air gap remains conducting, and charge surges back and
forth between the spheres until electrical equilibrium is established. Using a
simple loop antenna with a small spark gap as the receiver, Hertz very quickly
succeeded in detecting the radiation from his spark gap oscillator, even at dis-
tances of several hundred meters. Moreover, he found the detected radiation
to have a wavelength of about 60 cm, corresponding to the oscillator fre-
quency of 5 	 108 Hz. (Recall that c � 
f, where 
 is the wavelength and f is
the frequency.)

In an exhaustive tour de force, Hertz next proceeded to show that these
electromagnetic waves could be reflected, refracted, focused, polarized,
and made to interfere—in short, he convinced physicists of the period that
Hertzian waves and light waves were one and the same. The classical model for
light emission was an idea whose time had come. It spread like wildfire. The
idea that light was an electromagnetic wave radiated by oscillating submicro-
scopic electric charges (now known to be atomic electrons) was applied in
rapid succession to the transmission of light through solids, to reflection from
metal surfaces, and to the newly discovered Zeeman effect. In 1896, Pieter
Zeeman, a Dutch physicist, discovered that a strong magnetic field changes
the frequency of the light emitted by a glowing gas. In an impressive victory
for Maxwell, it was found that Maxwell’s equations correctly predicted (in
most cases) the change of vibration of the electric oscillators and hence, the
change in frequency of the light emitted. (See Problem 1.) Maxwell, with
Hertz behind the throne, reigned supreme, for he had united the formerly in-
dependent kingdoms of electricity, magnetism, and light! (See Fig. 3.2.)

A terse remark made by Hertz ends our discussion of his confirmation of
the electromagnetic wave nature of light. In describing his spark gap transmit-
ter, he emphasizes that “it is essential that the pole surfaces of the spark gap
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Figure 3.1 Heinrich Hertz
(1857–1894), an extraordinar-
ily gifted German experimental-
ist. (©Bettmann/Corbis)
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Figure 3.2 A light or radio wave far from the source according to Maxwell and Hertz.
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should be frequently repolished” to ensure reliable operation of the spark.2

Apparently this result was initially quite mysterious to Hertz. In an effort to re-
solve the mystery, he later investigated this side effect and concluded that it
was the ultraviolet light from the initial spark acting on a clean metal surface
that caused current to flow more freely between the poles of the spark gap. In
the process of verifying the electromagnetic wave theory of light, Hertz had
discovered the photoelectric effect, a phenomenon that would undermine the
priority of the wave theory of light and establish the particle theory of light on
an equal footing.

3.2 BLACKBODY RADIATION

The tremendous success of Maxwell’s theory of light emission immediately led
to attempts to apply it to a long-standing puzzle about radiation—the so-
called “blackbody” problem. The problem is to predict the radiation intensity
at a given wavelength emitted by a hot glowing solid at a specific temperature.
Instead of launching immediately into Planck’s solution of this problem, let
us develop a feeling for its importance to classical physics by a quick review
of its history.

Thomas Wedgwood, Charles Darwin’s relative and a renowned maker of
china, seems to have been the first to note the universal character of all
heated objects. In 1792, he observed that all the objects in his ovens, regard-
less of their chemical nature, size, or shape, became red at the same tempera-
ture. This crude observation was sharpened considerably by the advancing
state of spectroscopy, so that by the mid-1800s it was known that glowing solids
emit continuous spectra rather than the bands or lines emitted by heated
gases. (See Fig. 3.3.) In 1859, Gustav Kirchhoff proved a theorem as important
as his circuit loop theorem when he showed by arguments based on thermody-
namics that for any body in thermal equilibrium with radiation3 the emitted
power is proportional to the power absorbed. More specifically,

ef � J( f, T )Af (3.1)

where ef is the power emitted per unit area per unit frequency by a particular
heated object, Af is the absorption power (fraction of the incident power ab-
sorbed per unit area per unit frequency by the heated object), and J( f, T ) is a
universal function (the same for all bodies) that depends only on f, the light
frequency, and T, the absolute temperature of the body. A blackbody is defined
as an object that absorbs all the electromagnetic radiation falling on it and
consequently appears black. It has Af � 1 for all frequencies and so Kirch-
hoff’s theorem for a blackbody becomes

ef � J( f, T ) (3.2)
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2H. Hertz, Ann. Physik (Leipzig), 33:983, 1887.
3An example of a body in equilibrium with radiation would be an oven with closed walls at a fixed
temperature and the radiation within the oven cavity. To say that radiation is in thermal equilib-
rium with the oven walls means that the radiation has exchanged energy with the walls many
times and is homogeneous, isotropic, and unpolarized. In fact, thermal equilibrium of radiation
within a cavity can be considered to be quite similar to the thermal equilibrium of a fluid within a
container held at constant temperature—both will cause a thermometer in the center of the cav-
ity to achieve a final stationary temperature equal to that of the container.
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Figure 3.3 Emission from a
glowing solid. Note that the
amount of radiation emitted
(the area under the curve) in-
creases rapidly with increasing
temperature.
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Equation 3.2 shows that the power emitted per unit area per unit frequency by
a blackbody depends only on temperature and light frequency and not on
the physical and chemical makeup of the blackbody, in agreement with
Wedgwood’s early observation.

Because absorption and emission are connected by Kirchhoff’s theorem, we
see that a blackbody or perfect absorber is also an ideal radiator. In practice, a
small opening in any heated cavity, such as a port in an oven, behaves like a
blackbody because such an opening traps all incident radiation (Fig. 3.4). If
the direction of the radiation is reversed in Figure 3.4, the light emitted by a
small opening is in thermal equilibrium with the walls, because it has been
absorbed and re-emitted many times.

The next important development in the quest to understand the universal
character of the radiation emitted by glowing solids came from the Austrian
physicist Josef Stefan (1835–1893) in 1879. He found experimentally that the
total power per unit area emitted at all frequencies by a hot solid, e total, was
proportional to the fourth power of its absolute temperature. Therefore,
Stefan’s law may be written as

(3.3)

where e total is the power per unit area emitted at the surface of the blackbody
at all frequencies, ef is the power per unit area per unit frequency emitted by
the blackbody, T is the absolute temperature of the body, and � is the
Stefan–Boltzmann constant, given by � � 5.67 	 10�8 W � m�2 � K�4. A body
that is not an ideal radiator will obey the same general law but with a coeffi-
cient, a, less than 1:

e total � a�T 4 (3.4)

Only 5 years later another impressive confirmation of Maxwell’s electromag-
netic theory of light occurred when Boltzmann derived Stefan’s law from a
combination of thermodynamics and Maxwell’s equations.

e total � ��

0

ef df � �T 4
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Figure 3.4 The opening to the
cavity inside a body is a good
approximation of a blackbody.
Light entering the small opening
strikes the far wall, where some
of it is absorbed but some is re-
flected at a random angle. The
light continues to be reflected,
and at each reflection a portion
of the light is absorbed by the
cavity walls. After many reflec-
tions essentially all of the inci-
dent energy is absorbed.

Stefan’s law

e total(R s). This comes from the conservation of energy:

e total(R s) � 4R s
2 � e total(R ) � 4R 2

or

Using Equation 3.5, we have

or

� 5800 K

T � � (1400 W/m2)(1.5 	 1011 m)2

(5.6 	 10�8 W/m2 � K4)(7.0 	 108 m)2 �
1/4

T � � e total(R) �R2

�R2
s

�
1/4

e total(R s) � e total(R) �
R2

R2
s

EXAMPLE 3.1 Stefan’s Law Applied to the Sun

Estimate the surface temperature of the Sun from
the following information. The Sun’s radius is given
by R s � 7.0 	 108 m. The average Earth–Sun distance
is R � 1.5 	 1011 m. The power per unit area (at all fre-
quencies) from the Sun is measured at the Earth to be
1400 W/m2. Assume that the Sun is a blackbody.

Solution For a black body, we take a � 1, so Equation
3.4 gives

e total(R s) � �T 4 (3.5)

where the notation e total(R s) stands for the total power
per unit area at the surface of the Sun. Because the prob-
lem gives the total power per unit area at the Earth,
e total(R), we need the connection between e total(R) and
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As can be seen in Figure 3.3, the wavelength marking the maximum power
emission of a blackbody, 
max, shifts toward shorter wavelengths as the black-
body gets hotter. This agrees with Wedgwood’s general observation that
objects in his kiln progressed from dull red to orange to white in color as
the temperature was raised. This simple effect of 
max � T �1 was not
definitely established, however, until about 20 years after Kirchhoff’s
seminal paper had started the search to find the form of the universal
function J( f, T ). In 1893, Wilhelm Wien proposed a general form for
the blackbody distribution law J( f, T ) that gave the correct experimental
behavior of 
max with temperature. This law is called Wien’s displacement law
and may be written


maxT � 2.898 	 10�3 m �K (3.6)

where 
max is the wavelength in meters corresponding to the blackbody’s
maximum intensity and T is the absolute temperature of the surface of
the object emitting the radiation. Assuming that the peak sensitivity of
the human eye (which occurs at about 500 nm — blue-green light) coin-
cides with 
max for the Sun (a blackbody), we can check the consistency
of Wien’s displacement law with Stefan’s law by recalculating the Sun’s
surface temperature:

Thus we have good agreement between measurements made at all wave-
lengths (Example 3.1) and at the maximum-intensity wavelength.

Exercise 1 How convenient that the Sun’s emission peak is at the same wavelength as
our eyes’ sensitivity peak! Can you account for this?

So far, the power radiated per unit area per unit frequency by the black-
body, J( f, T ) has been discussed. However, it is more convenient to consider
the spectral energy density, or energy per unit volume per unit frequency of the radi-
ation within the blackbody cavity, u( f, T ). For light in equilibrium with the walls,
the power emitted per square centimeter of opening is simply proportional to
the energy density of the light in the cavity. Because the cavity radiation is
isotropic and unpolarized, one can average over direction to show that the
constant of proportionality between J( f, T ) and u( f, T ) is c/4, where c is the
speed of light. Therefore,

J( f, T ) � u( f, T )c/4 (3.7)

An important guess as to the form of the universal function u( f, T ) was
made in 1893 by Wien and had the form

u( f, T )�Af 3e��f/T (3.8)

where A and � are constants. This result was known as Wien’s exponential law;
it resembles and was loosely based on Maxwell’s velocity distribution for gas
molecules. Within a year the great German spectroscopist Friedrich Paschen

T �
2.898 	 10�3 m�K

500 	 10�9 m
� 5800 K
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Spectral energy density of a

blackbody
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had confirmed Wien’s guess by working in the then difficult infrared range of
1 to 4 �m and at temperatures of 400 to 1600 K.4

As can be seen in Figure 3.5, Paschen had made most of his measurements
in the maximum energy region of a body heated to 1500 K and had found
good agreement with Wien’s exponential law. In 1900, however, Lummer and
Pringsheim extended the measurements to 18 �m, and Rubens and Kurlbaum
went even farther—to 60 �m. Both teams concluded that Wien’s law failed
in this region (see Fig. 3.5). The experimental setup used by Rubens and
Kurlbaum is shown in Figure 3.6. It is interesting to note that these historic
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4We should point out the great difficulty in making blackbody radiation measurements and the
singular advances made by German spectroscopists in the crucial areas of blackbody sources, sen-
sitive detectors, and techniques for operating far into the infrared region. In fact, it is dubious
whether Planck would have found the correct blackbody law as quickly without his close associa-
tion with the experimentalists at the Physikalisch Technische Reichsanstalt of Berlin (a sort of
German National Bureau of Standards)—Otto Lummer, Ernst Pringsheim, Heinrich Rubens,
and Ferdinand Kurlbaum.
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Figure 3.5 Discrepancy between Wien’s law and experimental data for a blackbody
at 1500 K.

P1

P3
P4

D2

D1
K

E
S

T
MP2

Figure 3.6 Apparatus for measuring blackbody radiation at a single wavelength in
the far infrared region. The experimental technique that disproved Wien’s law and
was so crucial to the discovery of the quantum theory was the method of residual
rays (Restrahlen). In this technique, one isolates a narrow band of far infrared radia-
tion by causing white light to undergo multiple reflections from alkalide halide crys-
tals (P1 –P4). Because each alkali halide has a maximum reflection at a characteristic
wavelength, quite pure bands of far infrared radiation may be obtained with
repeated reflections. These pure bands can then be directed onto a thermopile (T )
to measure intensity. E is a thermocouple used to measure the temperature of the
blackbody oven, K.
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experiments involved the measurement of blackbody radiation intensity at
a fixed wavelength and variable temperature. Typical results measured at

 � 51.2 �m and over the temperature range of �200� to �1500�C are shown
in Figure 3.7, from the paper by Rubens and Kurlbaum.

Enter Planck

On a Sunday evening early in October of 1900, Max Planck discovered the fa-
mous blackbody formula, which truly ushered in the quantum theory. Planck’s
proximity to the Reichsanstalt experimentalists was extremely important for
his discovery—earlier in the day he had heard from Rubens that his latest

72 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

Figure 3.7 Comparison of theoretical and experimental blackbody emission curves at
51.2 �m and over the temperature range of �188� to 1500�C. The title of this modified
figure is “Residual Rays from Rocksalt.” Berechnet nach means “calculated according to,”
and beobachtet means “observed.” The vertical axis is emission intensity in arbitrary
units. (From H. Rubens and S. Kurlbaum, Ann. Physik, 4:649, 1901.)
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Fig III. Reststrahlen von Steinsalz.
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measurements showed that u( f, T ), the spectral energy density, was propor-
tional to T for long wavelengths or low frequency. Planck knew that Wien’s law
agreed well with the data at high frequency and indeed had been working
hard for several years to derive Wien’s exponential law from the principles of
statistical mechanics and Maxwell’s laws. Interpolating between the two limit-
ing forms (Wien’s exponential law and an energy density proportional to tem-
perature), he immediately found a general formula, which he sent to Rubens,
on a postcard, the same evening. His formula was5

(3.9)

where h is Planck’s constant � 6.626 	 10�34 J � s, and kB is Boltzmann’s
constant � 1.380 	 10�23 J/K. We can see that Equation 3.9 has the correct
limiting behavior at high and low frequencies with the help of a few approxi-
mations. At high frequencies, where hf/kBT �� 1,

so that

and we recover Wien’s exponential law, Equation 3.8. At low frequencies,
where hf/kBT �� 1,

and

This result shows that the spectral energy density is proportional to T in the
low-frequency or so-called classical region, as Rubens had found.

We should emphasize that Planck’s work entailed much more than clever
mathematical manipulation. For more than six years Planck (Fig. 3.8) labored to
find a rigorous derivation of the blackbody distribution curve. He was driven, in
his own words, by the fact that the emission problem “represents something
absolute, and since I had always regarded the search for the absolute as the lofti-
est goal of all scientific activity, I eagerly set to work.” This work was to occupy
most of his life as he strove to give his formula an ever deeper physical interpreta-
tion and to reconcile discrete quantum energies with classical theory.

u( f, T ) �
8hf 3

c3 � 1

ehf/kBT � 1 � �
8f 2

c3 kBT

1

ehf/kBT � 1
�

1

1 �
hf

kBT
� � � � � 1

�
kBT

hf

u( f, T ) �
8hf 3

c3 � 1

ehf/kBT � 1 � �
8hf 3

c3 e�hf/kBT

1

ehf/kBT � 1
� e�hf/kBT

u( f, T ) �
8hf 3

c3 � 1

ehf/kBT � 1 �
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5Planck originally published his formula as , where C1 � 8ch and

C2 � hc/kB. He then found best-fit values to the experimental data for C1 and C2 and evaluated
h � 6.55 	 10�34 J � s and kB � NA/R � 1.345 	 10�23 J/K. As R , the universal gas constant, was
fairly well known at the time, this technique also resulted in another method for finding NA,
Avogadro’s number.

u(
, T) �
C1


5 � 1

eC2/
T � 1 �

Figure 3.8 Max Planck (1858–
1947). The work leading to the
“lucky” blackbody radiation for-
mula was described by Planck in
his Nobel prize acceptance
speech (1920): “But even if the
radiation formula proved to be
perfectly correct, it would after
all have been only an interpola-
tion formula found by lucky
guess-work and thus, would have
left us rather unsatisfied. I there-
fore strived from the day of its
discovery, to give it a real physi-
cal interpretation and this led
me to consider the relations be-
tween entropy and probability
according to Boltzmann’s ideas.
After some weeks of the most in-
tense work of my life, light be-
gan to appear to me and unex-
pected views revealed themselves
in the distance.” (AIP Niels Bohr

Library, W. F. Meggers Collection)
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The Quantum of Energy

Planck’s original theoretical justification of Equation 3.9 is rather abstract
because it involves arguments based on entropy, statistical mechanics, and several
theorems proved earlier by Planck concerning matter and radiation in equilib-
rium.6 We shall give arguments that are easier to visualize physically yet attempt
to convey the spirit and revolutionary impact of Planck’s original work.

Planck was convinced that blackbody radiation was produced by vibrating
submicroscopic electric charges, which he called resonators. He assumed that
the walls of a glowing cavity were composed of literally billions of these
resonators (whose exact nature was unknown at the time), all vibrating at
different frequencies. Hence, according to Maxwell, each oscillator should
emit radiation with a frequency corresponding to its vibration frequency. Also
according to classical Maxwellian theory, an oscillator of frequency f
could have any value of energy and could change its amplitude continu-
ously as it radiated any fraction of its energy. This is where Planck made
his revolutionary proposal. To secure agreement with experiment, Planck
had to assume that the total energy of a resonator with mechanical
frequency f could only be an integral multiple of hf or

(3.10)

where h is a fundamental constant of quantum physics, h � 6.626 	 10�34 J � s,
known as Planck’s constant. In addition, he concluded that emission of radiation
of frequency f occurred when a resonator dropped to the next lowest energy
state. Thus the resonator can change its energy only by the difference �E according to

�E � hf (3.11)

That is, it cannot lose just any amount of its total energy, but only a finite amount, hf,
the so-called quantum of energy. Figure 3.9 shows the quantized energy levels and
allowed transitions proposed by Planck.

Eresonator � nhf  n � 1, 2, 3, � � �

74 CHAPTER 3 THE QUANTUM THEORY OF LIGHT
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E

Figure 3.9 Allowed energy levels according to Planck’s original hypothesis for an
oscillator with frequency f. Allowed transitions are indicated by the double-headed arrows.

6M. Planck, Ann. Physik, 4:553, 1901.
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3.2 BLACKBODY RADIATION 75

consequently the energy decrease continuously with time,
as shown in Figure 3.10a. Actually, all systems vibrating
with frequency f are quantized (according to Equation
3.10) and lose energy in discrete packets or quanta, hf.
This would lead to a decrease of the pendulum’s energy
in a stepwise manner, as shown in Figure 3.10b. We shall
show that there is no contradiction between quantum
theory and the observed behavior of laboratory pendu-
lums and springs.

An energy change of one quantum corresponds to

�E � hf

where the pendulum frequency f is

Thus,

�E � (6.63 	 10�34 J � s)(0.50 s�1)

� 3.3 	 10�34 J

� 2.1 	 10�15 eV

f �
1

2

g

�
� 0.50 Hz

EXAMPLE 3.2 A Quantum Oscillator versus a
Classical Oscillator

Consider the implications of Planck’s conjecture that all

oscillating systems of natural frequency f have discrete
allowed energies E � nhf and that the smallest change in
energy of the system is given by �E � hf.

(a) First compare an atomic oscillator sending out
540-nm light (green) to one sending out 700-nm light
(red) by calculating the minimum energy change of
each. For the green quantum,

Actually, the joule is much too large a unit of energy
for describing atomic processes; a more appropriate unit
of energy is the electron volt (eV). The electron volt
takes the charge on the electron as its unit of charge. By
definition, an electron accelerated through a potential
difference of 1 volt has an energy of 1 eV. An electron
volt may be converted to joules by noting that

E � V � q � 1 eV � (1.602 	 10�19 C)(1 J/C)

� 1.602 	 10�19 J

It is also useful to have expressions for h and hc in terms
of electron volts. These are

h � 4.136 	 10�15 eV � s

hc � 1.240 	 10�6 eV � m � 1240 eV � nm

Returning to our example, we see that the minimum
energy change of an atomic oscillator sending out green
light is

For the red quantum the minimum energy change is

Note that the minimum allowed amount or “quantum”
of energy is not uniform under all conditions as is the
quantum of charge—the quantum of energy is propor-
tional to the natural frequency of the oscillator. Note,
too, that the high frequency of atomic oscillators
produces a measurable quantum of energy of several
electron volts.

(b) Now consider a pendulum undergoing small oscil-
lations with length � � 1 m. According to classical the-
ory, if air friction is present, the amplitude of swing and

� 2.84 	 10�19 J � 1.77 eV

�Ered �
hc



�

(6.63 	 10�34 J�s)(3.00 	 108 m/s)

700 	 10�9 m

�Egreen �
3.68 	 10�19 J

1.602 	 10�19 J/eV
� 2.30 eV

� 3.68 	 10�9 J

�
(6.63 	 10�34 J�s)(3.00 	 108 m/s)

540 	 10�9 m

�Egreen � hf �
hc




Energy

E0

Time

(a)

E  =  E0e–α t

Energy

Time

(b)

hf

Figure 3.10 (Example 3.2) (a) Observed classical be-
havior of a pendulum. (b) Predicted quantum behavior
of a pendulum.
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Exercise 2 Calculate the quantum number, n, for this pendulum with E � 1.5 	 10�2 J.

Answer 4.6 	 1031

Exercise 3 An object of mass m on a spring of stiffness k oscillates with an amplitude A
about its equilibrium position. Suppose that m � 300 g, k � 10 N/m, and A � 10 cm. (a)
Find the total energy. (b) Find the mechanical frequency of vibration of the mass. (c) Cal-
culate the change in amplitude when the system loses one quantum of energy.

Answer (a) E total � 0.050 J; (b) f � 0.92 Hz; (c) �Equantum � 6.1 	 10�34 J, so

Until now we have been concentrating on the remarkable quantum proper-
ties of single oscillators of frequency f. Planck explained the continuous spec-
trum of the blackbody by assuming that the heated walls contained resonators
vibrating at many different frequencies, each emitting light at the same fre-
quency as its vibration frequency. By considering the conditions leading to
equilibrium between the wall resonators and the radiation in the blackbody
cavity, he was able to show that the spectral energy density u( f, T ) could be
expressed as the product of the number of oscillators having frequency
between f and f � df, denoted by N( f ) df, and the average energy emitted per
oscillator, . Thus we have the important result

(3.12)

Furthermore, Planck showed that the number of oscillators with frequency
between f and f � df was proportional to f 2 or

(3.13)

(See Appendix 1 on our book Web site at http://info.brookscole.com/mp3e
for details.)

Substituting Equation 3.13 into Equation 3.12 gives

(3.14)u( f, T )df � E
8f 2

c3 df

N( f )df �
8f 2

c3 df

u( f, T )df � E N( f )df

E

�A � �
�E

√2Ek
� �6.1 	 10�34 m

76 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

Because the total energy of a pendulum of mass m and
length � displaced through an angle � is

E � mg�(1 � cos �)

we have for a typical pendulum with m � 100 g, � �

1.0 m, and � � 10�,

E � (0.10 kg)(9.8 m/s2)(1.0 m)(1 � cos 10�) � 0.015 J

Therefore, the fractional change in energy, �E/E, is un-
observably small:

Note that the energy quantization of large vibrating
systems is unobservable because of their low frequencies
compared to the high frequencies of atomic oscillators.
Hence there is no contradiction between Planck’s
quantum postulate and the behavior of macroscopic
oscillators.

�E

E
�

3.3 	 10�34 J

1.5 	 10�2 J
� 2.2 	 10�32
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3.3 THE RAYLEIGH–JEANS LAW AND PLANCK’S LAW 77

This result shows that the spectral energy density is proportional to the
product of the frequency squared and the average oscillator energy. Also,
since u( f, T ) approaches zero at high frequencies (see Fig. 3.5), must tend
to zero at high frequencies faster than 1/f 2. The fact that the mean oscillator
energy must become extremely small when the frequency becomes high
guided Planck in the development of his theory. In the next section we shall
see that the failure of to become small at high frequencies in the classical
Rayleigh–Jeans theory led to the “ultraviolet catastrophe”—the prediction of
an infinite spectral energy density at high frequencies in the ultraviolet region.

3.3 THE RAYLEIGH–JEANS LAW AND PLANCK’S LAW

Rayleigh–Jeans Law

Both Planck’s law and the Rayleigh–Jeans law (the classical theory of blackbody

radiation formulated by Lord Rayleigh, John William Strutt, 1842–1919, English

physicist, and James Jeans, 1887–1946, English astronomer and physicist) may be

derived using the idea that the blackbody radiation energy per unit volume with fre-

quency between f and f � df can be expressed as the product of the number of oscil-

lators per unit volume in this frequency range and the average energy per oscillator:

(3.12)

It is instructive to perform both the Rayleigh–Jeans and Planck calculations to see

the effect on u( f, T ) of calculating from a continuous distribution of classical

oscillator energies (Rayleigh–Jeans) as opposed to a discrete set of quantum oscilla-

tor energies (Planck). We discuss Lord Rayleigh’s derivation first because it is a

more direct classical calculation.

While Planck concentrated on the thermal equilibrium of cavity radiation with oscillating

electric charges in the cavity walls, Rayleigh concentrated directly on the electromagnetic waves

in the cavity. Rayleigh and Jeans reasoned that the standing electromagnetic waves in

the cavity could be considered to have a temperature T, because they constantly ex-

changed energy with the walls and caused a thermometer within the cavity to reach

the same temperature as the walls. Further, they considered a standing polarized

electromagnetic wave to be equivalent to a one-dimensional oscillator (Fig. 3.11).

Using the same general idea as Planck, they expressed the energy density as a prod-

uct of the number of standing waves (oscillators) and the average energy per oscilla-

tor. They found the average oscillator energy to be independent of frequency and

equal to kBT from the Maxwell-Boltzmann distribution law (see Chapter 10).

According to this distribution law, the probability P of finding an individual system

(such as a molecule or an atomic oscillator) with energy E above some minimum

energy, E0, in a large group of systems at temperature T is

(3.15)

where P0 is the probability that a system has the minimum energy. In the case of a

discrete set of allowed energies, the average energy, , is given by

(3.16)

where division by the sum in the denominator serves to normalize the total

probability to 1. In the classical case considered by Rayleigh, an oscillator could have any

E �
�E �P(E)

�P(E)

E

P(E) � P0e�(E�E 0)/kBT

E

E

u( f, T )df � E N( f )df

E

E

O P T I O N A L
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k1

m ω1

ω2

k2

m

energy E in a continuous range from 0 to �. Thus the sums in Equation 3.16 must

be replaced with integrals, and the expression for becomes

The calculation of N( f ) is a bit more complicated but is of importance here as

well as in the free electron model of metals. Appendix 1 on our Web site gives the

derivation of the density of modes, N( f ) df. One finds

(3.45)

or in terms of wavelength,

(3.46)

The spectral energy density is simply the density of modes multiplied by kBT, or

(3.17)

In terms of wavelength,

(3.18)

However, as one can see from Figure 3.12, this classical expression, known as the

Rayleigh – Jeans law, does not agree with the experimental results in the short

wavelength region. Equation 3.18 diverges as 
 : 0, predicting unlimited energy

emission in the ultraviolet region, which was dubbed the “ultraviolet catastro-

phe.” One is forced to conclude that classical theory fails miserably to explain

blackbody radiation.

u(
, T )d
 �
8


4 kBT d


u( f, T )df �
8f 2

c3 kBT df

N(
)d
 �
8


4 d


N( f )df �
8f 2

c3 df

E �

��

0
Ee�E/kBTdE

��

0
e�E/kBT dE

� kBT

E

78 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

Figure 3.11 A one-dimensional harmonic oscillator is equivalent to a plane-
polarized electromagnetic standing wave.

Density of standing waves in

a cavity

Rayleigh–Jeans blackbody

law
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Planck’s Law

As mentioned earlier, Planck concentrated on the energy states of resonators in the

cavity walls and used the condition that the resonators and cavity radiation were in-

equilibrium to determine the spectral quality of the radiation. By thermodynamic 

reasoning (and apparently unaware of Rayleigh’s derivation), he arrived at the same

expression for N( f ) as Rayleigh. However, Planck arrived at a different form for 

by allowing only discrete values of energy for his resonators. He found, using the

Maxwell-Boltzmann distribution law,

(3.19)

(See the book Web site at http://info.brookscole.com/mp3e for Planck’s derivation

of .)

Multiplying by N( f ) gives the Planck distribution formula:

(3.9)

or in terms of wavelength, 
,

(3.20)

Equation 3.9 shows that the ultraviolet catastrophe is avoided because the term dom-

inates the f 2 term at high frequencies. One can qualitatively understand why tends to

zero at high frequencies by noting that the first allowed oscillator level (hf ) is so large

for large f compared to the average thermal energy available (kBT ) that Boltzmann’s

law predicts almost zero probability that the first excited state is occupied.

In summary, Planck arrived at his blackbody formula by making two startling

assumptions: (1) the energy of a charged oscillator of frequency f is limited to

E

E

u(
, T )d
 �
8hc d



5(ehc/
kBT � 1)

u( f, T )df �
8f 2

c3 � hf

ehf/kBT � 1 � df

E

E

E �
hf

ehf/kBT � 1

E

3.3 THE RAYLEIGH–JEANS LAW AND PLANCK’S LAW 79
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Figure 3.12 The failure of the classical Rayleigh–Jeans law (Equation 3.18) to fit
the observed spectrum of a blackbody heated to 1000 K.

Planck blackbody law
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80 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

If we make the change of variable x � hc/
kBT, the inte-
gral assumes a form commonly found in tables:

Using

we find

Finally, substituting for kB, c, and h, we have

� 5.67 	 10�8 W�m�2�K�4

� �
(2)(3.141)5(1.381 	 10�23 J/K)4

(15)(2.998 	 108 m/s)2 (6.626 	 10�34 J�s)3

e total �
25kB

4

15c2h3 T 4 � �T 4

��

0

x3

(e x � 1)
dx �

4

15

etotal �
2kB

4T 4

c2h3 ��

0

x 3

(e x � 1)
dx

EXAMPLE 3.3 Derivation of Stefan’s Law from
the Planck Distribution

In this example, we show that the Planck spectral distri-
bution formula leads to the experimentally observed
Stefan law for the total radiation emitted by a blackbody
at all wavelengths,

etotal � 5.67 	 10�8 T 4 W � m�2 � K�4

Solution Since Stefan’s law is an expression for the to-
tal power per unit area radiated at all wavelengths, we
must integrate the expression for u(
, T ) d
 given by
Equation 3.20 over 
 and use Equation 3.7 for the con-
nection between the energy density inside the blackbody
cavity and the power emitted per unit area of blackbody
surface. We find

etotal �
c

4
��

0

u(
, T )d
 � ��

0

2hc 2


5(e hc/
kBT � 1)
d


Exercise 4 Show that

3.4 LIGHT QUANTIZATION AND THE
PHOTOELECTRIC EFFECT

We now turn to the year 1905, in which the next major development in
quantum theory took place. The year 1905 was an incredible one for the
“willing revolutionary” Albert Einstein (Fig. 3.13). In this year Einstein pro-
duced three immortal papers on three different topics, each revolutionary
and each worthy of a Nobel prize. All three papers contained balanced,
symmetric, and unifying new results achieved by spare and clean logic and
simple mathematics. The first work, entitled “A Heuristic7 Point of View

��

0

2hc2


5(ehc/
kBT � 1)
d
 �

2kB
4T 4

h3c2 ��

x�0

x3

(e x � 1)
dx

7A heuristic argument is one that is plausible and enlightening but not rigorously justified.

discrete values nhf and (2) during emission or absorption of light, the change in

energy of an oscillator is hf . But Planck was every bit the “unwilling revolution-

ary.” From most of Planck’s early correspondence one gets the impression that

his concept of energy quantization was really a desperate calculational device,

and moreover a device that applied only in the case of blackbody radiation. It

remained for the great Albert Einstein, the popular icon of physics in the 20th

century, to elevate quantization to the level of a universal phenomenon by show-

ing that light itself was quantized.
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About the Generation and Transformation of Light,” formulated the theory
of light quanta and explained the photoelectric effect.8 The second paper
was entitled “On the Motion of Particles Suspended in Liquids as Required
by the Molecular-Kinetic Theory of Heat.” It explained Brownian motion
and provided strong proof of the reality of atoms.9 The third paper, which
is perhaps his most famous, contained the invention of the theory of special
relativity10 and was entitled “On the Electrodynamics of Moving Bodies.” It
is interesting to note that when Einstein was awarded the Nobel prize in
1922, the Swedish Academy judged his greatest contribution to physics to
have been the theory of the photoelectric effect. No mention was made at
all of his theory of relativity!

Let us turn now to the paper concerning the light quantum, in which
Einstein crossed swords with Maxwell and challenged the unqualified
successes of the classical wave theory of light. Einstein recognized an incon-
sistency between Planck’s quantization of oscillators in the walls of the
blackbody and Planck’s insistence that the cavity radiation consisted of clas-
sical electromagnetic waves. By showing that the change in entropy of black-
body radiation was like the change in entropy of an ideal gas consisting of
independent particles, Einstein reached the conclusion that light itself is
composed of “grains,” irreducible finite amounts, or quanta of energy.11

Furthermore, he asserted that light interacting with matter also consists of
quanta, and he worked out the implications for photoelectric and photo-
chemical processes. His explanation of the photoelectric effect offers such
convincing proof that light consists of energy packets that we shall describe
it in more detail. First, however, we need to consider the main experimental
features of the photoelectric effect and the failure of classical theory to
explain this effect.

As noted earlier, Hertz first established that clean metal surfaces emit
charges when exposed to ultraviolet light. In 1888 Hallwachs discovered that
the emitted charges were negative, and in 1899 J. J. Thomson showed that the
emitted charges were electrons, now called photoelectrons. He did this by
measuring the charge-to-mass ratio of the particles produced by ultraviolet
light and even succeeded in measuring e separately by a cloud chamber
technique (see Chapter 4).

The last crucial discovery before Einstein’s explanation was made in 1902
by Philip Lenard, who was studying the photoelectric effect with intense
carbon arc light sources. He found that electrons are emitted from the metal
with a range of velocities and that the maximum kinetic energy of photoelec-
trons, Kmax, does not depend on the intensity of the exciting light. Although he

3.4 LIGHT QUANTIZATION AND THE PHOTOELECTRIC EFFECT 81

8A. Einstein, Ann. Physik, 17:132, 1905 (March).
9A. Einstein, Ann. Physik, 17:549, 1905 (May).
10A. Einstein, Ann. Physik, 17:891, 1905 ( June).
11Einstein, as Planck before him, fell back on the unquestionable solidity of thermodynamics and

statistical mechanics to derive his revolutionary results. At the time it was well known that the
probability, W, for n independent gas atoms to be in a partial volume V of a larger volume V0 is
(V/V0)n. Einstein showed that light of frequency f and total energy E enclosed in a cavity obeys
an identical law, where in this case W is the probability that all the radiation is in the partial
volume and n � E/hf.
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was unable to establish the precise relationship, Lenard also indicated that
Kmax increases with light frequency. A typical apparatus used to measure the
maximum kinetic energy of photoelectrons is shown in Figure 3.14. Kmax is
easily measured by applying a retarding voltage and gradually increasing it
until the most energetic electrons are stopped and the photocurrent becomes
zero. At this point,

(3.21)

where me is the mass of the electron, vmax is the maximum electron
speed, e is the electronic charge, and Vs is the stopping voltage. A plot
of the type found by Lenard is shown in Figure 3.15a; it illustrates that
K max or Vs is independent of light intensity I. The increase in current
(or number of electrons per second) with increasing light intensity
shown in Figure 3.15a was expected and could be explained classically.
However, the result that K max does not depend on the intensity was completely
unexpected.

Two other experimental results were completely unexpected classically as
well. One was the linear dependence of Kmax on light frequency, shown in Figure
3.15b. Note that Figure 3.15b also shows the existence of a threshold
frequency, f0, below which no photoelectrons are emitted. (Actually, a
threshold energy called the work function, �, is associated with the binding
energy of an electron in a metal and is expected classically. That there is an
energy barrier holding electrons in a solid is evident from the fact that
electrons are not spontaneously emitted from a metal in a vacuum, but
require high temperatures or incident light to provide an energy of �

and cause emission.) The other interesting result impossible to explain
classically is that there is no time lag between the start of illumination and
the start of the photocurrent. Measurements have shown that if there is
a time lag, it is less than 10�9 s. In summary, as shown in detail in the
following example, classical electromagnetic theory has major difficul-
ties explaining the independence of K max and light intensity, the linear
dependence of K max on light frequency, and the instantaneous response
of the photocurrent.

Kmax � 1
2mev2

max � eVs

82 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

0 Applied voltage

(a)

Photocurrent

I2 > I1

I2

I1

–Vs

(b)

Kmax

f0 f

Figure 3.15 (a) A plot of photocurrent versus applied voltage. The graph shows that
Kmax is independent of light intensity I for light of fixed frequency. (b) A graph show-
ing the dependence of Kmax on light frequency.

Figure 3.14 Photoelectric ef-
fect apparatus.

Metallic
emitter

Collector

Light

Sensitive
ammeter

10-V supply
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–
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Einstein’s explanation of the puzzling photoelectric effect was as brilliant
for what it focused on as for what it omitted. For example, he stressed that
Maxwell’s classical theory had been immensely successful in describing the
progress of light through space over long time intervals but that a different
theory might be needed to describe momentary interactions of light and mat-
ter, as in light emission by oscillators or the transformation of light energy
to kinetic energy of the electron in the photoelectric effect. He also focused
only on the energy aspect of the light and avoided models or mechanisms
concerning the conversion of the quantum of light energy to kinetic energy

3.4 LIGHT QUANTIZATION AND THE PHOTOELECTRIC EFFECT 83

(b) According to classical theory, the intensity of a light

wave is proportional to the square of the amplitude of the electric

field, E0
2, and it is this electric field amplitude that

increases with increasing intensity and imparts an in-
creasing acceleration and kinetic energy to an electron.
Replacing I with a quantity proportional to E0

2 in Equa-
tion 3.22 shows that Kmax should not depend at all on
the frequency of the classical light wave, again contradict-
ing the experimental results.

(c) To estimate the time lag between the start of illu-
mination and the emission of electrons, we assume that
an electron must accumulate just enough light energy to
overcome the work function. Setting Kmax � 0 in Equa-
tion 3.22 gives

0 � CIAt � �

or

assuming that I is the actual absorbed intensity. Because
� and I are given, we need A, the cross-sectional area of
an atom, to calculate the time. As an estimate of A we
simply use A � r 2, where r is a typical atomic radius.
Taking r � 1.0 	 10�8 cm, we find A �  	 10�16 cm2.
Finally, substituting this value into the expression for t,
we obtain

Thus we see that the classical calculation of the time lag
for photoemission does not agree with the experimental
result, disagreeing by a factor of 1016!

� 1.2 	 107 s � 130 days

t �
2.28 eV 	 1.60 	 10�16 mJ/eV

(10�7 mJ/s�cm2)( 	 10�16 cm2)

t �
�

CIA
�

�

IA

EXAMPLE 3.4 Maxwell Takes a Licking

For a typical case of photoemission from sodium, show
that classical theory predicts that (a) Kmax depends on the
incident light intensity, I, (b) Kmax does not depend on
the frequency of the incident light, and (c) there is a
long time lag between the start of illumination and the
beginning of the photocurrent. The work function for
sodium is � � 2.28 eV and an absorbed power per unit
area of 1.00 	 10�7 mW/cm2 produces a measurable
photocurrent in sodium.

Solution (a) According to classical theory, the energy in

a light wave is spread out uniformly and continuously over the

wavefront. Assuming that all absorption of light occurs in
the top atomic layer of the metal, that each atom absorbs
an equal amount of energy proportional to its cross-
sectional area, A, and that each atom somehow funnels
this energy into one of its electrons, we find that each
electron absorbs an energy K in time t given by

K � CIAt

where C is a fraction accounting for less than 100% light
absorption. Because the most energetic electrons are
held in the metal by a surface energy barrier or work
function of �, these electrons will be emitted with Kmax

once they have absorbed enough energy to overcome the
barrier �. We can express this as

Kmax � CIAt � � (3.22)

Thus, classical theory predicts that for a fixed absorption
period, t, at low light intensities when CIAt � �, no elec-
trons ought to be emitted. At higher intensities, when
CIAt � �, electrons should be emitted with higher
kinetic energies the higher the light intensity. Therefore,
classical predictions contradict experiment at both very
low and very high light intensities.

Exercise 5 Why do the I–V curves in Figure 3.15a rise gradually between �Vs and 0,
that is, why do they not rise abruptly upward at �Vs? What statistical information about
the conduction electrons inside the metal is contained in the slope of the I–V curve?
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of the electron. In short, he introduced only those ideas necessary to
explain the photoelectric effect. He maintained that the energy of light
is not distributed evenly over the classical wavefront, but is concen-
trated in discrete regions (or in “bundles”), called quanta, each con-
taining energy, hf. A suggestive image, not to be taken too literally, is
shown in Figure 3.16b. Einstein’s picture was that a light quantum was so
localized that it gave all its energy, hf, directly to a single electron in the
metal. Therefore, according to Einstein, the maximum kinetic energy for
emitted electrons is

(3.23)

where � is the work function of the metal, which corresponds to the minimum
energy with which an electron is bound in the metal. Table 3.1 lists values of
work functions measured for different metals.

Equation 3.23 beautifully explained the puzzling independence of Kmax

and intensity found by Lenard. For a fixed light frequency f, an increase in
light intensity means more photons and more photoelectrons per second,
although Kmax remains unchanged according to Equation 3.23. In addition,
Equation 3.23 explained the phenomenon of threshold frequency. Light of
threshold frequency f0, which has just enough energy to knock an electron out
of the metal surface, causes the electron to be released with zero kinetic
energy. Setting Kmax � 0 in Equation 3.23 gives

(3.24)

Thus the variation in threshold frequency for different metals is produced
by the variation in work function. Note that light with f � f0 has insuf-
ficient energy to free an electron. Consequently, the photocurrent is zero
for f � f0.

With any theory, one looks not only for explanations of previously observed
results but also for new predictions. This was indeed the case here, as Equa-
tion 3.23 predicted the result (new in 1905) that Kmax should vary linearly
with f for any material and that the slope of the Kmax versus f plot should yield

f0 �
�

h

Kmax � hf � �
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c
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y

xz

(a) (b)

c

x

y

z

Photon with
energy hf

Figure 3.17 Universal charac-
teristics of all metals undergo-
ing the photoelectric effect.

Figure 3.16 (a) A classical view of a traveling light wave. (b) Einstein’s photon
picture of “a traveling light wave.”

Vse  = hf –

Metal 2

Metal 1

Slope = h

f

f01f02

Vse

0

– 2

– 1

φ

φ

φ

Table 3.1 Work Functions

of Selected

Metals

Work Function, �,
Metal (in eV)

Na 2.28
Al 4.08
Cu 4.70
Zn 4.31
Ag 4.73
Pt 6.35
Pb 4.14
Fe 4.50

Einstein’s theory of the

photoelectric effect
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the universal constant h (see Fig. 3.17). In 1916, the American physicist Robert
Millikan (1868–1953) reported photoelectric measurement data, from which
he substantiated the linear relation between Kmax and f and determined h with
a precision of about 0.5%.12

3.4 LIGHT QUANTIZATION AND THE PHOTOELECTRIC EFFECT 85

12R. A. Millikan, Phys. Rev., 7:355, 1916. Some of the experimental difficulties in the photoelec-
tric effect were the lack of strong monochromatic uv sources, small photocurrents, and large
effects of rough and impure metal surfaces on f0 and K max. Millikan cleverly circumvented
these difficulties by using alkali metal cathodes, which are sensitive in the visible to about 
600 nm (thus making it possible to use the strong visible lines of the mercury arc), and ma-
chining fresh alkali surfaces while the metal sample was held under high vacuum. Also when
the phototube emitter and collector are composed of different metals, the work function �
determined from plots of VS vs. f is actually that of the collector. See J. Rudnick and D. S.
Tannhauser, AJP 44, 796, 1976.

(b) Assuming that all the photons in the violet region
have an effective wavelength of 250 nm, how many elec-
trons will be emitted per second?
For an efficiency of 100%, one photon of energy, hf, will
produce one electron, so

Number of electrons/s

(c) Calculate the current in the phototube in amperes.

i � (1.6 	 10�19 C)(1.5 	 109 electrons/s)

� 2.4 	 10�10 A

A sensitive electrometer is needed to detect this small
current.

(d) If the cutoff frequency is f0 � 1.1 	 1015 Hz, find
the work function, �, for iron.

From Equation 3.24, we have

� � hf0 � (4.14 	 10�15 eV � s)(1.1 	 1015 s�1)

� 4.5 eV

(e) Find the stopping voltage for iron if photoelec-
trons are produced by light with 
 � 250 nm.
From the photoelectric equation,

Thus the stopping voltage is 0.46 V.

� 0.46 eV

�
(4.14 	 10�15 eV�s)(3.0 	 108 m/s)

250 	 10�9 m
� 4.5 eV

eVs � hf � � �
hc



� �

� 1.5 	 109

�
(250 	 10�9 m)(1.2 	 10�9 J/s)

(6.6 	 10�34 J�s)(3.0 	 108 m/s)

�
1.2 	 10�9 W

hf
�


(1.2 	 10�9)

hc

EXAMPLE 3.5 The Photoelectric Effect in Zinc

Philip Lenard determined that photoelectrons released
from zinc by ultraviolet light were stopped by a voltage of
4.3 V. Find Kmax and vmax for these electrons.

Solution

Kmax � eVs � (1.6 	 10�19 C)(4.3 V) � 6.9 	 10�19 J

To find vmax, we set the work done by the electric field
equal to the change in the electron’s kinetic energy, to
obtain

or

Therefore, a 4.3-eV electron is rather energetic and moves
with a speed of about a million meters per second. Note,
however, that this is still only about 0.4% of the speed of
light, so relativistic effects are negligible in this case.

EXAMPLE 3.6 The Photoelectric Effect for Iron

Suppose that light of total intensity 1.0 �W/cm2 falls on
a clean iron sample 1.0 cm2 in area. Assume that the iron
sample reflects 96% of the light and that only 3.0% of
the absorbed energy lies in the violet region of the spec-
trum above the threshold frequency.

(a) What intensity is actually available for the photo-
electric effect?
Because only 4.0% of the incident energy is absorbed,
and only 3.0% of this energy is able to produce photo-
electrons, the intensity available is

I � (0.030)(0.040)I0 � (0.030)(0.040)(1.0 �W/cm2)

� 1.2nW/cm2

� 1.2 	 106 m/s

vmax � √ 2eVs

me
� √ 2(6.9 	 10�19 J)

9.11 	 10�31 kg

1
2mev2

max � eVs
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3.5 THE COMPTON EFFECT AND X-RAYS

Although Einstein introduced the concept that light consists of pointlike
quanta of energy in 1905, he did not directly treat the momentum carried by
light until 1906. In that year, in a paper treating a molecular gas in thermal
equilibrium with electromagnetic radiation (statistical mechanics again!),
Einstein concluded that a light quantum of energy E travels in a single direc-
tion (unlike a spherical wave) and carries a momentum directed along its line
of motion of E/c, or hf/c. In his own words, “If a bundle of radiation causes a
molecule to emit or absorb an energy packet hf, then momentum of quantity
hf/c is transferred to the molecule, directed along the line of motion of the
bundle for absorption and opposite the bundle for emission.”

After developing the first theoretical justification for photon momentum,
and treating the photoelectric effect much earlier, it is curious that Einstein
carried the treatment of photon momentum no further. The theoretical
treatment of photon–particle collisions had to await the insight of Peter
Debye (1884–1966, Dutch physical chemist), and Arthur Holly Compton
(1892–1962, American physicist). In 1923, both men independently realized
that the scattering of x-ray photons from electrons could be explained by
treating photons as pointlike particles with energy hf and momentum hf/c and
by conserving relativistic energy and momentum of the photon–electron pair
in a collision.13,14 This remarkable development completed the particle
picture of light by showing that photons, in addition to carrying energy, hf,
carry momentum, hf/c, and scatter like particles. Before treating this in detail,
a brief introduction to the important topic of x-rays will be given.

X-Rays

X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen.
He found that a beam of high-speed electrons striking a metal target pro-
duced a new and extremely penetrating type of radiation (Fig. 3.18). Within
months of Roentgen’s discovery the first medical x-ray pictures were taken,
and within several years it became evident that x-rays were electromagnetic
vibrations similar to light but with extremely short wavelengths and great pen-
etrating power (see Fig. 3.19). Rough estimates obtained from the diffraction
of x rays by a narrow slit showed x-ray wavelengths to be about 10�10 m, which
is of the same order of magnitude as the atomic spacing in crystals. Because
the best artificially ruled gratings of the time had spacings of 10�7 m, Max von
Laue in Germany and William Henry Bragg and William Lawrence Bragg (a
father and son team) in England suggested using single crystals such as calcite
as natural three-dimensional gratings, the periodic atomic arrangement in the
crystals constituting the grating rulings.

A particularly simple method of analyzing the scattering of x-rays from
parallel crystal planes was proposed by W. L. Bragg in 1912. Consider two
successive planes of atoms as shown in Figure 3.20. Note that adjacent atoms
in a single plane, A, will scatter constructively if the angle of incidence, �i,

86 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

13P. Debye, Phys. Zeitschr., 24:161, 1923. In this paper, Debye acknowledges Einstein’s pioneering
work on the quantum nature of light.

14A. H. Compton, Phys. Rev., 21:484, 1923.
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equals the angle of reflection, �r. Atoms in successive planes (A and B) will scat-
ter constructively at an angle � if the path length difference for rays (1) and
(2) is a whole number of wavelengths, n
. From the diagram, constructive
interference will occur when

AB � BC � n
 n � 1, 2, 3, � � �

and because AB � BC � d sin �, it follows that

(3.25a)

where n is the order of the intensity maximum, 
 is the x-ray wavelength, d is
the spacing between planes, and � is the angle of the intensity maximum mea-
sured from plane A. Note that there are several maxima at different angles for
a fixed d and 
 corresponding to n � 1, 2, 3, � � � . Equation 3.25a is known as
the Bragg equation; it was used with great success by the Braggs to determine
atomic positions in crystals. A diagram of a Bragg x-ray spectrometer is shown
in Figure 3.21a. The crystal is slowly rotated until a strong reflection is

n
 � 2d sin �  n � 1, 2, 3, � � �

3.5 THE COMPTON EFFECT AND X-RAYS 87

Filament

Electrons

Metal target

X rays

Evacuated
glass envelope

Focusing
electrode

50–100 kV– +

Figure 3.18 X-rays are produced by bombarding a metal target (copper, tungsten, and
molybdenum are common) with energetic electrons having energies of 50 to 100 keV.

Figure 3.19 One of the first
images made by Roentgen us-
ing x-rays (December 22, 1895).

Plane A

Plane B

Ray (1)

Ray (2)

d A C

D

θ

B

θ

θθ iθ θr

Reflected

rays

Figure 3.20 Bragg scattering of x-rays from successive planes of atoms. Constructive
interference occurs for ABC equal to an integral number of wavelengths.

Bragg equation
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30

(b)

λ (pm)

Κα
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Crystal
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Film

(a)

Lead
collimatorsX-ray

source

θ

θ

λmin

Figure 3.21 (a) A Bragg crystal x-ray spectrometer. The crystal is rotated about an
axis through P. (b) The x-ray spectrum of a metal target consists of a broad, continuous
spectrum plus a number of sharp lines, which are due to the characteristic x-rays.
Those shown were obtained when 35-keV electrons bombarded a molybdenum target.
Note that 1 pm � 10�12 m � 10�3 nm.

observed, which means that Equation 3.25a holds. If 
 is known, d can be
calculated and, from the series of d values found, the crystal structure may be
determined. (See Problem 38.) If measurements are made with a crystal with
known d, the x-ray intensity vs. wavelength may be determined and the x-ray
emission spectrum examined.

The actual x-ray emission spectrum produced by a metal target bombarded
by electrons is interesting in itself and is shown in Figure 3.21b. Although
the broad, continuous spectrum is well explained by classical electromagnetic
theory, a feature of Figure 3.21b, 
min, shows proof of the photon theory. The
broad continuous x-ray spectrum shown in Figure 3.21b results from glancing
or indirect scattering of electrons from metal atoms. In such collisions only
part of the electron’s energy is converted to electromagnetic radiation. This
radiation is called bremsstrahlung (German for braking radiation), which refers

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight



3.5 THE COMPTON EFFECT AND X-RAYS 89

to the radiation given off by any charged particle when it is decelerated. The
minimum continuous x-ray wavelength, 
min, is found to be independent
of target composition and depends only on the tube voltage, V. It may be
explained by attributing it to the case of a head-on electron–atom collision in
which all of the incident electron’s kinetic energy is converted to electromag-
netic energy in the form of a single x-ray photon. For this case we have

or

(3.26)

where V is the x-ray tube voltage.
Superimposed on the continuous spectrum are sharp x-ray lines labeled

K� and K�, which are like sharp lines emitted in the visible light spectrum.
The sharp lines depend on target composition and provide evidence for
discrete atomic energy levels separated by thousands of electron volts, as
explained in Chapter 9.

The Compton Effect

Let us now turn to the year 1922 and the experimental confirmation by Arthur
Holly Compton that x-ray photons behave like particles with momentum hf/c.
For some time prior to 1922, Compton and his coworkers had been accumu-
lating evidence that showed that classical wave theory failed to explain the
scattering of x-rays from free electrons. In particular, classical theory predicted
that incident radiation of frequency f0 should accelerate an electron in the
direction of propagation of the incident radiation, and that it should
cause forced oscillations of the electron and reradiation at frequency f �, where
f � � f0 (see Fig. 3.22a).15 Also, according to classical theory, the frequency or
wavelength of the scattered radiation should depend on the length of time the
electron was exposed to the incident radiation as well as on the intensity of the
incident radiation.

Imagine the surprise when Compton showed experimentally that the wave-
length shift of x-rays scattered at a given angle is absolutely independent of the
intensity of radiation and the length of exposure, and depends only on the
scattering angle. Figure 3.22b shows the quantum model of the transfer of
momentum and energy between an individual x-ray photon and an electron.
Note that the quantum model easily explains the lower scattered frequency f �,
because the incident photon gives some of its original energy hf to the recoil-
ing electron.

A schematic diagram of the apparatus used by Compton is shown in Figure
3.23a. In the original experiment, Compton measured the dependence
of scattered x-ray intensity on wavelength at three different scattering angles


min �
hc

eV

eV � hf �
hc


min

15This decrease in frequency of the reradiated wave is caused by a double Doppler shift, first
because the electron is receding from the incident radiation, and second because the electron is
a moving radiator as viewed from the fixed lab frame. See D. Bohm, Quantum Theory, Upper Sad-
dle River, NJ, Prentice-Hall, 1961, p. 35.
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of 45�, 90�, and 135�. The wavelength was measured with a rotating crystal
spectrometer, and the intensity was determined by an ionization chamber that
generated a current proportional to the x-ray intensity. Monochromatic x-rays
of wavelength 
0 � 0.71 Å constituted the incident beam. A carbon target with
a low atomic number, Z � 12, was used because atoms with small Z have a
higher percentage of loosely bound electrons. The experimental intensity ver-
sus wavelength plots observed by Compton for scattering angles of 0�, 45�, 90�,
and 135� are shown in Figure 3.23b. They show two peaks, one at 
0 and a
shifted peak at a longer wavelength 
�. The shifted peak at 
� is caused by the
scattering of x-rays from nearly free electrons. Assuming that x-rays behave like
particles, 
� was predicted by Compton to depend on scattering angle as

(3.27)
� � 
0 �
h

mec
(1 � cos�)

90 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

E

B

f0

(a) Classical model

Electron

Electron motion

θ

B

E

Recoiling electron

pe

f ′

–

φ

θ

Scattered photon

f ′, λ′

f0, λ0

(b) Quantum model

Figure 3.22 X-ray scattering from an electron: (a) the classical model, (b) the quan-
tum model.

Compton effect
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where me � electron mass; the combination of constants h/mec is called
the Compton wavelength of the electron and has a currently accepted
value of

Compton’s careful measurements completely confirmed the dependence of

� on scattering angle � and determined the Compton wavelength of the
electron to be 0.0242 Å, in excellent agreement with the currently accepted
value. It is fair to say that these results were the first to really convince most
American physicists of the basic validity of the quantum theory!

The unshifted peak at 
0 in Figure 3.23 is caused by x-rays scattered from
electrons tightly bound to carbon atoms. This unshifted peak is actually pre-
dicted by Equation 3.27 if the electron mass is replaced by the mass of a car-
bon atom, which is about 23,000 times the mass of an electron.

Let us now turn to the derivation of Equation 3.27 assuming that the pho-
ton exhibits particle-like behavior and collides elastically like a billiard ball
with a free electron initially at rest. Figure 3.24 shows the photon–electron
collision for which energy and momentum are conserved. Because the elec-
tron typically recoils at high speed, we treat the collision relativistically. The
expression for conservation of energy gives

E � mec
2 � E� � Ee (3.28)

where E is the energy of the incident photon, E� is the energy of the scattered
photon, mec2 is the rest energy of the electron, and Ee is the total relativistic
energy of the electron after the collision. Likewise, from momentum conserva-
tion we have

p � p� cos � � pe cos � (3.29)

h

mec
� 0.0243 Å � 0.00243 nm

3.5 THE COMPTON EFFECT AND X-RAYS 91

Figure 3.23 (a) Schematic diagram of Compton’s apparatus. The wavelength was
measured with a rotating crystal spectrometer using graphite (carbon) as the target.
The intensity was determined by a movable ionization chamber that generated a cur-
rent proportional to the x-ray intensity. (b) Scattered x-ray intensity versus wavelength
of Compton scattering at � � 0�, 45�, 90�, and 135�.
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p� sin � � pe sin � (3.30)

where p is the momentum of the incident photon, p� is the momentum of the
scattered photon, and pe is the recoil momentum of the electron. Equations
3.29 and 3.30 may be solved simultaneously to eliminate �, the electron scat-
tering angle, to give the following expression for pe

2:

pe
2 � (p�)2 � p2 � 2pp� cos � (3.31)

At this point it is necessary, paradoxically, to use the wave nature of
light to explain the particle-like behavior of photons. We have already
seen that the energy of a photon and the frequency of the associated
light wave are related by E � hf. If we assume that a photon obeys the
relativistic expression E 2 � p2c2 � m2c4 and that a photon has a mass of
zero, we have

(3.32)

Here again we have a paradoxical situation; a particle property, the photon
momentum, is given in terms of a wave property, 
, of an associated light wave.
If the relations E � hf and p � hf/c are substituted into Equations 3.28 and
3.31, these become respectively

Ee � hf � hf � � mec
2 (3.33)

and

(3.34)

Because the Compton measurements do not concern the total energy
and momentum of the electron, we eliminate Ee and pe by substi-
tuting Equations 3.33 and 3.34 into the expression for the electron’s
relativistic energy,

pe
2 � � hf �

c �
2

� � hf

c �
2

�
2h2ff �

c2  cos �

pphoton �
E

c
�

hf

c
�

h
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Recoiling electron

φ

Scattered photon

E, p

Incident
photon

E ′ < E, p′

Ee, pe

θ

Figure 3.24 Diagram representing Compton scattering of a photon by an
electron. The scattered photon has less energy (or longer wavelength) than the
incident photon.
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E 2
e � pe

2c2 � m2
ec4

After some algebra (see Problem 33), one obtains Compton’s result for the in-
crease in a photon’s wavelength when it is scattered through an angle �:

(3.27)
� � 
0 �
h

mec
(1 � cos �)

3.5 THE COMPTON EFFECT AND X-RAYS 93

Visible light from mercury:

Because both incident and scattered wavelengths are
simultaneously present in the beam, they can be easily
resolved only if �
/
0 is a few percent or if 
0 � 1 Å.

(b) The so-called free electrons in carbon are actually
electrons with a binding energy of about 4 eV. Why
may this binding energy be ignored for x-rays with 
0 �

0.712 Å?

Solution The energy of a photon with this wavelength
is

Therefore, the electron binding energy of 4 eV is negligi-
ble in comparison with the incident x-ray energy.

� 17 400 eVE � hf �
hc



�

12 400 eV�Å

0.712 Å

�



0
�

0.0243 Å

5461 Å
� 4.45 	 10�6

EXAMPLE 3.8 X-ray Photons versus 
Visible Photons

(a) Why are x-ray photons used in the Compton experi-
ment, rather than visible-light photons? To answer this
question, we shall first calculate the Compton shift for
scattering at 90� from graphite for the following cases:
(1) very high energy �-rays from cobalt, 
 � 0.0106 Å;
(2) x-rays from molybdenum, 
 � 0.712 Å; and (3) green
light from a mercury lamp, 
 � 5461 Å.

Solution In all cases, the Compton shift formula gives
�
 � 
� � 
0 � (0.0243 Å)(1 � cos 90�) � 0.0243 Å �

0.00243 nm. That is, regardless of the incident wave-
length, the same small shift is observed. However, the
fractional change in wavelength, �
/
0, is quite different
in each case:

�-rays from cobalt:

X-rays from molybdenum:

�



0
�

0.0243 Å

0.712 Å
� 0.0341

�



0
�

0.0243 Å

0.0106 Å
� 2.29

Hence, the wavelength of the scattered x-ray at this angle is


 � �
 � 
0 � 0.200711 nm

� 7.11 	 10�13 m � 0.00071 nm

�
6.63 	 10�34 J�s

(9.11 	 10�31 kg)(3.00 	 108 m/s)
 (1 � cos 45.0�)

EXAMPLE 3.7 The Compton Shift for Carbon

X-rays of wavelength 
 � 0.200 nm are aimed at a block
of carbon. The scattered x-rays are observed at an angle
of 45.0� to the incident beam. Calculate the increased
wavelength of the scattered x-rays at this angle.

Solution The shift in wavelength of the scattered x-rays
is given by Equation 3.27. Taking � � 45.0�, we find

�
 �
h

mec
(1 � cos �)

Exercise 6 Find the fraction of energy lost by the photon in this collision.

Answer Fraction � �E/E � 0.00355.
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3.6 PARTICLE–WAVE COMPLEMENTARITY

As we have seen, the Compton effect offers ironclad evidence that when light
interacts with matter it behaves as if it were composed of particles with energy
hf and momentum h/
. Yet the very success of Compton’s theory raises many
questions. If the photon is a particle, what can be the meaning of the
“frequency” and “wavelength” of the particle, which determine its energy and
momentum? Is light in some sense simultaneously a wave and a particle?
Although photons have zero mass, is there a simple expression for an effective
gravitational photon mass that determines a photon’s gravitational attraction?
What is the spatial extent of a photon, and how does an electron absorb or
scatter a photon?

Although answers to some of these questions are possible, it is well to be
aware that some demand a view of atomic processes that is too pictorial and
literal. Many of these questions issue from the viewpoint of classical me-
chanics, in which all matter and energy are seen in the context of colliding
billiard balls or water waves breaking on a shore. Quantum theory gives
light a more flexible nature by implying that different experimental condi-
tions elicit either the wave properties or particle properties of light. In fact,
both views are necessary and complementary. Neither model can be used exclu-
sively to describe electromagnetic radiation adequately. A complete under-
standing is obtained only if the two models are combined in a complemen-
tary manner.

The physicist Max Born, an important contributor to the foundations of
quantum theory, had this to say about the particle–wave dilemma:

The ultimate origin of the difficulty lies in the fact (or philosophical principle)
that we are compelled to use the words of common language when we wish to de-
scribe a phenomenon, not by logical or mathematical analysis, but by a picture
appealing to the imagination. Common language has grown by everyday experi-
ence and can never surpass these limits. Classical physics has restricted itself to
the use of concepts of this kind; by analyzing visible motions it has developed two
ways of representing them by elementary processes: moving particles and waves.
There is no other way of giving a pictorial description of motions — we have to
apply it even in the region of atomic processes, where classical physics breaks
down.

Every process can be interpreted either in terms of corpuscles or in terms of
waves, but on the other hand it is beyond our power to produce proof that it is actu-
ally corpuscles or waves with which we are dealing, for we cannot simultaneously de-
termine all the other properties which are distinctive of a corpuscle or of a wave, as
the case may be. We can therefore say that the wave and corpuscular descriptions
are only to be regarded as complementary ways of viewing one and the same objec-
tive process, a process which only in definite limiting cases admits of complete picto-
rial interpretation.16

Thus we are left with an uneasy compromise between wave and particle
concepts and must accept, at this point, that both are necessary to explain the
observed behavior of light. Further considerations of the dual nature of light
and indeed of all matter will be taken up again in Chapters 4 and 5.

94 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

16M. Born, Atomic Physics, fourth edition, New York, Hafner Publishing Co., 1946, p. 92.
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3.7 DOES GRAVITY AFFECT LIGHT?

It is interesting to speculate on how far the particle model of light may be carried.

Encouraged by the successful particle explanation of the photoelectric and Comp-

ton effects, one may ask whether the photon possesses an effective gravitational-

mass, and whether photons will be attracted gravitationally by large masses, such as

those of the Sun or Earth, and experience an observable change in energy.

To investigate these questions, recall that the photon has zero mass, but its effec-

tive inertial mass, mi, may reasonably be taken to be the mass equivalent of the pho-

ton energy, E, or

(3.35)

The same result is obtained if we divide the photon momentum by the photon

speed c:

Recall that the effective inertial mass determines how the photon responds to an

applied force such as that exerted on it during a collision with an electron. The

gravitational mass of an object determines the force of gravitational attraction of that

object to another, such as the Earth. Although it is a remarkable unexplained fact in

Newtonian mechanics that the inertial mass of all material bodies is equal to the

gravitational mass to within one part in 1012, Einstein’s Equivalence Principle of

general relativity requires this result as mentioned in Chapter 2.

Let us assume that the photon, like other objects, also has a gravitational mass

equal to its inertial mass. In this case a photon falling from a height H should

increase in energy by mgH and therefore increase in frequency, although its speed

cannot increase and remains at c. In fact, experiments have been carried out that

show this increase in frequency and confirm that the photon indeed has an effective

gravitational mass of hf/c2. Figure 3.25 shows a schematic representation of the

experiment. An expression for f � in terms of f may be derived by applying conserva-

tion of energy to the photon at points A and B.

KEB � PEB � KEA � PEA

Because the photon’s kinetic energy is E � pc � hf and its potential energy is mgH,

where m � hf/c2, we have

or

(3.36)

The fractional change in frequency, �f/f, is given by

(3.37)

For H � 50 m, we find

�f

f
�

(9.8 m/s2)(50 m)

(3.0 	 108 m/s)2 � 5.4 	 10�15

�f

f
�

f � � f

f
�

gH

c2

f � � f �1 �
gH

c2 �

hf � � 0 � hf � � hf

c2 � gH

m i �
p

c
�

hf

c2

m i �
E

c2 �
hf

c2
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A

B

H

Source
emits frequency f

Detector
measures

frequency f ′

Earth’s surface

Figure 3.25 Schematic dia-
gram of the falling-photon ex-
periment.

O P T I O N A L
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This incredibly small increase in frequency has actually been measured (with diffi-

culty)!17 The shift amounts to only about 1/250 of the line width of the monochro-

matic �-ray photons used in the falling-photon experiment.

The increase in frequency for a photon falling inward suggests a decrease in fre-

quency for a photon that escapes outward to infinity against the gravitational pull of

a star (see Fig. 3.26). This effect, known as “gravitational redshift,” would cause an

emitted photon to be shifted in frequency toward the red end of the spectrum. An

expression for the redshift may be derived once again by conserving photon energy:

Using hf for the photon’s kinetic energy and �GMm/R for its potential energy, with

m equal to hf/c2 and R s equal to the star’s radius, yields

(3.38)

or

(3.39)

EXAMPLE 3.9 The Gravitational Redshift for a White Dwarf

White dwarf stars are extremely massive, compact stars that have a mass on the

order of the Sun’s mass concentrated in a volume similar to that of the Earth. Calcu-

late the gravitational redshift for 300-nm light emitted from such a star.

Solution We can write Equation 3.39 in the alternate form

Using the values

M � mass of Sun � 1.99 	 1030 kg

f � � f

f
�

�f

f
�

GM

R sc
2

f � � f �1 �
GM

R sc
2 �

hf � � 0 � hf �
GM

R s
� hf

c2 �

[KE � PE]R�� � [KE � PE]R�R s
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Star of
mass M and

radius R s

f

R  = ∞

f ′

Figure 3.26 Gravitational redshift from a high-density star.

17R. V. Pound and G. A. Rebka, Jr., Phys. Rev. Lett., 4:337, 1960.
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we find

Because �f/f � df/f, and df � �(c/
2) d
 (from f � c/
), we find � d
/
.

Therefore, the shift in wavelength is

Note that this is a redshift, so the observed wavelength would be 300.07 nm.

One more observation about Equation 3.39 is irresistible. Is it possible for a

very massive star in the course of its life cycle to become so dense that the term

GM/R sc
2 becomes greater than 1? In that case Equation 3.38 suggests that the

photon cannot escape from the star, because escape requires more energy than

the photon initially possesses. Such a star is called a black hole because it emits no

light and acts like a celestial vacuum cleaner for all nearby matter and radiation.

Even though the black hole itself is not luminous, it may be possible to observe it

indirectly in two ways. One way is through the gravitational attraction the black

hole would exert on a normal luminous star if the two constituted a binary star

system. In this case the normal star would orbit the center of mass of the black

hole/normal star pair, and the orbital motion might be detectable. A second in-

direct technique for “viewing” a black hole would be to search for x-rays pro-

duced by inrushing matter attracted to the black hole. Although the black hole it-

self would not emit x-rays, an x-ray-emitting region of roughly stellar diameter

should be observable, as shown in Figure 3.27. X-rays are produced by the

�
 � (300 nm)(2.31 	 10�4) � 0.0695 nm � 0.7 Å

	 df/f 	

� 2.31 	 10�4

�f

f
�

(6.67 	 10�11 N�m2/kg2)(1.99 	 1030 kg)

(6.37 	 106 m)(3.00 	 108 m/s)2

G � 6.67 	 10�11 N�m2/kg2

R s � radius of Earth � 6.37 	 106 m
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Figure 3.27 The Cygnus X-1 black hole. The stellar wind from HDE 226868 pours
matter onto a huge disk around its black hole companion. The infalling gases are
heated to enormous temperatures as they spiral toward the black hole. The gases
are so hot that they emit vast quantities of x-rays. 

HDE 226868

Black hole

X-rays
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heating of the infalling matter as it circulates, is compressed, and eventually falls
into the black hole. Such an intense nonluminous point source of x-rays has been
detected in the constellation of the Swan. This source, designated Cygnus X-1, is
believed by most astronomers to be a black hole; it possesses a luminosity, or
power output, of 1030 W in the 2- to 10-keV x-ray range.

Recently, even more convincing evidence of a black hole has been obtained from
radio telescope measurements of a dust torus rotating rapidly around a huge central
mass at the center of galaxy NGC 4258. (See Figure 3.28.) These observations pin-
point a mass of 39 million solar masses within a radius of 4.0 � 1015 m, a density
10,000 times greater than any known cluster of stars and almost certainly high
enough to produce a black hole. The central gravitational mass of 39 million solar
masses was calculated from the observed speed of rotation of the dust torus, which
is about 1 million m/s. And we needn’t even go so far away as NGC 4258. Evidence
of a black hole at the center of our own galaxy has been rapidly accumulating, indi-
cating that a black hole of about 3 million solar masses, concealed by dust, is located
in the constellation Sagittarius.18

SUMMARY

The work of Maxwell and Hertz in the late 1800s conclusively showed that
light, heat radiation, and radio waves were all electromagnetic waves differing
only in frequency and wavelength. Thus it astonished scientists to find that the
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18See the interesting book The Black Hole at the Center of our Galaxy, by Fulvio Melia, Princeton
University Press, 2003.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

Image not available due to copyright restrictions

 




