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Relativity II

2.1 Relativistic Momentum and the
Relativistic Form of Newton’s Laws

2.2 Relativistic Energy
2.3 Mass as a Measure of Energy
2.4 Conservation of Relativistic

Momentum and Energy

2.5 General Relativity
Summary
WEB ESSAY The Renaissance of General

Relativity, by Clifford M. Will

Chapter Outline

In this chapter we extend the theory of special relativity to classical mechan-
ics, that is, we give relativistically correct expressions for momentum, Newton’s
second law, and the famous equivalence of mass and energy. The final section,
on general relativity, deals with the physics of accelerating reference frames
and Einstein’s theory of gravitation.

2.1 RELATIVISTIC MOMENTUM AND
THE RELATIVISTIC FORM OF
NEWTON’S LAWS

The conservation of linear momentum states that when two bodies collide, the
total momentum remains constant, assuming the bodies are isolated (that is,
they interact only with each other). Suppose the collision is described in a
reference frame S in which momentum is conserved. If the velocities of the
colliding bodies are calculated in a second inertial frame S� using the Lorentz
transformation, and the classical definition of momentum p � mu applied,
one finds that momentum is not conserved in the second reference frame.
However, because the laws of physics are the same in all inertial frames,
momentum must be conserved in all frames if it is conserved in any one. This
application of the principle of relativity demands that we modify the classical
definition of momentum.

To see how the classical form p � mu fails and to determine the correct 
relativistic definition of p, consider the case of an inelastic collision 
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between two particles of equal mass. Figure 2.1a shows such a collision for 
two identical particles approaching each other at speed v as observed in an 
inertial reference frame S. Using the classical form for momentum, p � mu
(we use the symbol u for particle velocity rather than v, which is reserved 
for the relative velocity of two reference frames), the observer in S finds 
momentum is conserved as shown in Figure 2.1a. Suppose we now view 
things from an inertial frame S� moving to the right with speed v relative to 
S. In S� the new speeds are v�1, v�2 and V � (see Fig. 2.1b). If we use the Lorentz
velocity transformation

to find v�1, v�2 and V �, and the classical form for momentum, p � mu, will
momentum be conserved according to the observer in S�? To answer this ques-
tion we first calculate the velocities of the particles in S� in terms of the given
velocities in S.

Checking for momentum conservation in S�, we have

V � �
V � v

1 � (Vv/c2)
�

0 � v

1 � [(0)v/c2]
� �v

v�2 �
v2 � v

1 � (v2v/c2)
�

�v � v

1 � [(�v)(v)/c2]
�

�2v

1 � (v2/c2)

v�1 �
v1 � v

1 � (v1v/c2)
�

v � v

1 � (v2/c2)
� 0

u�x �
ux � v

1 � (uxv/c2)
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(a)
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Before After
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V = 0

(b)
2

mv ′1 = 0

1

m

Before

v ′2

After

21

V ′

Momentum is conserved according to S
p before = mv + m(–v) = 0
p after = 0

Momentum is not conserved according to S′
p′before =

p′after = –2mv

–2mv

1 + v2/c2

Figure 2.1 (a) An inelastic collision between two equal clay lumps as seen by an
observer in frame S. (b) The same collision viewed from a frame S� that is moving to
the right with speed v with respect to S.
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Thus, in the frame S�, the momentum before the collision is not equal to the
momentum after the collision, and momentum is not conserved.

It can be shown (see Example 2.6) that momentum is conserved in both S
and S�, (and indeed in all inertial frames), if we redefine momentum as

(2.1)

where u is the velocity of the particle and m is the proper mass, that is, the
mass measured by an observer at rest with respect to the mass.1 Note that
when u is much less than c, the denominator of Equation 2.1 approaches
unity and p approaches mu. Therefore, the relativistic equation for p
reduces to the classical expression when u is small compared with c.
Because it is a simpler expression, Equation 2.1 is often written p � �mu,

where . Note that this � has the same functional form as
the � in the Lorentz transformation, but here � contains u, the particle
speed, while in the Lorentz transformation, � contains v, the relative speed
of the two frames.

The relativistic form of Newton’s second law is given by the expression

(2.2)

where p is given by Equation 2.1. This expression is reasonable because it
preserves classical mechanics in the limit of low velocities and requires the
momentum of an isolated system (F � 0) to be conserved relativistically
as well as classically. It is left as a problem (Problem 3) to show that the rela-
tivistic acceleration a of a particle decreases under the action of a constant force
applied in the direction of u, as

From this formula we see that as the velocity approaches c, the acceleration
caused by any finite force approaches zero. Hence, it is impossible to acceler-
ate a particle from rest to a speed equal to or greater than c.

a �
F

m
 (1 � u2/c2)3/2

F �
dp

dt
�

d

dt
 (�mu)

� � 1/√1 � (u2/c2)

p �
mu

√1 � (u2/c2)

p �after � 2mV � � �2mv

p �before � mv�1 � mv�2 � m(0) � m � �2v

1 � (v2/c2) � �
�2mv

1 � (v2/c2)
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Definition of relativistic

momentum

1In this book we shall always take m to be constant with respect to speed, and we call m the speed
invariant mass, or proper mass. Some physicists refer to the mass in Equation 2.1 as the rest mass, 

m0, and call the term the relativistic mass. Using this description, the relativistic
mass is imagined to increase with increasing speed. We exclusively use the invariant mass m
because we think it is a clearer concept and that the introduction of relativistic mass leads to no
deeper physical understanding.

m0/√1 � (u2/c2)
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2.2 RELATIVISTIC ENERGY

We have seen that the definition of momentum and the laws of motion required
generalization to make them compatible with the principle of relativity. This
implies that the relativistic form of the kinetic energy must also be modified.

To derive the relativistic form of the work–energy theorem, let us start with
the definition of work done by a force F and make use of the definition of rela-
tivistic force, Equation 2.2. That is,

(2.5)

where we have assumed that the force and motion are along the x-axis.
To perform this integration and find the work done on a particle or the
relativistic kinetic energy as a function of the particle velocity u, we first
evaluate dp/dt:

(2.6)
dp

dt
�

d

dt

mu

√1 � (u2/c2)
�

m � du

dt �
[1 � (u2/c2)]3/2

W � �x2

x1

F dx � �x2

x1

dp

dt
dx
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is given by F � qu � B. If u is perpendicular to B, the
force is radially inward, and the particle moves in a cir-
cle of radius R with �u � constant. From Equation 2.2 we
have

Solution Because the magnetic force is always per-
pendicular to the velocity, it does no work on the parti-
cle, and hence the speed, u, and � are both constant
with time. Thus, the magnitude of the force on the
particle is

(2.3)

Substituting F � quB and �du/dt � � u2/R (the usual defi-
nition of centripetal acceleration) into Equation 2.3, we
can solve for p � �mu. We find

(2.4)

Equation 2.4 shows that the momentum of a relativistic
particle of known charge q may be determined by mea-
suring its radius of curvature R in a known magnetic
field, B. This technique is routinely used to determine
the momentum of subatomic particles from photographs
of their tracks in space.

p � �mu � qBR

F � �m � du

dt �

F �
dp

dt
�

d

dt
(�mu)

EXAMPLE 2.1 Momentum of an Electron

An electron, which has a mass of 9.11 � 10�31 kg, moves
with a speed of 0.750c. Find its relativistic momentum
and compare this with the momentum calculated from
the classical expression.

Solution Using Equation 2.1 with u � 0.750c, we have

The incorrect classical expression would give

Hence, for this case the correct relativistic result is 50%
greater than the classical result!

EXAMPLE 2.2 An Application of the
Relativistic Form of F � dp/dt:
The Measurement of the
Momentum of a High-Speed
Charged Particle

Suppose a particle of mass m and charge q is injected
with a relativistic velocity u into a region containing a
magnetic field B. The magnetic force F on the particle

momentum � mu � 2.05 � 10�22 kg�m/s

� 3.10 � 10�22 kg�m/s

�
(9.11 � 10�31 kg)(0.750 � 3.00 � 108 m/s)

√1 � [(0.750c)2/c2]

p �
mu

√1 � (u2/c2)
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Substituting this expression for dp/dt and dx � u dt into Equation 2.5 gives

where we have assumed that the particle is accelerated from rest to some final
velocity u . Evaluating the integral, we find that

(2.7)

Recall that the work–energy theorem states that the work done by all forces
acting on a particle equals the change in kinetic energy of the particle.
Because the initial kinetic energy is zero, we conclude that the work W in Eq.
2.7 is equal to the relativistic kinetic energy K, that is,

(2.8)

At low speeds, where u/c 		 1, Equation 2.8 should reduce to the classical
expression K � mu2. We can check this by using the binomial expansion
(1 � x2)�1/2 	 1 � x2 � � � �, for x 		 1, where the higher-order powers of x
are ignored in the expansion. In our case, x � u/c, so that

Substituting this into Equation 2.8 gives

which agrees with the classical result. A graph comparing the relativistic and
nonrelativistic expressions for u as a function of K is given in Figure 2.2.
Note that in the relativistic case, the particle speed never exceeds c, regard-

K 	 mc2 �1 �
1
2

u2

c2 � �� �� � mc2 �
1
2

mu2

1

√1 � (u2/c2)
� �1 �

u2

c2 �
�1/2

	 1 �
1
2

u2

c2 � � � �

1
2

1
2

K �
mc2

√1 � (u2/c2)
� mc2

W �
mc2

√1 � (u2/c2)
� mc2

W � �x2

x1

m � du

dt �u dt

[1 � (u2/c2)]3/2 � m �u

0

u du

[1 � (u2/c2)]3/2
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Relativistic kinetic energy

0.5 1.0 1.5 2.0 K/mc2

Relativistic
case0.5c

1.0c

1.5c

2.0c

u

Nonrelativistic
case

u  = √2K/m

u  = c √1 – (K/mc2 + 1)–2

Figure 2.2 A graph comparing the relativistic and nonrelativistic expressions for
speed as a function of kinetic energy. In the relativistic case, u is always less than c.
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less of the kinetic energy, as is routinely confirmed in very high energy par-
ticle accelerator experiments. The two curves are in good agreement when
u 		 c .

It is instructive to write the relativistic kinetic energy in the form

K � �mc2 � mc2 (2.9)

where

The constant term mc2, which is independent of the speed, is called the rest
energy of the particle. The term �mc2, which depends on the particle speed,
is therefore the sum of the kinetic and rest energies. We define �mc2 to be the
total energy E, that is,

(2.10)

The expression E � �mc2 is Einstein’s famous mass–energy equivalence
equation, which shows that mass is a measure of the total energy in all
forms. Although we have been considering single particles for simplicity,
Equation 2.10 applies to macroscopic objects as well. In this case it has the re-
markable implication that any kind of energy added to a “brick” of matter—
electric, magnetic, elastic, thermal, gravitational, chemical—actually increases
the mass! Several end-of-chapter questions and problems explore this idea
more fully. Another implication of Equation 2.10 is that a small mass corre-
sponds to an enormous amount of energy because c2 is a very large number.
This concept has revolutionized the field of nuclear physics and is treated in
detail in the next section.

In many situations, the momentum or energy of a particle is measured
rather than its speed. It is therefore useful to have an expression relating
the total energy E to the relativistic momentum p. This is accomplished using
E � �mc2 and p � �mu. By squaring these equations and subtracting, we can
eliminate u (Problem 7). The result, after some algebra, is

(2.11)

When the particle is at rest, p � 0, and so we see that E � mc2. That is, the to-
tal energy equals the rest energy. For the case of particles that have zero mass,
such as photons (massless, chargeless particles of light), we set m � 0 in Equa-
tion 2.11, and find

(2.12)

This equation is an exact expression relating energy and momentum for pho-
tons, which always travel at the speed of light.

Finally, note that because the mass m of a particle is independent of its mo-
tion, m must have the same value in all reference frames. On the other hand,
the total energy and momentum of a particle depend on the reference frame
in which they are measured, because they both depend on velocity. Because m
is a constant, then according to Equation 2.11 the quantity E2 � p2c2 must

E � pc

E2 � p 2c2 � (mc2)2

E � �mc2 � K � mc2

� �
1

√1 � u2/c2

46 CHAPTER 2 RELATIVITY II

Mass–energy equivalence

Energy–momentum relation

Definition of total energy
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have the same value in all reference frames. That is, E2 � p2c2 is invariant
under a Lorentz transformation.

When dealing with electrons or other subatomic particles, it is convenient
to express their energy in electron volts (eV), since the particles are usually
given this energy by acceleration through a potential difference. The conver-
sion factor is

1 eV � 1.60 � 10�19 J

For example, the mass of an electron is 9.11 � 10�31 kg. Hence, the rest en-
ergy of the electron is

mec
2 � (9.11 � 10�31 kg)(3.00 � 108 m/s)2 � 8.20 � 10�14 J

Converting this to electron volts, we have

mec
2 � (8.20 � 10�14 J)(1 eV/1.60 � 10�19 J) � 0.511 MeV

where 1 MeV � 106 eV. Finally, note that because mec
2 � 0.511 MeV, the mass

of the electron may be written me � 0.511 MeV/c2, accounting for the prac-
tice of measuring particle masses in units of MeV/c2.

2.2 RELATIVISTIC ENERGY 47

Solving for u gives

(c) Determine the kinetic energy of the proton in
electron volts.

Solution

K � E � mpc2 � 3mpc2 � mpc2 � 2mpc2

Because mpc2 � 938 MeV, K � 1876 MeV.
(d) What is the proton’s momentum?

Solution We can use Equation 2.11 to calculate the
momentum with E � 3mpc2:

Note that the unit of momentum is left as MeV/c for
convenience.

p � √8
mpc2

c
� √8

(938 MeV)
c

� 2650
MeV

c

p2c2 � 9(mpc2)2 � (mpc2)2 � 8(mpc2)2

E2 � p2c2 � (mpc2)2 � (3mpc2)2

u �
√8
3

c � 2.83 � 108 m/s

�1 �
u2

c2 � �
1
9
  or  u2

c2 �
8
9

3 �
1

√1 � (u2/c2)

E � 3mpc2 �
mpc2

√1 � (u2/c2)

EXAMPLE 2.3 The Energy of a Speedy Electron

An electron has a speed u � 0.850c. Find its total energy
and kinetic energy in electron volts.

Solution Using the fact that the rest energy of the elec-
tron is 0.511 MeV together with E � �mc2 gives

The kinetic energy is obtained by subtracting the rest
energy from the total energy:

K � E � mec
2 � 0.970 MeV � 0.511 MeV � 0.459 MeV

EXAMPLE 2.4 The Energy of a Speedy Proton

The total energy of a proton is three times its rest 
energy.

(a) Find the proton’s rest energy in electron volts.

Solution

rest energy � mpc2

� (1.67 � 10�27 kg)(3.00 � 108 m/s)2

� (1.50 � 10�10 J)(1 eV/1.60 � 10�19 J)

� 938 MeV

(b) With what speed is the proton moving?

Solution Because the total energy E is three times the
rest energy, E � �mc2 gives

� 1.90(0.511 MeV) � 0.970 MeV

E �
mec

2

√1 � (u2/c2)
�

0.511 MeV

√1 � [(0.85c)2/c2]
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2.3 MASS AS A MEASURE OF ENERGY

The equation E � �mc2 as applied to a particle suggests that even when a parti-
cle is at rest (� � 1) it still possesses enormous energy through its mass. The
clearest experimental proof of the equivalence of mass and energy occurs in
nuclear and elementary particle interactions in which both the conversion of
mass into energy and the conversion of energy into mass take place. Because of
this convertibility from the currency of mass into the currency of energy, we
can no longer accept the separate classical laws of the conservation of mass and
the conservation of energy; we must instead speak of a single unified law, the
conservation of mass–energy. Simply put, this law requires that the sum of
the mass–energy of a system of particles before interaction must equal
the sum of the mass–energy of the system after interaction where the
mass–energy of the ith particle is defined as the total relativistic energy

To understand the conservation of mass–energy and to see how the relativistic
laws possess more symmetry and wider scope than the classical laws of momen-
tum and energy conservation, we consider the simple inelastic collision
treated earlier.

As one can see in Figure 2.1a, classically momentum is conserved but kinetic
energy is not because the total kinetic energy before collision equals mu2 and
the total kinetic energy after is zero (we have replaced the v shown in Figure
2.1 with u). Now consider the same two colliding clay lumps using the relativis-
tic mass–energy conservation law. If the mass of each lump is m, and the mass
of the composite object is M, we must have

or

(2.13)

Because , the composite mass M is greater than the sum
of the two individual masses! What’s more, it is easy to show that the mass
increase of the composite lump, 
M � M � 2m, is equal to the sum of the
incident kinetic energies of the colliding lumps (2K) divided by c2:

(2.14)

Thus, we have an example of the conversion of kinetic energy to mass, and the
satisfying result that in relativistic mechanics, kinetic energy is not lost in an
inelastic collision but shows up as an increase in the mass of the final composite
object. In fact, the deeper symmetry of relativity theory shows that both relativis-
tic mass– energy and momentum are always conserved in a collision, whereas classical
methods show that momentum is conserved but kinetic energy is not unless the


M �
2K

c2 �
2
c2 � mc2

√1 � (u2/c2)
� mc2�

√1 � (u2/c2) 	 1

M �
2m

√1 � (u2/c2)

mc2

√1 � (u2/c2)
�

mc2

√1 � (u2/c2)
� Mc2

Ebefore � Eafter

Ei �
mic

2

√1 � (u2
i /c2)

48 CHAPTER 2 RELATIVITY II

Conservation of mass–energy
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collision is perfectly elastic. Indeed, as we show in Example 2.6, relativistic
momentum and energy are inextricably linked because momentum conserva-
tion only holds in all inertial frames if mass–energy conservation also holds.

2.3 MASS AS A MEASURE OF ENERGY 49

Hence, momentum is conserved in S. Note that we have
used M as the mass of the two combined masses after the
collision and allowed for the possibility in relativity that
M is not necessarily equal to 2m.

In frame S�:

After some algebra, we find

and we obtain

To show that momentum is conserved in S�, we use the fact
that M is not simply equal to 2m in relativity. As shown, the
combined mass, M, formed from the collision of two parti-
cles, each of mass m moving toward each other with speed
v, is greater than 2m. This occurs because of the equiva-
lence of mass and energy, that is, the kinetic energy of the
incident particles shows up in relativity theory as a tiny
increase in mass, which can actually be measured as ther-
mal energy. Thus, from Equation 2.13, which results from
imposing the conservation of mass–energy, we have

Substituting this result for M into p�after, we obtain

Hence, momentum is conserved in both S and S�,
provided that we use the correct relativistic definition of
momentum, p � �mu, and assume the conservation of
mass–energy.

�
�2mv

1 � (v2/c2)
� p�before

p�after �
2m

√1 � (v2/c2)

�v

√1 � (v2/c2)

M �
2m

√1 � (v2/c2)

p�after � �MV � �
M(�v)

√1 � [(�v)2/c2]
�

�Mv

√1 � v2/c2

p�before �
m(1 � v2/c2)
(1 � v2/c2) � �2v

1 � v2/c2 � �
�2mv

(1 � v2/c2)

m

{√1 � [2v/1 � (v2/c2)]2}(1/c2)
�

m(1 � v2/c2)
(1 � v2/c2)

�
m

{√1 � [�2v/1 � (v2/c2)]2}(1/c2)
� � �2v

1 � v2/c2 �

p�before � �mv�1 � �mv�2 �
(m)(0)

√1 � (0)2/c2

EXAMPLE 2.5

(a) Calculate the mass increase for a completely inelastic
head-on collision of two 5.0-kg balls each moving toward
the other at 1000 mi/h (the speed of a fast jet plane).
(b) Explain why measurements on macroscopic objects
reinforce the relativistically incorrect beliefs that mass is
conserved (M � 2m) and that kinetic energy is lost in an
inelastic collision.

Solution (a) u � 1000 mi/h � 450 m/s, so

Because u2/c2 		 1, substituting

in Equation 2.14 gives

(b) Because the mass increase of 1.1 � 10�11 kg is an un-
measurably minute fraction of 2m (10 kg), it is quite nat-
ural to believe that the mass remains constant when
macroscopic objects suffer an inelastic collision. On the
other hand, the change in kinetic energy from mu2 to 0
is so large (106 J) that it is readily measured to be lost in
an inelastic collision of macroscopic objects.

Exercise 1 Prove that 
M � 2
K/c2 for a completely
inelastic collision, as stated.

EXAMPLE 2.6

Show that use of the relativistic definition of momentum

leads to momentum conservation in both S and S� for
the inelastic collision shown in Figure 2.1.

Solution In frame S:

p after � �MV � (�M )(0) � 0

pbefore � �mv � �m(�v) � 0

p �
mu

√1 � (u2/c2)

� (5.0 kg)(1.5 � 10�6)2 � 1.1 � 10�11 kg

	 2m �1 �
1
2

u2

c2 � 1� 	
mu2

c2


M � 2m � 1

√1 � (u2/c2)
� 1�

1

√1 � (u2/c2)
	 1 �

1
2

u2

c2

u

c
�

4.5 � 102 m/s
3.0 � 108 m/s

� 1.5 � 10�6
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The absence of observable mass changes in inelastic collisions of macro-
scopic objects impels us to look for other areas to test this law, where par-
ticle velocities are higher, masses are more precisely known, and forces
are stronger than electrical or mechanical forces. This leads us to consider
nuclear reactions, because nuclear masses can be measured very precisely
with a mass spectrometer, nuclear forces are much stronger than electrical
forces, and decay products are often produced with extremely high
velocities.

Perhaps the most direct confirmation of the conservation of mass –
energy occurs in the decay of a heavy radioactive nucleus at rest into several
lighter particles emitted with large kinetic energies. For such a nucleus
of mass M undergoing fission into particles with masses M1, M2, and M3
and having speeds u1, u 2, and u3, conservation of total relativistic energy
requires

(2.15)

Because the square roots are all less than 1, M � M1 � M2 � M3 and the loss
of mass, M � (M1 � M2 � M3), appears as energy of motion of the products.
This disintegration energy released per fission is often denoted by the sym-
bol Q and can be written for our case as

(2.16)Q � [M � (M1 � M2 � M3)]c2 � 
mc2

Mc2 �
M1c2

√1 � (u2
1/c2)

�
M2c2

√1 � (u2
2/c2)

�
M3c2

√1 � (u2
3/c2)

50 CHAPTER 2 RELATIVITY II

Fission


m � MU � (MRb � MCs � 3mn) � 236.045563 u

�(89.914811 u � 142.927220 u

� (3)(1.008665) u)

� 0.177537 u � 2.9471 � 10�28 kg

Therefore, the reaction products have a combined mass
that is about 3.0 � 10�28 kg less than the initial uranium
mass.
(c) The energy given off per fission event is just 
mc2.
This is most easily calculated if 
m is first converted to
mass units of MeV/c2. Because 1 u � 931.5 MeV/c2,

(d) To find the energy released by the fission of 1 kg of
uranium we need to calculate the number of nuclei, N,
contained in 1 kg of 236U.

� 165.4 MeV

Q � 
mc2 � 165.4
MeV

c2 c2 � 165.4 MeV

� 165.4 MeV/c2


m � (0.177537 u)(931.5 MeV/c2)

EXAMPLE 2.7 A Fission Reaction

An excited 236
92U nucleus decays at rest into 90

37Rb, 143
55Cs,

and several neutrons, 1
0n. (a) By conserving charge and

the total number of protons and neutrons, write a bal-
anced reaction equation and determine the number of
neutrons produced. (b) Calculate by how much the
combined “offspring” mass is less than the “parent”
mass. (c) Calculate the energy released per fission.
(d) Calculate the energy released in kilowatt hours when
1 kg of uranium undergoes fission in a power plant that
is 40% efficient.

Solution (a) In general, an element is represented by
the symbol AZX, where X is the symbol for the element, A
is the number of neutrons plus protons in the nucleus
(mass number), and Z is the number of protons in the
nucleus (atomic number). Conserving charge and num-
ber of nucleons gives

So three neutrons are produced per fission.
(b) The masses of the decay particles are given in 
Appendix B in terms of atomic mass units, u, where 
1 u � 1.660 � 10�27 kg � 931.5 MeV/c2.

92
236U 9:

90
37Rb � 143

55Cs � 31
0n
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2.3 MASS AS A MEASURE OF ENERGY 51

We have considered the simplest case showing the conversion of mass
to energy and the release of this nuclear energy: the decay of a heavy
unstable element into several lighter elements. However, the most common
case is the one in which the mass of a composite particle is less than the
sum of the particle masses composing it. By examining Appendix B, you
can see that the mass of any nucleus is less than the sum of its component
neutrons and protons by an amount 
m . This occurs because the nuclei
are stable, bound systems of neutrons and protons (bound by strong at-
tractive nuclear forces), and in order to disassociate them into separate
nucleons an amount of energy 
mc 2 must be supplied to the nucleus.
This energy or work required to pull a bound system apart, leaving its
component parts free of attractive forces and at rest, is called the
binding energy, BE. Thus, we describe the mass and energy of a bound
system by the equation

(2.17)

where M is the bound system mass, the mi’s are the free component particle
masses, and n is the number of component particles. Two general com-
ments are in order about Equation 2.17. First, it applies quite generally to
any type of system bound by attractive forces, whether gravitational, electri-
cal (chemical), or nuclear. For example, the mass of a water molecule is less
than the combined mass of two free hydrogen atoms and a free oxygen
atom, although the mass difference cannot be directly measured in this
case. (The mass difference can be measured in the nuclear case because the
forces and the binding energy are so much greater.) Second, Equation 2.17
shows the possibility of liberating huge quantities of energy, BE, if one reads
the equation from right to left; that is, one collides nuclear particles with a
small but sufficient amount of kinetic energy to overcome proton repulsion
and fuse the particles into new elements with less mass. Such a process is
called fusion, one example of which is a reaction in which two deuterium
nuclei combine to form a helium nucleus, releasing 23.9 MeV per fusion.
(See Chapter 14 for more on fusion processes.) We can write this reaction
schematically as follows:

2
1H � 2

1H 9:
4
2He � 23.9 MeV

Mc2 � BE � 

n

i�1
mic

2

� 1.68 � 1026 MeV

� (1.68 � 1026 MeV)(4.45 � 10�20 kWh/MeV)

� 7.48 � 106 kWh

Exercise 2 How long will this amount of energy keep a
100-W lightbulb burning?

Answer 	 8500 years.

The total energy produced, E, is

E � (efficiency)NQ

� (0.40)(2.55 � 1024 nuclei)(165 MeV/nucleus)

� 2.55 � 1024 nuclei

N �
(6.02 � 1023 nuclei/mol)

(236 g/mol)
 (1000 g)

Fusion

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight



2.4 CONSERVATION OF RELATIVISTIC
MOMENTUM AND ENERGY

So far we have considered only cases of the conservation of mass–energy. By
far, however, the most common and strongest confirmation of relativity theory
comes from the daily application of relativistic momentum and energy conser-
vation to elementary particle interactions. Often the measurement of momen-
tum (from the path curvature in a magnetic field—see Example 2.2) and
kinetic energy (from the distance a particle travels in a known substance
before coming to rest) are enough when combined with conservation of
momentum and mass–energy to determine fundamental particle properties
of mass, charge, and mean lifetime.

52 CHAPTER 2 RELATIVITY II

2Neutrino, from the Italian, means “little tiny neutral one.” Following this practice, neutron
should probably be neutrone (pronounced noo-tr n-eh)or “great big neutral one.”o

EXAMPLE 2.9 Measuring the Mass 
of the �� Meson

The �� meson (also called the pion) is a subatomic parti-
cle responsible for the strong nuclear force between pro-
tons and neutrons. It is observed to decay at rest into a

� meson (muon) and a neutrino,2 denoted v. Because
the neutrino has no charge and little mass (talk about
elusive!), it leaves no track in a bubble chamber. (A bub-
ble chamber is a large chamber filled with liquid hydro-
gen that shows the tracks of charged particles as a series
of tiny bubbles.) However, the track of the charged muon

Because the fractional loss of mass per molecule is
the same as the fractional loss per gram of water formed,
1.8 � 10�10 g of mass would be lost for each gram of
water formed. This is much too small a mass to be mea-
sured directly, and this calculation shows that nonconser-
vation of mass does not generally show up as a measur-
able effect in chemical reactions.
(c) The energy released when 1 gram of H2O is formed
is simply the change in mass when 1 gram of water is
formed times c2:

E � 
mc2 � (1.8 � 10�13 kg)(3.0 � 108 m/s)2 	 16 kJ

This energy change, as opposed to the decrease in
mass, is easily measured, providing another case similar
to Example 2.5 in which mass changes are minute but
energy changes, amplified by a factor of c 2, are easily
measured.

EXAMPLE 2.8

(a) How much lighter is a molecule of water than two
hydrogen atoms and an oxygen atom? The binding en-
ergy of water is about 3 eV. (b) Find the fractional loss of
mass per gram of water formed. (c) Find the total energy
released (mainly as heat and light) when 1 gram of water
is formed.

Solution (a) Equation 2.17 may be solved for the mass
difference as follows:

(b) To find the fractional loss of mass per molecule 
we divide 
m by the mass of a water molecule, �

18u � 3.0 � 10�26 kg:


m

MH2O
�

5.3 � 10�36 kg
3.0 � 10�26 kg

� 1.8 � 10�10

MH2O

�
(3.0 eV)(1.6 � 10�19 J/eV)

(3.0 � 108 m/s)2 � 5.3 � 10�36 kg


m � (mH � mH � mO) � MH2O �
BE

c2 �
3 eV

c2

is visible as it loses kinetic energy and comes to rest (Fig.
2.3). If the mass of the muon is known to be 106 MeV/c2,
and the kinetic energy, K , of the muon is measured to be
4.6 MeV from its track length, find the mass of the ��.

Solution The decay equation is ��
: 
� � v . Con-

serving energy gives

E� � Eu � Ev
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2.5 GENERAL RELATIVITY 53

Because the pion is at rest when it decays, and the neu-
trino has negligible mass,

(2.18)

Conserving momentum in the decay yields p
 � pv . Sub-
stituting the muon momentum for the neutrino momen-
tum in Equation 2.18 gives the following expression for
the rest energy of the pion in terms of the muon’s mass
and momentum:

(2.19)m�c2 � √(m
c2)2 � (p

2 c2) � p
c

m�c2 � √(m
c2)2 � (p

2c2) � pvc

Before After

π+

+ at rest

+

p +, K +

p , E
ν

ν

µπ µ

µ

ν

Figure 2.3 (Example 2.9) Decay of the pion at rest into
a neutrino and a muon.

2.5 GENERAL RELATIVITY

Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly
different properties: a gravitational attraction for other masses and an inertial
property that represents a resistance to acceleration. To designate these two at-
tributes, we use the subscripts g and i and write

The value for the gravitational constant G was chosen to make the magni-
tudes of mg and mi numerically equal. Regardless of how G is chosen,
however, the strict proportionality of mg and mi has been established ex-
perimentally to an extremely high degree: a few parts in 1012. Thus, it
appears that gravitational mass and inertial mass may indeed be exactly
proportional.

But why? They seem to involve two entirely different concepts: a force of
mutual gravitational attraction between two masses, and the resistance of a sin-
gle mass to being accelerated. This question, which puzzled Newton and many
other physicists over the years, was answered by Einstein in 1916 when he pub-
lished his theory of gravitation, known as the general theory of relativity. Because
it is a mathematically complex theory, we offer merely a hint of its elegance
and insight.

Inertial property:  
F � mia

Gravitational property:  Fg � G
m gm�g

r2

Finally, to obtain p
 from the measured value of the
muon’s kinetic energy, K
, we start with Equation 2.11,
E


2 � p

2c2 � (m
c2)2, and solve it for p


2c2:

p

2c2 � E 


2 � (m
c2)2 � (K
 � m
c2)2 � (m
c2)2

� K

2 � 2K
m
c2

Substituting this expression for p

2c2 into Equation 2.19

yields the desired expression for the pion mass in terms
of the muon’s mass and kinetic energy:

(2.20)

Finally, substituting m
c2 � 106 MeV and K
 � 4.6 MeV
into Equation 2.20 gives

m�c2 � 111 MeV � 31 MeV 	 1.4 � 102 MeV

Thus, the mass of the pion is

m� � 140 MeV/c2

This result shows why this particle is called a meson;
it has an intermediate mass (from the Greek word
mesos meaning “middle”) between the light electron
(0.511 MeV/c 2) and the heavy proton (938 MeV/c 2).

� √K 

2 � 2K
m
c2

m�c2 � √(m

2 c4 � K 


2 � 2K
m
c2
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