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Chapter Outline

Thermodynamics is based on macroscopic or bulk properties, such as tem-
perature and pressure of a gas. In this chapter we explain thermodynamic
properties in terms of the motion of individual atoms. The goal of this micro-
scopic approach, known as statistical physics, or statistical mechanics, is to
explain the relationships between thermodynamic bulk properties using a
more fundamental atomic picture. It is possible in principle to calculate
the detailed motion of individual atoms from Newton’s laws or the
Schrödinger equation. The number of atoms in the average size sample
(�1022 atoms/cm3), however, makes such calculations impractical, and we
must rely on a statistical approach.

In this chapter we introduce the laws of statistical physics and discuss sys-
tems of particles that obey either classical or quantum mechanics. We will
show how a fixed amount of energy may be shared or distributed among a
large number of particles in thermal equilibrium at temperature T. We investi-
gate this energy distribution by calculating the average number of particles
with a specific energy or, what is essentially the same thing, by finding the
probability that a single particle has a certain energy.
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10.1 THE MAXWELL–BOLTZMANN DISTRIBUTION

The satisfying explanation of thermodynamics in terms of averages over
atomic properties was given in the second half of the 1800s by three physicists:
James Clerk Maxwell, Ludwig Boltzmann, and Josiah Willard Gibbs. Maxwell, a
Scottish professor at Cambridge, was extremely impressed by the work of
Rudolf Clausius in explaining the apparent contradiction between the high
speed of gas molecules at room temperature (about 400 m/s) and the slow
diffusion rate of a gas. Clausius had explained this riddle by reasoning that gas
molecules do not all travel at a single high speed, but that there is a well-
defined distribution of molecular speeds in a gas that depends on the gas tem-
perature; furthermore, the gas molecules collide and hence follow long zigzag
paths from one spot to another. Building on this idea, Maxwell was able to
derive the functional form of the equilibrium speed distribution, which is
the number of gas molecules per unit volume having speeds between v and
v � dv at a specific temperature. Applying the theory of statistics to this distri-
bution, Maxwell was able to calculate the temperature dependence of quanti-
ties such as the average molecular speed, the most probable speed, and the
dispersion, or width, of the speed distribution.

In 1872, Boltzmann, an Austrian professor at the University of Vienna, pro-
foundly impressed with Darwin’s ideas on evolution, took Maxwell’s work a
step further. He not only wanted to establish the properties of the equilibrium
or most probable distribution but he also wished to describe the evolution
in time of a gas toward the Maxwellian distribution—the so-called approach-
to-equilibrium problem. With the use of a time-dependent speed distribution
function and his kinetic equation, Boltzmann was able to show that a system
of particles that starts off with a non-Maxwellian speed distribution steadily
approaches and eventually achieves an equilibrium Maxwellian speed distribu-

Is the universe a gambling casino? (Courtesy of Tropicana Casino And Resort)

Ludwig Boltzmann (1844–1908),
an Austrian theoretical physicist.
(Courtesy AIP Niels Bohr Library,

Lande Collection)
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tion. Boltzmann, a staunch advocate of the reality of molecules, was subjected
to personal attacks at the hands of critics who rejected the molecular theory of
matter in the late 1800s. Depressed over the lack of universal acceptance of his
theories, he committed suicide in 1908.

Gibbs, in contrast to Boltzmann, led a rather sheltered and secluded life as
a professor at Yale. The son of a Yale professor, he lived his adult life in the
same house in New Haven in which he had grown up, quietly establishing sta-
tistical mechanics and the kinetic theory of gases on a rigorous mathematical
basis. Gibbs published his work in the obscure Transactions of the Connecticut
Academy of Arts and Sciences, and his work remained relatively unknown during
his lifetime.

Having briefly discussed the contributions of Maxwell, Boltzmann, and
Gibbs to statistical mechanics, let us examine the underlying assumptions and
explicit form of the Maxwell–Boltzmann distribution for a system of particles.
The basic assumptions are:

• The particles are identical in terms of physical properties but distinguish-
able in terms of position, path, or trajectory. It will be demonstrated later in
this chapter that this assumption is equivalent to the statement that the par-
ticle size is small compared with the average distance between particles.

• The equilibrium distribution is the most probable way of distributing the
particles among various allowed energy states subject to the constraints of
a fixed number of particles and fixed total energy.

• There is no theoretical limit on the number of particles in a given energy
state, but the density of particles is sufficiently low and the temperature
sufficiently high that no more than one particle is likely to be in a given
state at the same time.

To make these assumptions concrete, let us consider the analysis of a
manageable-sized system of distinguishable particles. In particular, consider
the distribution of a total energy of 8E among six particles where E is an indi-
visible unit of energy. To work with a diagram of reasonable size, Figure 10.1a
enumerates the 20 possible ways of sharing an energy of 8E among six indistin-
guishable particles. Since we are actually interested in distinguishable particles,
each of the 20 arrangements can be decomposed into many distinguishable
substates, or microstates, as shown explicitly for one arrangement in Figure
10.1b. The number of microstates for each of the 20 arrangements is given in
parentheses in Figure 10.1a and may be computed from the relation

(10.1)

where NMB is the Maxwell–Boltzmann number of microstates, N is the total
number of particles, and n1, n2, n3, . . . are the numbers of particles in occu-
pied states of a certain energy. This result may be understood by arguing that
the first energy level may be assigned in N ways, the second in N � 1 ways, and
so on, giving N ! in the numerator. The factor in the denominator of Equation
10.1 corrects for indistinguishable order arrangements when more than one
particle occupies the same energy level. As an example of the use of Equation
10.1, consider the energy distribution of six particles, with two having energy
1E, one having energy 6E, and three having energy 0. This energy distribution
is shown in the fourth diagram from the left in the top row of Figure 10.1a. In

NMB �
N !

n1!n2!n3! � � �
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10.1 THE MAXWELL–BOLTZMANN DISTRIBUTION 337

this case, N � 6, n1(0E) � 3 (that is, the number of particles in the 0 energy
state is 3), n2(1E) � 2, n3(2E) � 0, n4(3E) � 0, n5(4E) � 0, n6(5E) � 0,
n7(6E) � 1, n8(7E) � 0, and n9(8E) � 0. Since only the numbers of particles
in occupied levels appear in the denominator of Equation 10.1, we find that

8E

6E

4E

2E

  0

(6) (30) (30) (60) (30)

8E

6E

4E

2E

  0

(120) (60) (15) (120) (60)

8E

6E

4E

2E

  0

(180) (30) (60) (90) (180)

8E

6E

4E

2E

  0

(120) (6) (15) (60) (15)

FDFDFD

8E

6E

4E

2E

  0
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Particle label

(a)

(b)

Figure 10.1 (a) The 20 arrangements of six indistinguishable particles with a total en-
ergy of 8E. (b) The decomposition of the upper left-hand arrangement of part (a) into
six distinguishable states for distinguishable particles.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



the number of distinguishable microstates for this case is

in agreement with the number in parentheses in the diagram.
To find the average number of particles with a particular value of energy,

say Ej, we sum the number of particles with energy Ej in each arrangement
weighted by the probability of realizing that arrangement: 

(10.2)

Here is the average number of particles in the j th energy level, is the
number of particles found in the j th level in arrangement 1, is the num-
ber of particles found in the j th level in arrangement 2, p 1 is the probability
of observing arrangement 1, p 2 is the probability of arrangement 2, and so
on. Using the basic postulate of statistical mechanics, that any indi-
vidual microstate is as likely as any other individual microstate, we
may go on to calculate the various p’s and ’s. For example, since there are
a total of 1287 microstates (the sum of all the numbers in the parentheses),
and 6 distinguishable ways of obtaining arrangement 1 (the leftmost
arrangement in row 1 in Fig. 10.1a), we see that p1 � 6/1287. Using these
ideas and Equation 10.2, we calculate the average number of particles with
energy 0 as follows:

� (5)(6/1287) � (4)(30/1287) � (4)(30/1287) � (3)(60/1287)

� (4)(30/1287) � (3)(120/1287) � (2)(60/1287) � (4)(15/1287)

� (3)(120/1287) � (3)(60/1287) � (2)(180/1287)

� (1)(30/1287) � (3)(60/1287) � (2)(90/1287) � (2)(180/1287)

� (1)(120/1287) � (0)(6/1287) � (2)(15/1287)

� (1)(60/1287) � (0)(15/1287)

� 2.307

Now notice that it is easy to calculate the probability of finding a particle with
energy 0 if we imagine reaching randomly into a box containing the six parti-
cles with total energy 8E. This probability, p(0), is simply the average number
of particles with energy 0 divided by the total number of particles:

It is left as a problem (Problem 1) to show that the probabilities of finding a
particle with energies from 1E through 8E are as follows:

p(1E) � 0.256

p(2E) � 0.167

p(3E) � 0.0978

p(4E) � 0.0543

p(5E) � 0.0272

p(6E) � 0.0117

p(0) �
n0

6
�

2.307

6
� 0.385

n0

n j

nj2

nj1n j

nj � n j1p1 � n j2p2 � � � �

NMB �
6!

3!2!1!
� 60
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10.1 THE MAXWELL–BOLTZMANN DISTRIBUTION 339

p(7E) � 0.00388

p(8E) � 0.000777

These results, which are plotted in Figure 10.2, show that this simple system
follows an approximately exponential decrease in probability with energy.
(See Problem 5.) The rapid decrease in probability with increasing energy
shown in Figure 10.2 indicates that we are more likely to find the energy uni-
formly distributed among many particles of the system rather than concen-
trated in a few particles.

One may rigorously derive the Maxwell–Boltzmann distribution for a sys-
tem in thermal equilibrium at the absolute temperature T containing a large
number of particles by using calculus (see reference 1 in Suggestions for Fur-
ther Reading at the end of this chapter). The expression for the number of
ways of distributing the particles among the allowed energy states is maxi-
mized subject to two constraints. These constraints are (1) that the total num-
ber of particles is constant at any temperature and (2) that the total system en-
ergy is fixed at a given temperature. One finds an exponential form

(10.3)

where fMB is the Maxwell–Boltzmann probability of finding a particle with en-
ergy Ei , or in the language of statistical mechanics, the probability that a state
with energy Ei is occupied at the absolute temperature T. If the number of states
with the same energy Ei is denoted by gi (gi is called the degeneracy or statisti-
cal weight), then the number of particles, ni , with energy Ei is equal to the prod-
uct of the statistical weight and the probability that the state Ei is occupied, or

ni � gi fMB (10.4)

The parameter A in Equation 10.3 is a normalization coefficient, which is simi-
lar to the normalization constant in quantum physics. A is determined by re-
quiring the number of particles in the system to be constant, or

N � ni (10.5)

where N is the total number of particles in the system.
When the allowed energy states are numerous and closely spaced, the dis-

crete quantities are replaced by continuous functions as follows:

where g(E) is the density of states or the number of energy states per unit
volume in the interval dE. In a similar manner, Equations 10.4 and 10.5 may
be replaced as follows:

ni � gi fMB 9: n(E) dE � g(E) fMB(E)dE (10.6)

(10.7)

where n(E)dE is the number of particles per unit volume with energies be-
tween E and E � dE. Note that Equations 10.6 and 10.7 may also be used for a
system of quantum particles, provided that g(E) and fMB(E) are replaced with
the appropriate density of states and quantum distribution functions.

N � � ni 9:

N

V
� ��

0
n(E) dE � ��

0
g(E)fMB(E)dE

fMB 9: Ae�E/kBT

gi 9: g(E)

�

fMB � Ae �Ei/kBT
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Figure 10.2 The distribution
function for an assembly of six
distinguishable particles with a
total energy of 8E.
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340 CHAPTER 10 STATISTICAL PHYSICS

depends only on the initial population, since there are no

restrictions on the number of particles in the final state.
Returning to the calculation of the emission strength,
S, we find the relative values:

In reality, the transition probabilities depend on
the wavefunctions of the states involved, but to sim-
plify matters we assume equal probabilities of transi-
tion; that is, P(2 : 1) � P(3 : 1) � P(3 : 2). This
yields

If the emission lines are narrow, the measured heights of
the 3 : 1 and 3 : 2 lines will be 75% of the height of
the 2 : 1 line, as shown in Figure 10.3. For broader
lines, the area under the peaks must be used as the
experimental measure of emission strength.

S(3 : 2)

S(2 : 1)
� 0.75

� 0.75

S(3 : 1)

S(2 : 1)
�

n3

n2
�

g3

g2
e(E2�E3)/kBT �

18

8
e�1.89/1.73

S(3 : 2)

S(2 : 1)
�

n3P(3 : 2)

n2P(2 : 1)

S(3 : 1)

S(2 : 1)
�

n3P(3 : 1)

n2P(2 : 1)

EXAMPLE 10.1 Emission Lines from 
Stellar Hydrogen

(a) Find the populations of the first and second excited
states relative to the ground state for atomic hydrogen
at room temperature, assuming that hydrogen obeys
Maxwell–Boltzmann statistics.

Solution For a gas at ordinary pressures, the atoms
maintain the discrete quantum levels of isolated atoms.
Recall that the discrete energy levels of atomic hydrogen
are given by En � (�13.6/n2) eV and the degeneracy by
gn � 2n2. Thus we have

Using Equation 10.4 gives

The ratio of n3/n1 will be even smaller. Therefore, essen-
tially all atoms are in the ground state at 300 K.

(b) Find the populations of the first and second ex-
cited states relative to the ground state for hydrogen
heated to 20,000 K in a star.

Solution When a gas is at very high temperatures (as in
a flame, under electric discharge, or in a star), detectable
numbers of atoms are in excited states. In this case, 
T � 20,000 K, kBT � 1.72 eV, and we find

(c) Find the emission strengths of the spectral lines
corresponding to the transitions E3 : E1 and E3 : E2

relative to E2 : E1 at 20,000 K, assuming equal probabil-
ity of transition for E3 : E1, E3 : E2, and E2 : E1.

Solution The strength of an emission or absorption
line is proportional to the number of atomic transi-
tions per unit time. For particles obeying Maxwell –
Boltzmann statistics, the number of transitions per unit
time from some initial state (i) to some final state
(f) equals the product of the population of the initial
state and the probability for the transition i : f. Note
that the transition rate for particles obeying MB statistics

n3

n1
�

g3

g1
e(E1�E 3)/k BT � 9e�12.1/1.72 � 0.0807

n2

n1
�

g2

g1
e(E1�E2)/k BT � 4e�10.2/1.72 � 0.0107

� 4e�395 � 0

�
8

2
 exp {(�10.2 eV)/(8.617 � 10�5 eV/K)(300 K)}

n2

n1
�

g2Ae�E2/kBT

g1Ae�E1/kBT �
g2

g1
e(E1�E2)/kBT

Second excited state: E3 � �1.51 eV  g3 � 18

First excited state: E2 � �3.40 eV  g2 � 8

Ground state: E1 � �13.6 eV  g1 � 2

λ

Detector
output

2
1.0

0.75

0.50

0.25

0

1

3 1 3 2

Figure 10.3 The predicted emission spectrum for the
2 : 1, 3 : 1, and 3 : 2 transitions for atomic hydrogen
at 20,000 K.
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The Maxwell Speed Distribution for Gas
Molecules in Thermal Equilibrium at Temperature T

Maxwell’s important formula for the equilibrium speed distribution, or the
number of molecules with speeds between v and v � dv in a gas at temperature
T, may be found by using the Maxwell–Boltzmann distribution in its continu-
ous form (Eqs. 10.6 and 10.7). In particular, we shall show that

(10.8)

where n(v)dv is the number of gas molecules per unit volume with speeds be-
tween v and v � dv, N/V is the total number of molecules per unit volume, m
is the mass of a gas molecule, kB is Boltzmann’s constant, and T is the absolute
temperature. This speed distribution function is sketched in Figure 10.4. The
v2 term determines the behavior of the distribution as v : 0, and the expo-
nential term determines what happens as v : �.

For an ideal gas of point particles (no internal structure and no interac-
tions between particles), the energy of each molecule consists only of transla-
tional kinetic energy and we have

for each molecule. Since the gas molecules have speeds that are continuously
distributed from 0 to � , the energy distribution of molecules is also continu-
ous and we may write the number of molecules per unit volume with energy
between E and E � dE as

To find the density of states, g(E), we introduce the concept of velocity
space. According to this idea, the velocity of each molecule may be repre-
sented by a velocity vector with components vx , vy , and vz or by a point in veloc-
ity space with coordinate axes vx, vy, and vz (Fig. 10.5). From Figure 10.5 we
note that the number of states f(v)dv with speeds between v and v � dv is pro-
portional to the volume of the spherical shell between v and v � dv:

f(v) dv � C 4�v2 dv (10.9)

where C is some constant. Because E � mv2, each speed v corresponds to a
single energy E, and the number of energy states, g(E)dE, with energies
between E and E � dE is the same as the number of states with speeds between
v and v � dv. Thus,

g(E) dE � f(v) dv � C4�v2 dv

Substituting this expression for g(E)dE into our expression for n(E)dE, we
obtain

where the constant C has been absorbed into the normalization coefficient A.
Since the number of molecules with energy between E and E � dE equals the
number of molecules with speed between v and v � dv, we may write

(10.10)n(E)dE � n(v)dv � A4�v2e�mv2/2kBT dv

n(E)dE � A4�v2e�mv2/2kBT dv

1
2

n(E)dE � g(E)f MB(E)dE � g(E)Ae�mv 2/2kBT dE

E � 1
2mv2

n(v)dv �
4�N

V � m

2�kBT �
3/2

v2e�mv2/2kBTdv

10.1 THE MAXWELL–BOLTZMANN DISTRIBUTION 341

v
vmp

vrms

n(v)

v

∆v

n(v)

Figure 10.4 The speed distrib-
ution of gas molecules at some
temperature. The number of
molecules in the range �v is
equal to the area of the shaded
rectangle, n(v)�v. The most
probable speed, vmp, the average
speed, , and the root mean
square speed, vrms, are indicated.

v

v = constant

vy

vx

vx

vz

vz

vy

dv

v

Figure 10.5 Velocity space.
The number of states with
speeds between v and v � dv is
proportional to the volume of a
spherical shell with radius v and
thickness dv.
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To find A we use the fact that the total number of particles per unit volume
is N/V :

(10.11)

Because

we find with j � 1 and a � m/2kBT

or

Therefore, the normalization coefficient A depends on the number of par-
ticles per unit volume, the particle mass, and the temperature. Substituting
this value for A into Equation 10.10, we finally obtain Maxwell’s famous
1859 result:

(10.8)

To find the average speed, , indicated in Figure 10.4, we multiply n(v)dv
by v, integrate over all speeds from 0 to �, and divide the result by the total
number of molecules per unit volume:

Using the definite integral formula

gives

(10.12)

This important result, first proved by Maxwell, shows that the average speed of
the molecules in a gas is proportional to the square root of the temperature
and inversely proportional to the square root of the molecular mass. The root
mean square speed may be found by finding the average of v2, denoted ,
and then taking its square root. Consequently, we have

v2 �

��

0
v2n(v)dv

N/V
� 4� � m

2�kBT �
3/2 ��

0
v4e�mv2/2k BT dv

v2

v � 4� � m

2�kBT �
3/2

� 1

2 � �
2kBT

m �
2

� √ 8kBT

� m

��

0
z3e�az2

dz �
1

2a2

v �

��

0
vn(v)dv

N/V
�

4�(N/V )(m/2�kBT)3/2 ��

0
v3e�mv2/2kBT dv

N/V

v

n(v)dv �
4�N

V � m

2�kBT �
3/2

v2e�mv2/2kBT dv

A �
N

V � m

2�kBT �
3/2

N

V
�

(4�A)

22(m/2kBT) √ � 2kBT

m
� A � 2�kBT

m �
3/2

��

0
z2je�az2

dz �
1�3�5 � � �  (2j � 1)

2j�1a j √ �

a
  j � 1, 2, 3, � � �

N

V
� ��

0
n(v)dv � ��

0
4�Av2e�mv2/2kBT dv
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Using the definite integral formula

gives

(10.13)

Since the root mean square speed, vrms, is defined as , we have

(10.14)

Note that vrms is not the same as the average speed, , but is about 10% greater,
as indicated in Figure 10.4. The derivation of the most probable speed, vmp, is
left to Problem 2.

The Equipartition of Energy

As a final remark to this section, we observe that Equation 10.13 may be rewrit-
ten as

In this form, Equation 10.13 is consistent with the result known as the
equipartition of energy, or the equipartition theorem. According to this
theorem, a classical molecule in thermal equilibrium at temperature T
has an average energy of kBT/2 for each independent mode of motion or
so-called degree of freedom. In this case there are 3 degrees of freedom cor-
responding to translational motion of the molecule along the independent x,
y, and z directions in space; hence the average kinetic energy in each indepen-
dent direction is kBT/2:

The total average kinetic energy consequently equals 3 times kBT/2, in agree-
ment with Equation 10.13:

Note that degrees of freedom are not only associated with translational veloci-
ties. A degree of freedom is also associated with each rotational velocity as well
so that for a molecule with moment of inertia I1 rotating about
an axis with angular velocity 	1. In fact, each variable that occurs squared
in the formula for the energy of a particular system represents a degree
of freedom subject to the equipartition of energy. For example, a one-
dimensional harmonic oscillator with E � mvx

2 � kx2 has 2 degrees of free-
dom, one associated with its kinetic energy and the variable vx

2 and the other
with its potential energy and the variable x2. Thus, each oscillator in a group
in thermal equilibrium at T has and . The
average total energy of each one-dimensional harmonic oscillator is then

. This result will be of use to us
shortly when we model the atoms of a solid as a system of vibrating harmonic
oscillators.

Etotal � K � U � kBT/2 � kBT/2 � kBT

U � 1
2kx2 � 1

2kBTK � 1
2mv 2

x � 1
2kBT

1
2

1
2

1
2 I1	2

1 � 1
2kBT

1
2mv2 � 1

2mv 2
x � 1

2mvy
2 � 1

2mvz
2 � 3

2kBT

1
2mv 2

x � 1
2mvy

2 � 1
2mvz

2 � 1
2kBT

1
2mv2 � K � 3

2kBT

v

vrms � √ 3kBT

m

vrms � √v2

v2 � 4� � m

2�kBT �
3/2

� 3

8(m/2kBT )2 � � 2�kBT

m �
1/2

�
3kBT

m

��

0
z4e�az2

dz �
3

8a2 √ �

a
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Exercise 1 (a) Show that the formula for the number of molecules with energies be-
tween E and E � dE in an ideal gas at temperature T is given explicitly in terms of E by

(b) Use this result to show that the total energy per unit volume of the gas is given
by

in agreement with the equipartition theorem.

Exercise 2 Confirm Maxwell’s 1859 result that the “spread-outness” of the speed dis-
tribution increases as . Do this by showing that the standard deviation of the molec-
ular speeds is given by

10.2 UNDER WHAT PHYSICAL CONDITIONS
ARE MAXWELL–BOLTZMANN
STATISTICS APPLICABLE?

If we reexamine the assumptions that led to the Maxwell–Boltzmann distribu-
tion for classical particles, keeping the quantum mechanical wave nature of parti-
cles in mind, we immediately find a problem with the assumption of distinguisha-
bility. Since particles exhibit wave-like behavior, they are necessarily fuzzy and are
not distinguishable when they are close together because their wavefunctions
overlap. (See Section 9.4, “Exchange Symmetry and the Exclusion Principle,” for
a review of this issue.) If trading molecule A for molecule B no longer counts as a
different configuration, then the number of ways a given energy distribution can
be realized changes, as does the equilibrium or most probable distribution. Thus
the classical Maxwell–Boltzmann distribution must be replaced by a quantum
distribution when there is wavefunction overlap or when the particle concentra-
tion is high. The MB distribution is a valid approximation to the correct quan-
tum distribution, however, in the common case of gases at ordinary conditions.
Quantum statistics are required for cases involving high particle concentrations,
such as electrons in a metal1 or photons in a blackbody cavity.

It is useful to develop a criterion to determine when the classical distribu-
tion is valid. We may say that the Maxwell–Boltzmann distribution is valid
when the average distance between particles, d, is large compared with
the quantum uncertainty in particle position, �x, or

�x 

 d (10.15)

To find �x we use the uncertainty principle and evaluate �px for a particle
of mass m. For such a particle that is part of a system of particles in thermal

�v � √3 �
8

�
� √ kBT

m

√T

Etotal �
3

2

NkT

V

n(E)dE �
2�(N/V )

(�kBT )3/2 E1/2e�E/kBT dE

344 CHAPTER 10 STATISTICAL PHYSICS

1The density of conduction electrons in a metal is several thousand times the density of molecules
in a gas at standard temperature and pressure.
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equilibrium at temperature T, and from the equiparti-
tion theorem. Thus

(10.16)

Substituting this expression for �px into �px �x � /2, we find

(10.17)

As mentioned before, the uncertainty in particle position, �x, must be much
less than the average distance, d, between particles if the particles are to be dis-
tinguishable and the Maxwell–Boltzmann distribution is to hold. Substituting
d � (V/N )1/3 and into the relation �x 

 d gives

or cubing both sides,

(10.18)

Equation 10.18 shows that the Maxwell–Boltzmann distribution holds for low
particle concentration and for high particle mass and temperature.

� N

V � 3

8(mkBT)3/2 

 1



2√mkBT


 � V

N �
1/3

�x � /2 √mkBT

�x �


2√mkBT

�px � √p 2
x � (px)

2 � √mkBT

px
2/2m � kBT/2px � 0
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� 5.86 � 1022 electrons/cm3

� 5.86 � 1028 electrons/m3

Note that the density of free electrons in silver is about
2000 times greater than the density of hydrogen gas mol-
ecules at STP; that is,

Using 3 � 1.174 � 10�102 ( J � s)3, me � 9.109 � 10�31 kg,
and kBT � 4.14 � 10�21 J (at T � 300 K), we find

Comparing this result to the condition given by Equation
10.18, we conclude that the Maxwell–Boltzmann distri-
bution does not hold for electrons in silver because of the
small mass of the electron and the high free electron
density. We shall see that the correct quantum distribu-
tion for electrons is the Fermi–Dirac distribution.

� N

V � 3

8(mekBT )3/2 � 4.64

(N/V )electrons in Ag

(N/V )H2 at STP
�

5.86 � 1028 m�3

2.69 � 1025 m�3 � 2180

10.5 g/cm3

107.9 g/mol
 (6.02 � 1023 electrons/mol)

EXAMPLE 10.2 When Can We Use
Maxwell–Boltzmann Statistics?

(a) Are Maxwell–Boltzmann statistics valid for hydrogen
gas at standard temperature and pressure (STP)?

Solution Under standard conditions of 273 K and 
1 atmosphere, 1 mol of H2 gas (6.02 � 1023 molecules)
occupies a volume of 22.4 � 10�3 m3. Using �

3.34 � 10�27 kg, and kBT � 3.77 � 10�21 J, we find

This is much less than 1, and from the condition given
by Equation 10.18, we conclude that even hydrogen,
the lightest gas, is described by Maxwell–Boltzmann
statistics.

(b) Are Maxwell–Boltzmann statistics valid for con-
duction electrons in silver at 300 K?

Solution Silver has a density of 10.5 g/cm3 and a molar
weight of 107.9 g. Assuming one free electron per silver
atom, the density of free electrons in silver is found to be

� 8.83 � 10�8

�
(1.055 � 10�34)3 ( J�s)3

8[(3.34 � 10�27 kg)(3.77 � 10�21 J)]3/2

� � 6.02 � 1023

22.4 � 10�3 m3 �� N

V � 3

8(mkBT)3/2

mH2

Criterion for the validity of

Maxwell–Boltzmann

statistics
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10.3 QUANTUM STATISTICS

Wavefunctions and the Bose–Einstein
Condensation and Pauli Exclusion Principle

Maxwell–Boltzmann statistics apply to systems of identical, distinguishable parti-
cles. As mentioned in the previous section, in quantum terms this means the
wavefunctions of the particles do not overlap. If the individual particle wave-
functions do overlap, then the particles become indistinguishable or inter-
changeable, and this forces the system wavefunction to be either even or odd
under particle exchange (see Section 9.4). In order to understand the impor-
tant connection between wavefunctions and distribution functions, as well as
the origin of the Bose–Einstein condensation for a system of particles with no
actual attractive physical forces between particles, we look at a simple system of
two particles with two possible quantum states to expose the essential features.

Consider two independent particles—particle 1 located at the position r1

and particle 2 located at r2 —and two quantum states—state a and state b. For
distinguishable particles there exist two possible system wavefunctions, which
are simple products of normalized single particle wavefunctions:

�A � �a(r1)�b(r2)

�B � �a(r2)�b(r1)

Now we ask for the probability that both particles are in the same state, say a.
In this case, both �A and �B are the same, and we find the probability of two
distinguishable particles described by the Maxwell–Boltzmann distribution to
be in the same state to be given by

�MB* �MB � �a* (r1)�a* (r2)�a(r1)�a(r2) � ��a(r1) �2 ��a(r2) �2

If the particles are indistinguishable, we can’t tell if a given particle is in state
a or b, and to reflect this fact, the system wavefunction must be a combination of
the distinguishable wavefunctions �A and �B. As mentioned in Section 9.4 and
Problem 9.16, bosons have a symmetric wavefunction, �B, given by

where we have added as the normalization constant. Fermions have an

antisymmetric wavefunction �F , where 

For comparison to the case of distinguishable particles, we now recalculate the
probability that two bosons or fermions occupy the same state. For bosons the
wavefunction becomes

and the probability for two bosons to be in the same state is

�B* �B � 2 ��a(r1) �2 ��a(r2) �2 � 2��B* �MB

�B �
1

√2
[�a(r1)�a(r2) � �a(r2)�a(r1)] � √2�a(r1)�a(r2)

�F �
1

√2
[�a(r1)�b(r2) � �a(r2)�b(r1)]

1

√2

�B �
1

√2
[�a(r1)�b(r2) � �a(r2)�b(r1)]
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Thus we have the amazing result that bosons are twice as probable to occupy the
same state as distinguishable particles! This is an entirely quantum mechanical
effect and it is as if there were a force attracting additional bosons once a boson
occupies a state, even though there are no actual attractive physical forces, such
as electromagnetic intermolecular forces, present. Einstein was the first to point
out that an ideal gas of bosons (with no attractive intermolecular forces!) could
still undergo a strange kind of condensation at low-enough temperatures called
a Bose–Einstein condensation (BEC). A Bose–Einstein condensation is a sin-
gle cooperative state with all individual particle wavefunctions in phase in the
ground state. In 1995 Einstein’s prediction was directly confirmed by a group at
the University of Colorado led by Eric Cornell and Carl Wieman who observed a
BEC in a cloud of rubidium atoms cooled to less than 100 nK (see the guest
essay by Steven Chu at the end of this chapter for details).

For fermions, as in Chapter 9, we find a probability of zero for two fermions
to be in the same state since the wavefunction is zero:

This is just the Pauli exclusion principle again.

Bose–Einstein and Fermi–Dirac Distributions

As we have seen there are two distributions for indistiguishable particles
that flow from parity requirements on the system wavefunctions, the
Bose–Einstein distribution and the Fermi–Dirac distribution. To obtain
the Bose–Einstein distribution, we retain the MB assumption of no theoretical
limit on the number of particles per state. Particles that obey the Bose–
Einstein distribution are called bosons and are observed to have integral
spin. Some examples of bosons are the alpha particle (S � 0), the photon
(S � 1), and the deuteron (S � 1). To obtain the Fermi–Dirac distribution we
stipulate that only one particle can occupy a given quantum state. Particles
that obey the Fermi–Dirac distribution are called fermions and are observed
to have half integral spin. Some important examples of fermions are the
electron, the proton, and the neutron, all with spin .

To see the essential changes in the distribution function introduced by
quantum statistics, let us return to our simple system of six particles with a to-
tal energy of 8E. First we consider the Bose–Einstein case; the particles are in-
distinguishable and there is no limit on the number of particles in a particular
energy state. Figure 10.1a was drawn to represent this situation. Since the par-
ticles are indistinguishable, each of the 20 arrangements shown in Figure
10.1a is equally likely, so the probability of each arrangement is 1/20. The av-
erage number of particles in a particular energy level may be calculated by
again using Equation 10.2. The average number of particles in the zero energy
level is found to be

� (5)(1/20) � (4)(1/20) � (4)(1/20) � (3)(1/20) � (4)(1/20)

� (3)(1/20) � (2)(1/20) � (4)(1/20) � (3)(1/20) � (3)(1/20)

� (2)(1/20) � (1)(1/20) � (3)(1/20) � (2)(1/20) � (2)(1/20)

� (1)(1/20) � (0)(1/20) � (2)(1/20) � (1)(1/20) � (0)(1/20)

� 49/20 � 2.45

n0

1
2

�F �
1

√2
[�a(r1)�a(r2) � �a(r2)�a(r1)] � 0
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Similarly, we find � 31/20 � 1.55, � 18/20 � 0.90, � 9/20 � 0.45,
� 6/20 � 0.30, � 3/20 � 0.15, � 2/20 � 0.10, � 1/20 � 0.05,

and � 0.05. Once again using the idea that the probability of finding a par-
ticle with a given energy, p(E), is simply the average number of particles with
that energy divided by the total number of particles, we find

In like manner we find: p(1E) � 0.258, p(2E) � 0.150, p(3E) � 0.0750,
p(4E) � 0.0500, p(5E) � 0.0250, p(6E) � 0.0167, p(7E) � 0.00833, and
p(8E) � 0.00833. A plot of these values in Figure 10.6 shows that the
Bose–Einstein distribution gives results similar, but not identical, to the
Maxwell–Boltzmann distribution. In general, the Bose–Einstein distribution
tends to have more particles in the lowest energy levels. At higher energies,
the curves come together and both exhibit a rapid decrease in probability
with increasing energy.

To illustrate the distinctive shape of the Fermi–Dirac distribution, again
consider our simple example of six indistinguishable particles with energy 8E.
Since the particles are fermions, we impose the constraint that no more than
two particles can be assigned to a given energy state (corresponding to elec-
trons with spin up and down). There are only three arrangements (denoted
by FD) out of the 20 shown in Figure 10.1a that meet this additional constraint
imposed by the Pauli exclusion principle. Since each of these arrangements is
equally likely, each has a probability of occurrence of 1/3, and we again use
Equation 10.2 to calculate the average number of fermions in the zero energy
level, as follows:

Similarly, we find for the average number of fermions with energies of 1E
through 8E the following:

� 5/3 � 1.67, � 3/3 � 1, � 3/3 � 1, � 1/3 � 0.33,

� � � � 0

Finally, we obtain the probabilities of finding a fermion with energies 0
through 8E :

p(0) � 2.00/6 � 0.333, p(1E) � 0.278, p(2E) � 0.167, p(3E) � 0.167,

p(4E) � 0.0550, and p(5E) � p(6E) � p(7E) � p(8E) � 0

When this distribution is plotted, we discover a distinctly different shape from
the Maxwell–Boltzmann or Bose–Einstein curves (Fig. 10.7). The results show
a leveling off of probability at both low and high energies. Although it is not
entirely clear that the points plotted in Figure 10.7 conform to the smooth
curve drawn, consideration of systems with more than six particles proves this
to be the case (see Problem 10.11).

When large numbers of quantum particles are considered, continuous distri-
bution functions may be rigorously derived for both the Bose–Einstein (BE)
and Fermi–Dirac (FD) cases. By maximizing the number of ways of distribut-
ing the indistinguishable quantum particles among the allowed energy states,
again subject to the two constraints of a fixed number of particles and a fixed

n8n7n6n5

n4n3n2n1

n0 � (2)(1/3) � (2)(1/3) � (2)(1/3) � 2.00

p(0) �
n0

6
�

2.45

6
� 0.408

n8

n7n6n5n4

n3n2n1

348 CHAPTER 10 STATISTICAL PHYSICS

Energy

P
ro

b
ab

il
it

y 
o

f 
fi

n
d

in
g
 a

 p
ar

ti
cl

e
w

it
h

 a
 g

iv
en

 e
n

er
g
y

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0
0 2E 4E 6E 8E

2E 4E 6E 8E0

0.1

0.2

0.3

P
ro

b
ab

il
it

y 
o

f 
fi

n
d

in
g

 a
 p

ar
ti

cl
e

w
it

h
 a

 g
iv

en
 e

n
er

g
y

0

Energy

Figure 10.7 The distribution
function for six indistinguish-
able particles with total energy
8E constrained so that no more
than two particles occupy the
same energy state (fermions).

Figure 10.6 The distribution
function for six indistinguish-
able particles with total energy
8E (bosons).
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total energy, we find the distribution functions to have the explicit forms:

(10.19)

(10.20)

where f(E) is the probability of finding a particle in a particular state of en-
ergy E at a given absolute temperature T. As noted earlier, the number of par-
ticles per unit volume with energy between E and E � dE is given by

n(E) dE � g(E)fBE(E) dE (10.21)

or

n(E) dE � g(E)fFD(E) dE (10.22)

Thus the parameters B and H in Equations 10.19 and 10.20 may be deter-
mined from the total number of particles, N, since integrating Equations 10.21
and 10.22 yields

(10.23)

and

(10.24)

In general we find that B and H depend on the system temperature and
particle density as shown by Equations 10.23 and 10.24. For a system of
bosons that are not fixed in number with temperature, Equation 10.23
no longer serves to determine B. By maximizing the ways of distributing
the bosons among allowed states subject to the single constraint of fixed
energy, it can be shown that the coefficient B in Equation 10.19 is equal
to 1. This is a particularly important case since both photons in a black-
body cavity and phonons in a solid are bosons whose numbers per unit
volume increase with increasing temperature. (We define phonons shortly.)
Thus,

(for photons or phonons)

For the case of the Fermi–Dirac distribution, H depends strongly on tempera-
ture and is often written in an explicitly temperature-dependent form as

, where EF is called the Fermi energy.2 With this substitution,
Equation 10.20 changes to the more common form

(10.25)fFD(E) �
1

e(E�EF)/kBT � 1

H � e�EF/kBT

f(E) �
1

eE/kBT � 1

� N

V �
fermions

� ��

0

g(E)

HeE/kBT � 1
dE

� N

V �
bosons

� ��

0

g(E)

BeE/kBT � 1
dE

f FD(E) �
1

HeE/kBT � 1

f BE(E) �
1

BeE/kBT � 1

10.3 QUANTUM STATISTICS 349

2If we force the functional form of H to be , EF will itself have a weak dependence on
T. Fortunately, this dependence of EF on T is so weak that we can ignore it here.

H � e�EF/kBT

Fermi–Dirac distribution
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This expression shows the meaning of the Fermi energy: The probability
of finding an electron with an energy equal to the Fermi energy is
exactly 1/2 at any temperature.

A plot comparing the Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac
distributions as functions of energy at a common temperature of 5000 K is shown
in Figure 10.8. Note that for large E, all occupation probabilities decrease to zero
as . For small values of E, the FD probability saturates at 1 as required by
the exclusion principle, the MB probability constantly increases but remains
finite, and the BE probability tends to infinity. This very high probability for
bosons to have low energies means that at low temperatures most of the particles
drop into the ground state. When this happens, a new phase of matter with dif-
ferent physical properties can occur. This change in phase for a system of bosons
is called a Bose–Einstein condensation (BEC), and it occurs in liquid helium
at a temperature of 2.18 K. Below 2.18 K liquid helium becomes a mixture of the
normal liquid and a phase with all molecules in the ground state. The ground-
state phase, called liquid helium II, exhibits many interesting properties, one
being zero viscosity. For more on Bose condensation and applications of this
remarkable state of matter, see the essay by Steven Chu at the end of this chapter.

The history of the discovery of the quantum distributions is interesting. The
first quantum distribution to be discovered was the Bose–Einstein function
introduced in 1924 by Satyendranath Bose (Indian physicist, 1894–1974),
working in isolation. He sent his paper, which contained a new proof of the
Planck formula for blackbody radiation, to Einstein. In this paper, Bose
applied the normal methods of statistical mechanics to light quanta but
treated the quanta as absolutely indistinguishable. Einstein was impressed by
Bose’s work and proceeded to translate the paper into German for publication
in the Zeitschrift für Physik.3 To obtain the quantum theory of the ideal gas,

e�E/kBT
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Figure 10.8 A comparison of Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac
distribution functions at 5000 K.

3S. N. Bose, Z. Phys., 26:178, 1924.
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Einstein extended the method to molecules in several papers published in
1924 and 1925.

In 1925, Wolfgang Pauli, after an exhaustive study of the quantum numbers
assigned to atomic levels split by the Zeeman effect, announced his new and
fundamental principle of quantum theory, the exclusion principle: Two elec-
trons in an atom cannot have the same set of quantum numbers. In 1926,
Enrico Fermi obtained the second type of quantum statistics that occurs in
nature by combining Pauli’s exclusion principle with the requirement of indis-
tinguishability. Paul Dirac is also credited for this work, since he performed a
more rigorous quantum mechanical treatment of these statistics in 1926. The
empirical observation that particles with integral spin obey BE statistics and
particles with half-integral spin obey FD statistics was explained much later (in
1940) by Pauli, using relativity and causality arguments.

10.4 APPLICATIONS OF BOSE–EINSTEIN
STATISTICS

Blackbody Radiation

In this section we apply BE statistics to the problem of determining the energy
density (energy per unit volume) of electromagnetic radiation in an enclosure
heated to temperature T, now treating the radiation as a gas of photons. (In
Chapter 3 we discussed the importance of this blackbody problem for quan-
tum physics.) Since photons have spin 1, they are bosons and follow
Bose–Einstein statistics. The number of photons per unit volume with energy
between E and E � dE is given by n(E) dE � g(E)fBE(E) dE. The energy density
of photons in the range from E to E � dE is

(10.26)

To complete our calculation, we need the factor g(E), the density of states for
photons in an enclosure. This important calculation, given in Web Appendix 1
on our Web site, shows that the number of photon states per unit volume with
frequencies between f and f � df is

using E � hf for photons. Since the number of photon states per unit volume
with frequencies between f and f � df is equal to the number of photon states
with energies between E and E � dE, we have

Thus we find that the density of states for photons is

(10.27)

Substituting Equation 10.27 into Equation 10.26 gives the expression for the
energy density:

g(E) �
8�E2

(hc)3

N( f ) df �
8�E2 dE

(hc)3 � g(E) dE

N( f ) df �
8�f 2 df

c3 �
8�(hf )2d(hf )

(hc)3 �
8�E2 dE

(hc)3

u(E) dE � En(E) dE �
g(E)E dE

eE/kBT � 1
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The exclusion principle
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(10.28)

Converting from photon energy to frequency using E � hf in Equation 10.28,
we immediately retrieve the Planck blackbody formula:

(3.9)

Thus the Planck formula for a blackbody follows directly and simply from
Bose–Einstein statistics.

u( f, T) �
8�h

c3

f 3

ehf/kBT � 1

u(E) dE �
8�

(hc)3

E3 dE

eE/kBT � 1
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(c) Calculate the number of photons/cm3 inside a cavity
whose walls are heated to 3000 K. Compare this with a
cavity whose walls are at 3.00 K.

Solution From standard tables,

Therefore,

Likewise, N/V (at 3.00 K) � 5.47 � 102 photons/cm3.
Therefore, the photon density decreases by a factor
of 109 when the temperature drops from 3000 K to
3.00 K.

� 5.47 � 1011 photons/cm3

N

V
(at 3000 K) � (8�) � (8.62 � 10�5 eV/K)(3000 K)

1.24 � 10�4 eV �cm �
3

� (2.40)

��

0

z2 dz

e z � 1
� 2.40

EXAMPLE 10.3 Photons in a Box

(a) Find an expression for the number of photons per
unit volume with energies between E and E � dE in a cav-
ity at temperature T.

Solution

(b) Find an expression for the total number of photons
per unit volume (all energies).

Solution

or

N

V
� 8� � kBT

hc �
3 ��

0

z2 dz

e z � 1

N

V
� ��

0
n(E) dE �

8�(kBT)3

(hc)3 ��

0

(E/kBT)2(dE/kBT)

eE/kBT � 1

n(E) dE � g(E)f(E) dE �
8�E2 dE

(hc)3(eE/kBT � 1)

Einstein’s Theory of Specific Heat

Recall that the molar specific heat of a substance, C, is the ratio of the differ-
ential thermal energy, dU, added to a mole of substance divided by the result-
ing differential increase in temperature, dT, or

(10.29)

Thus C has units of calories per mole per kelvin (cal/mol � K). To develop a
theoretical expression for comparison to the experimental curves of C versus
T measured for different elemental solids, we need an expression for U, the
internal thermal energy of the solid, as a function of the solid’s temperature,
T. Differentiation of this expression will then yield the specific heat as a func-
tion of temperature.

To find an expression for U, let us model the solid as a collection of
atoms vibrating independently on springs with equal force constants in the x,

C �
dU

dT
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y, and z directions, each atom being represented by three identical one-
dimensional harmonic oscillators. The internal energy of each atom may
then be calculated from the classical equipartition theorem. A one-
dimensional harmonic oscillator has 2 degrees of freedom: one for its ki-
netic energy and one for its potential energy. (Physically this means that
thermal energy added to the atoms in a solid may go into atomic vibration
or into work done to stretch the springs holding the atoms in place.) Be-
cause the equipartition theorem states that the average thermal energy per
degree of freedom should be kBT/2, the internal energy per atom of a solid
should be (kBT/2 per degree of freedom) � (2 degrees of freedom per
one-dimensional oscillator) � (three oscillators per atom) � 3kBT. As a
mole contains Avogadro’s number of atoms, NA, the total internal energy
per mole, U, is predicted to be

U � 3NAkBT � 3RT (10.30)

where R is the universal gas constant given by R � NAkB � 8.31 J/mol � K �

1.99 cal/mol � K. Using C � dU/dT, we immediately see that C should be con-
stant with temperature:

(10.31)

The specific heat of many solids is indeed constant with temperature, espe-
cially at higher temperatures, as can be seen in Figure 10.9, showing good
agreement with the classical idea that the average thermal energy is kBT/2 per
degree of freedom. However, as can also be seen in Figure 10.9, the specific
heat of all solids drops sharply at some temperature and approaches zero as
the temperature approaches 0 K.

The explanation of why classical physics failed to give the correct value of
specific heat at all temperatures was given by Einstein in 1907. He realized
that the quantized energies of vibrating atoms in a solid must be explicitly
considered at low temperatures to secure agreement with experimental
measurements of specific heat. Einstein assumed that the atoms of the solid

C �
d

dT
 (3RT) � 3R � 5.97 cal/mol�K
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Figure 10.9 The dependence of specific heat on temperature for several solid elements.

7

6

5

4

3

2

1

0
0 200 400 600 800 1000 1200

Absolute temperature, K

C
(c

al
/

m
o

l⋅
K

)

Lead Aluminum

Silicon

Diamond

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

ITC
Highlight

ITC
Highlight

ITC
Highlight

ITC
Highlight



could be modeled as a system of independent or uncoupled three-dimensional
quantum harmonic oscillators with equal spring constants in the x, y, and z
directions. He then showed that the average energy of a one-dimensional
oscillator with frequency 	 at temperature T was given by the Bose –
Einstein distribution, or 

Because the atoms are considered to be independent, he gave the internal
energy of a mole of atoms, or NA atoms, as 

Finally, he obtained the molar specific heat:

(10.32)

It is left as an exercise to show that Equation 10.32 predicts that C approaches
zero for small T as , and that C approaches 3R for large T.

To understand Equation 10.32 qualitatively, consider the quantity , the
average one-dimensional quantum oscillator energy at temperature, T :

(10.33)

Recall that the vibrating atoms of the solid have quantized energy levels
spaced 	 apart. For high temperatures such that 	 

 kBT, the energy level
spacing 	 is small relative to the average thermal energy per atom, and
we can expect many atoms to be in excited energy levels. In fact, we can
expand the exponential in the denominator of Equation 10.33 as
exp(	/kBT) � 1 � 	/kBT � � � � to get

In this case the atomic energies appear to be continuous and the classical
result C � 3R holds. For low temperatures such that 	 �� kBT, Equation
10.33 shows that the average thermal energy of an oscillator rapidly tends to
zero. This means the average energy is much less than the spacing between
adjacent atomic energy levels, 	, and there is insufficient thermal energy to
raise an atom out of its ground state to higher energy levels. In this case atoms
are unable to absorb energy from the surroundings for a small increase in
temperature, and the increase in internal energy with temperature or specific
heat tends to zero.

A final point to note is that Equation 10.32 has only one adjustable parame-
ter, 	, the harmonic oscillator vibration frequency, which is chosen to give the
best fit of Equation 10.32 to the experimental heat capacity data. Frequently,
	 is given in terms of an equivalent temperature TE, called the Einstein
temperature, where

	 � kBTE (10.34)

E �
	

e	/kBT � 1
� kBT

E �
	

e	/kBT � 1

E
e�	/kBT

C �
dU

dT
� 3R � 	

kBT �
2 e	/kBT

(e	/kBT � 1)2

U � 3NAE � 3NA
	

e	/kBT � 1

E �
	

e	/kBT � 1
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In his pioneering 1907 paper, Einstein found good agreement between his for-
mula and Heinrich Weber’s data on diamond, with TE � 1300 K. This agree-
ment is shown in Figure 10.10.

The too rapid falloff of the Einstein formula at low temperatures hinted
at in Figure 10.10 was confirmed in 1911 by Hermann Nernst. Although it
was generally felt that the problem with Einstein’s result was the assumption
that each atom vibrated independently of its neighbors at a single fixed fre-
quency, no one really knew how to treat a band or spread of frequencies
corresponding to groups of neighboring atoms interacting and moving
together. In 1912, however, Peter Debye obtained the experimentally
observed temperature dependence of C � T 3 for low temperatures by
modeling a solid as a continuous elastic object whose internal energy was
made up of the energy in standing sound (elastic) waves. These sound
waves are both transverse and longitudinal in a solid and possess a range of
frequencies from zero to some maximum value determined by the depen-
dence of the minimum wavelength on the interatomic spacing. Further-
more, these elastic waves or lattice vibrations are quantized, like electromag-
netic waves or photons. A quantized elastic vibration of frequency �,
called a phonon, travels at the speed of sound in a solid, and carries a
quantum of elastic energy ��. Debye was able to show that a “phonon
gas” with a distribution of allowed frequencies was a better model of a solid
at low temperatures than a system of independent harmonic oscillators
all having the same frequency. Since the introduction of the idea of
phonons by Debye, the concept has found many applications in condensed
matter physics, including the electron–phonon interaction in supercon-
ductivity and the coupling of phonons to the motion of impurity atoms and
molecules in a lattice.

Exercise 3 Show that Equation 10.32 predicts that C approaches zero for small T as
and that C approaches 3R for large T.e�	/kBT
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Figure 10.10 Einstein’s specific heat formula fitted to Weber’s experimental data for
diamond. This figure is adapted from A. Einstein, Ann. Physik., 4(22):180, 1907.
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Exercise 4 (a) Calculate the vibration frequency of lead atoms and their energy-level
spacing if the Einstein temperature of lead is 70 K. (b) Explain the low Einstein tem-
perature of lead relative to that for diamond in terms of the physical properties of lead.
(c) Calculate the average one-dimensional oscillator energy in lead at room tempera-
ture. Is there enough energy to raise lead atoms out of the ground state at 300 K?

10.5 AN APPLICATION OF FERMI–DIRAC STATISTICS:
THE FREE ELECTRON GAS THEORY OF METALS

Because the outer electrons are weakly bound to individual atoms in a metal,
we can treat these outer conduction electrons as a gas of fermions trapped
within a cavity formed by the metallic surface. Many interesting physical quan-
tities, such as the average energy, Fermi energy, specific heat, and thermionic
emission rate, may be derived from the expression for the concentration of
electrons with energies between E and E � dE:

n(E) dE � g(E)f FD(E) dE (10.22)

Recall that the probability of finding an electron in a particular energy state
E is given by the Fermi–Dirac distribution function,

f FD(E) �
1

e(E�E F)/kBT � 1

356 CHAPTER 10 STATISTICAL PHYSICS

The spacing between adjacent oscillator energy levels in
carbon is

	 � (6.58 � 10�16 eV � s)(1.70 � 1014 Hz) � 0.112 eV

(b) Calculate the average oscillator energy at room
temperature and at 1500 K and compare this energy with
the carbon energy-level spacing 	. Is there sufficient
thermal energy on average to excite carbon atoms at
300 K? at 1500 K?

Solution The average oscillator energy at room tem-
perature (300 K) is

while the average oscillator energy at 1500 K is

Comparing, we see that at 300 K is about 0.01	, and 
at 1500 K is approximately equal to 	. This means that
at 300 K most carbon atoms are frozen into the oscillator
ground state and the specific heat tends to zero.

EE

E �
0.112 eV

e0.112 eV/(8.62�10�5 eV/K)(1500 K) � 1
� 0.0813 eV

�
0.112 eV

e0.112 eV/(8.62�10�5 eV/K)(300 K) � 1
� 0.00149 eV

E �
	

e	/kBT � 1

E

EXAMPLE 10.4 The Specific Heat of Diamond

As we have seen, a solid at temperature T can be viewed
as a system of quantized harmonic oscillators with
discrete energy levels separated by 	. The oscillators
can only absorb thermal energy, however, if the tempera-
ture is high enough that the average thermal energy
of the oscillator, , is approximately equal to the oscilla-
tor energy-level spacing, 	. For low temperatures such
that 

 	, there is so little thermal energy available
that the atoms cannot even be raised to the first excited
state and the specific heat tends to zero. In the following
example we show that the carbon atoms in diamond
are effectively decoupled from thermal energy at room
temperature but can absorb energy at a temperature
of 1500 K.
(a) Calculate the vibration frequency of the carbon
atoms in diamond if the Einstein temperature is 1300 K.
Also find the energy-level spacing for the carbon 
atoms.

Solution Since 	 � kBTE, the frequency of vibration
of carbon atoms in diamond is

� 1.70 � 1014 Hz

	 �
kBTE


�

(8.62 � 10�5 eV/K)(1300 K)

6.58 � 10�16 eV�s

E

E
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Plots of this function versus energy are shown in Figure 10.11 for the cases
T � 0 K and T � 0. Note that at T � 0 K, fFD � 1 for E 
 EF, and f FD � 0 for
E � EF. Thus all states with energies less than EF are completely filled and all states
with energies greater than EF are empty. This is in sharp contrast to the predic-
tions of MB and BE statistics, in which all particles condense to a state of zero en-
ergy at absolute zero. In fact, far from having zero speed, a conduction electron in
a metal with the cutoff energy EF has a speed vF which satisfies the relation

(10.35)

where vF is called the Fermi speed. Substituting a typical value of 5 eV for the
Fermi energy yields the remarkable result that electrons at the Fermi level pos-
sess speeds of the order of 106 m/s at 0 K!

Figure 10.11b shows that as T increases, the distribution rounds off slightly,
with states between E and E � kBT losing population and states between E and
E � kBT gaining population. In general, EF also depends on temperature, but
the dependence is weak in metals, and we may say that EF(T) � EF(0) up to
several thousand kelvin.

Let us now turn to the calculation of the density of states, g(E), for conduc-
tion electrons in a metal. Since the electrons may be viewed as a system of
matter waves whose wavefunctions vanish at the boundaries of the metal,
we obtain the same result for electrons as for electromagnetic waves con-
fined to a cavity. In the latter case, we found (see our Web site at http://info.
brookscole.com/mp3e) that the number of states per unit volume with
wavenumber between k and k � dk is

(3.44)

To apply this expression to electrons in a metal, we must multiply it by a factor
of 2 to account for the two allowed spin states of an electron with a given mo-
mentum or energy:

(10.36)g(k) dk �
k2 dk

�2

g(k) dk �
k2 dk

2�2

1
2mevF

2 � EF

10.5 AN APPLICATION OF FERMI-DIRAC STATISTICS: THE FREE ELECTRON GAS THEORY OF METALS 357

Figure 10.11 A comparison of the Fermi–Dirac distribution functions at (a) absolute
zero and (b) finite temperature.
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To obtain g(E) from g(k), we assume nonrelativistic free electrons. Thus

or

(10.37)

and

(10.38)

Substituting Equations 10.37 and 10.38 into Equation 10.36 yields

(10.39)

where

(10.40)

Thus the key expression for the number of electrons per unit volume with
energy between E and E � dE becomes

(10.41)

Figure 10.12 is a plot of n(E) versus E, showing the product of an increasing
density of states and the decreasing FD distribution. Because

(10.42)

we can determine the Fermi energy as a function of the electron concen-
tration, N/V . For arbitrary T, Equation 10.42 must be integrated numerically.
At T � 0 K, the integration is simple since f FD(E) � 1 for E 
 EF and is 0 for
E � EF. Therefore, at T � 0 K, Equation 10.42 becomes

(10.43)

Substituting the value of D from Equation 10.40 into Equation 10.43 gives for
the Fermi energy at 0 K, EF(0),

(10.44)

Equation 10.44 shows a gradual increase in EF(0) with increasing electron con-
centration. This is expected, because the electrons fill the available energy
states, two electrons per state, in accordance with the Pauli exclusion principle
up to a maximum energy EF. Representative values of EF(0) for various metals
calculated from Equation 10.44 are given in Table 10.1. This table also lists
values of the Fermi speed and the Fermi temperature, TF, defined by

EF(0) �
h2

2me
� 3N

8�V �
2/3

N

V
� D �EF

0
E1/2 dE � 2

3 DEF
3/2

N

V
� ��

0
n(E) dE � D ��

0

E1/2 dE

e(E�E F)kBT � 1

n(E) dE �
DE1/2 dE

e(E�E F)/kBT � 1

D �
8√2�me

3/2

h3

g(E) dE � DE1/2 dE

dk �
1

2 � 2me

2 �
1/2

E�1/2 dE

k � � 2meE

2 �
1/2

E �
p2

2me
�

2k2

2me
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Density of states for

conduction electrons

Number of electrons per unit

volume with energy between

E and E � dE

1 2 3
E(eV)

n(E)

T = 0 K

kBT

T = 300 K

Figure 10.12 The number of
electrons per unit volume with
energy between E and E � dE.
Note that n(E) � g(E)fFD(E).
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(10.45)

As a final note, it is interesting that a long-standing puzzle concerning the
anomalously small contribution of the conduction electron “gas” to the heat
capacity of a solid has a qualitative solution in terms of the Fermi–Dirac distri-
bution. If conduction electrons behaved classically, warming a gas of N elec-
trons from 0 to 300 K should result in an average energy increase of 3kBT/2
for each particle, or a total thermal energy per mole, U, given by

Thus the electronic heat capacity per mole should be given by

assuming one free electron per atom. An examination of Figure 10.12, how-
ever, shows that on heating from 0 K, very few electrons become excited and
gain an energy kBT. Only a small fraction f within kBT of EF can be excited ther-
mally. The fraction f may be approximated by the ratio of the area of a thin rec-
tangle of width kBT and height n(EF) to the total area under n(E). Thus

Since only f N of the electrons gain an energy of the order of kBT, the actual
total thermal energy gained per mole is

From this result, we find that the electronic heat capacity is

Cel �
dU

dT
� 3R

T

TF

U � � 3

2

T

TF
�(NAkBT ) �

3

2

RT 2

TF

�
(kBT)g(EF)

D �E
F

0
E1/2 dE

�
(kBT)D(EF)1/2

2
3 DEF

3/2 �
3

2

kBT

EF
�

3

2

T

TF

f �
area of shaded rectangle in Figure 10.12

total area under n(E)

Cel �
dU

dT
� 3

2 R

U � NA (3
2 kBT) � 3

2 RT

TF 	
EF

kB
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Table 10.1 Calculated Values of Various Parameters for

Metals Based on the Free Electron Theory

Electron Fermi Fermi Fermi
Concentration Energy Speed Temperature

Metal (m�3) (eV) (m/s) (K)

Li 4.70 � 1028 4.72 1.29 � 106 5.48 � 104

Na 2.65 � 1028 3.23 1.07 � 106 3.75 � 104

K 1.40 � 1028 2.12 0.86 � 106 2.46 � 104

Cu 8.49 � 1028 7.05 1.57 � 106 8.12 � 104

Ag 5.85 � 1028 5.48 1.39 � 106 6.36 � 104

Au 5.90 � 1028 5.53 1.39 � 106 6.41 � 104
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Substituting T � 300 K and TF � 5 � 104 K, we find a very small value for the
electronic heat capacity at ordinary temperatures:

Thus, the electrons contribute only 0.018R/1.5R, or about 1% of the classi-
cally expected amount, to the heat capacity.

Cel � 3R � 300 K

50,000 K � � 0.018R

360 CHAPTER 10 STATISTICAL PHYSICS

(b) Calculate the Fermi speed for gold at 0 K.

Solution Since mevF
2 � EF,

(c) Calculate the Fermi temperature for gold at 0 K.

Solution The Fermi temperature is given by

Thus a gas of classical particles would have to be heated
to about 64,000 K to have an average energy per particle
equal to the Fermi energy at 0 K!

� 64,000 K

TF �
EF

kB
�

5.53 eV

8.62 � 10�5 eV/K

� 1.39 � 106 m/s

vF � � 2EF

me
�

1/2

� � 2 � 5.85 � 10�19 J

9.11 � 10�31 kg �
1/2

1
2

EXAMPLE 10.5 The Fermi Energy of Gold

(a) Calculate the Fermi energy of gold at 0 K.

Solution The density of gold is 19.32 g/cm3, and its
molar weight is 197 g/mol. Assuming each gold atom
contributes one free electron to the Fermi gas, we can
calculate the electron concentration as follows:

Using Equation 10.44, we find

� 8.85 � 10�19 J � 5.53 eV

�
(6.625 � 10�34 J�s)2

2(9.11 � 10�31 kg) � 3 � 5.90 � 1028 m�3

8� �
2/3

EF(0) �
h2

2me
� 3N

8�V �
2/3

� 5.90 � 1028 electrons/m3

� 5.90 � 1022 electrons/cm3

N

V
� (19.32 g/cm3)� 1

197 g/mol � � (6.02 � 1023 electrons/mol)

SUMMARY

Statistical physics deals with the distribution of a fixed amount of energy
among a number of particles that are identical and indistinguishable in any way
(quantum particles) or identical particles that are distinguishable in the classi-
cal limit of narrow particle wave packets and low particle density. In most situa-
tions, one is not interested in the energies of all the particles at a given instant,
but rather in the time average of the number of particles in a particular energy
level. The average number of particles in a given energy level is of special
interest in spectroscopy because the intensity of radiation emitted or absorbed
is proportional to the number of particles in a particular energy state.

For a system described by a continuous distribution of energy levels, the
number of particles per unit volume with energy between E and E � dE is
given by

n(E) dE � g(E)f(E) dE (10.6)

where g(E) is the density of states or the number of energy states per unit
volume in the interval dE and f(E) is the probability that a particle is in the
energy state E. The function f(E) is called the distribution function.
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Three distinct distribution functions are used, depending on whether the
particles are distinguishable and whether there is a restriction on the number
of particles in a given energy state:

• Maxwell–Boltzmann Distribution (Classical). The particles are distin-
guishable, and there is no limit on the number of particles in a given
energy state.

(10.3)

• Bose–Einstein Distribution (Quantum). The particles are indistinguish-
able, and there is no limit on the number of particles in a given energy state.

(10.19)

• Fermi–Dirac Distribution (Quantum). The particles are indistinguish-
able, and there can be no more than one particle per quantum state.

(10.25)

where EF is the Fermi energy. At T � 0 K, all levels below EF are filled
and all levels above EF are empty.

At low particle concentrations and high temperature, most systems are well
described by Maxwell–Boltzmann statistics. The criterion that determines
when the classical Maxwell–Boltzmann distribution is valid is 

(10.18)

where N/V is the particle concentration, m is the particle mass, and T is the
absolute temperature. For high particle concentration, low particle mass, and
modest temperature, there is considerable overlap between the particles’
wavefunctions, and quantum distributions must be used to describe these sys-
tems of indistinguishable particles.

A system of photons in thermal equilibrium at temperature T is described
by the Bose–Einstein distribution with B � 1 and a density of states given by

(10.27)

Thus, the concentration of photons with energies between E and E � dE is

Phonons, which are quantized lattice vibrations of a solid, are also described
by the Bose–Einstein distribution with B � 1.

Free (conduction) electrons in metals obey the Pauli exclusion principle,
and we must use the Fermi–Dirac distribution to treat such a system. The den-
sity of states for electrons in a metal is

(10.39)g(E) �
8√2�me

3/2

h3 E1/2

n(E) dE �
8�E2

(hc)3 � 1

eE/kBT � 1 � dE

g(E) �
8�E2

(hc)3

� N

V � h3

(8mkBT)3/2 

 1

f FD(E) �
1

e(E�EF)/kBT � 1

f BE(E) �
1

BeE/kBT � 1

f MB(E) � Ae�E/kBT
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hence the number of electrons per unit volume with energy between E and
E � dE is

(10.41)

An expression for the Fermi energy at 0 K as a function of electron concentra-
tion may be obtained by integrating Equation 10.41. One finds

(10.44)

The small electronic contribution to the heat capacity of a metal can be
explained by noting that only a small fraction of the electrons near EF gain
kBT in thermal energy when the metal is heated from 0 K to T K.

EF(0) �
h2

2me
� 3N

8�V �
2/3

n(E) dE �
8√2�me

3/2 E1/2

h3(e(E�EF)/kBT � 1)
dE
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Figure P10.3 A schematic drawing of an apparatus used
to verify the Maxwell speed distribution.
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More advanced treatments of statistical physics may be
found in the following books:

SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. Discuss the basic assumptions of Maxwell–Boltzmann,
Fermi–Dirac, and Bose–Einstein statistics. How do they
differ, and what are their similarities?

2. Explain the role of the Pauli exclusion principle in de-
scribing the electrical properties of metals.

PROBLEMS

10.1 The Maxwell–Boltzmann Distribution

1. Verify that for a system of six distinguishable particles
with total energy 8E, the probabilities of finding a parti-
cle with energies 1E through 8E are: 0.256, 0.167,
0.0978, 0.0543, 0.0272, 0.0117, 0.00388, 0.000777.

2. Show that the most probable speed of a gas molecule is

Note that the most probable speed corresponds to the
point where the Maxwellian speed distribution curve,
n(v), has a maximum.

3. Figure P10.3 shows an apparatus similar to that used by
Otto Stern in 1920 to verify the Maxwell speed distribu-
tion. A collimated beam of gas molecules from an
oven, O, is allowed to enter a rapidly rotating cylinder
when slit S is coincident with the beam. The pulse of
molecules created by the rapid rotation of S then
strikes and adheres to a glass plate detector, D. The ve-
locity of a molecule may be determined from its posi-
tion on the glass plate (fastest molecules to the right).
The number of molecules arriving with a given velocity

vmp � √ 2kBT

m

may be determined by measuring the density of mole-
cules deposited on D at a given position. Suppose that

D

A

O

S

ω

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight




