Summary of Chapter 17

1. Objective:

1. Calculate the speed of sound in various media.
2. Write the expression for the displacement wave $\mathrm{S}(\mathrm{x}, \mathrm{t})$ and the pressure wave $\Delta \mathrm{p}(\mathrm{x}, \mathrm{t})$ in sound waves.
3. Calculate the power transmitted in harmonic sound waves.
4. Calculate the intensity of harmonic sound waves.
5. Calculate the intensity in case of spherical sound wave and write the expression for the displacement wave.

I. Summary of major points:

1. Sound waves are longitudinal.

The velocity of sound in different media is given by;
$\mathrm{v}_{\text {solid }}=\sqrt{\frac{\mathrm{Y}}{\rho}}$ where Y is the Young modulus $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
$v_{\text {liquid }}=\sqrt{\frac{B}{\rho}}$ where B is the Bulk modulus $\left(N / m^{2}\right)$
$v_{\text {air }}=343 \mathrm{~m} / \mathrm{s}$ at a temperature of about $20^{\circ} \mathrm{C}$ and $\mathrm{v}_{\text {vacuum }}=0$

The displacement wave for a harmonic sound wave is given by;

$$
\mathrm{S}(\mathrm{x}, \mathrm{t})=\mathrm{S}_{\mathrm{m}} \cos (\mathrm{kx}-\mathrm{wt})
$$

where $s(x, t)$ is the diplacement of the particles in the medium The pressure wave is given by;

$$
\Delta \mathrm{p}(\mathrm{x}, \mathrm{t})=\Delta \mathrm{P}_{\mathrm{m}} \sin (\mathrm{kx}-\omega \mathrm{t})
$$

Where

$$
\Delta \mathrm{P}_{\mathrm{m}}=\rho v \omega \mathrm{~S}_{\mathrm{m}}
$$

2. The power transmitted in a harmonic sound wave is given by;

$$
\mathrm{P}=\frac{1}{2} \rho A v\left(\omega S_{\mathrm{m}}\right)
$$

The intensity of a sound wave I is defined as $\mathrm{I}=\frac{\text { Power }}{\text { Area }}$

$$
\mathrm{I}=\frac{1}{2} \rho \mathrm{v}\left(\omega \mathrm{~S}_{\mathrm{m}}\right)^{2}
$$

Since the intensity of sound varies between $10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ to $1 \mathrm{~W} / \mathrm{m}^{2}$ we define a new quantity called sound intensity level β as

$$
\beta=10 \log \frac{\mathrm{I}}{\mathrm{I}_{\mathrm{O}}} \text { where } \mathrm{Io}=10^{-12} \mathrm{~W} \cdot \mathrm{~m}^{2} \text { is the reference intensity }
$$

The units for β is dB or decibel. Now β varies between 0 and 120 dB .
3. For spherical waves, the intensity is given by;

$$
\mathrm{I}=\frac{\mathrm{P}_{\mathrm{av}}}{4 \pi \mathrm{r}^{2}}
$$

(r: distance between the source and the point where we want to measure the intensity).

$$
\mathrm{I}_{1}=\frac{\mathrm{P}_{\mathrm{av}}}{4 \pi \mathrm{r}^{2}} \text { and } \mathrm{I}_{2}=\frac{\mathrm{P}_{\mathrm{av}}}{4 \pi \mathrm{r}^{2} \mathrm{r}_{2}^{2}} \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{r}_{2}^{2}}{\mathrm{r}_{1}^{2}}
$$

A spherical wave is represented by;

$$
\phi(\mathrm{r}, \mathrm{t})=\left(\frac{\mathrm{S}_{\mathrm{o}}}{\mathrm{r}}\right) \sin (\mathrm{kr}-\omega \mathrm{t})
$$

Where $\phi(r, t)$ is the dispalacement wave and $\mathrm{S}_{\mathrm{o}} / \mathrm{r}$ is the dispalacement amplitude. It is clear that the displacement amplitude varies with the ditance r.

At large distance from the source ($\mathrm{r} \gg \lambda$) a spherical wave can be approximated by a plane wave,

$$
\phi(\mathrm{x}, \mathrm{t})=\left(\frac{\mathrm{s}_{\mathrm{a}}}{\mathrm{r}}\right) \sin (\mathrm{kx}-\omega \mathrm{t})
$$

The Doppler Effect:

Observer Source Equation

$$
\begin{array}{lll}
0 & S & f^{\prime}=f\left(\frac{v+v_{0}}{v}\right) \text { observer moving toward stationary source } \\
0 & S & f^{\prime}=f\left(\frac{v-v_{0}}{v}\right) \text { observer moving away from stationary source } \\
0 & S & f^{\prime}=f\left(\frac{v}{v+v_{S}}\right) \text { Source moving away from a stationary } \\
0 & S & f^{\prime}=f\left(\frac{v}{v-v_{S}}\right) \text { Source moving toward a stationary observer }
\end{array}
$$

