$>$ Oscillatory motion is the one that repeats itself.
$>$ The number of oscillations per second is an important property of simple harmonic motion and is called the frequency f. Its unit is Hertz (Hz) or s ${ }^{-1}$.
$>$ The period of oscillations, T , is the time to complete on oscillation.
$>$ Any motion that repeats itself with a certain period is called periodic or harmonic motion.

The displacement, $x(\mathrm{t})$ of the particle is given by:

$$
x(t)=x_{m} \cos (w t+\phi)
$$

where x_{m} is the amplitude of the motion (maximum displacement), w is the angular frequency or angular speed and ϕ is the phase constant. The quantity $(w t+\phi)$ is called the phase angle and has unit of radian.

The velocity of the particle is given by:

$$
v(t)=\frac{d x}{d t}=-w x_{m} \sin (w t+\phi)
$$

The maximum velocity of the particle is $\boldsymbol{v}_{\boldsymbol{m}}=\boldsymbol{w} \boldsymbol{x}_{\boldsymbol{m}}$. The particle has maximum speed at the origin.
$>$ The acceleration of the particle is given by:

$$
a(t)=\frac{d v}{d t}=-w^{2} x_{m} \cos (w t+\phi)=-w^{2} x(t)
$$

The maximum acceleration of the particle is $\boldsymbol{a}_{\boldsymbol{m}}=\boldsymbol{w}^{\mathbf{2}} \boldsymbol{x}_{\boldsymbol{m}}$. The particle has maximum acceleration when it is at $x= \pm x_{m}$.
$>$ The relationship between the frequency, the angular frequency and the period is:

$$
w=2 \pi f=\frac{2 \pi}{T}
$$

Important: whenever the force acting on a particle is proportional to the negative of the displacement, then the motion is said to be simple

harmonic motion.

$>$ Special case \#1: The mass-spring system.
In this case Hook s look gives $\mathrm{F}=-\mathrm{kx}$. Therefore the motion is harmonic.

The angular frequency and the period of oscillations are:

$$
w=\sqrt{\frac{k}{m}} \quad \text { and } \quad T=2 \pi \sqrt{\frac{m}{k}}
$$

- Special case \# 2: The simple pendulum.

In this case the force acting the mass is $\boldsymbol{F}=-\left(\frac{\boldsymbol{m} \boldsymbol{g}}{\boldsymbol{L}}\right) \boldsymbol{s}$. Therefore the motion is also harmonic.

The period of oscillations is given by:

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

$>$ Energy in simple harmonic motion:
Consider the mass-spring system.

The potential energy of the spring is:

$$
U=\frac{1}{2} k x^{2}=\frac{1}{2} k x_{m}^{2} \cos ^{2}(w t+\phi)
$$

The kinetic energy of the block is:

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2} m w^{2} x_{m}^{2} \sin ^{2}(w t+\phi)
$$

but $\mathrm{m} w^{2}=\mathrm{k}$
then the total mechanical energy of the mass-spring system is :
$\mathrm{E}=\mathrm{K}+\mathrm{U}$

$$
E=\frac{1}{2} k x_{m}^{2}
$$

We see that the total energy of the system does not depend on time and is therefore CONSTANT.
$\Rightarrow K+U$ has always the same value for all positions of the mass.

