$>$ The density, ρ (rho), of any material (solid or fluid) is defined as the mass per unit volume. That is:

$$
\rho=\frac{m}{V}
$$

where m is the mass of the material and V its volume. The unit of the density is $\mathrm{kg} / \mathrm{m}^{3}$.

Note: $1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}$.
$>$ The pressure, P , exerted by a fluid on a surface of area A is defined as:

$$
P=\frac{F}{A}
$$

where F is the force of the fluid and it is perpendicular to the surface A. The unit of pressure is $\mathrm{N} / \mathrm{m}^{2}$ or pascal (Pa).

Other units are: $1 \mathrm{~atm} .=1.013 \times 10^{5} \mathrm{~Pa}=760$ Torr $=760 \mathrm{~mm}-\mathrm{Hg}$.
$>$ The pressure variation inside a fluid:
$P_{A}=P_{B}+\rho g\left(y_{2}-y_{1}\right)=P_{B}+\rho g h$
h is the difference in height between point A and B and ρ is the density of the fluid.

The variation of pressure between the surface of the fluid and point A is:
$\mathbf{P}_{\mathbf{A}}=\mathbf{P}_{\mathbf{0}}+\boldsymbol{\rho g h}$, where P_{o} is the atmospheric pressure $=1.01 \times 10^{5} \mathrm{~Pa}$ $>$ Pascal principle:

A change in pressure applied to an enclosed fluid is transmitted undiminished (with the same value) to every point of the fluid and the walls of the container.

This principle is used in the hydraulic lift:

$$
\frac{F_{i}}{A_{i}}=\frac{F_{o}}{A_{o}}
$$

$>$ Archimedes principle:
The buoyant force acting on an object immersed in a fluid is equal to the weight of the fluid displaced by the object.

$$
F_{B}=\rho_{f} g V=M g
$$

two cases:
\checkmark Submerged objects: The net force on the submerged object is:

$$
F_{n e t}=F_{B}-W=\left(\rho_{f}-\rho_{o}\right) V g
$$

If $\boldsymbol{\rho}_{\mathbf{f}}>\boldsymbol{\rho}_{\mathbf{o}}$ then $\mathrm{F}_{\text {net }}>0$ and the object will accelerate upward.
If $\boldsymbol{\rho}_{\mathbf{f}}<\boldsymbol{\rho}_{\mathbf{o}}$ then $\mathrm{F}_{\text {net }}<0$ and the object will sink.
\checkmark Floating objects: The net force on the floating object is:

$$
F_{n e t}=0 \Rightarrow F_{B}=W
$$

where $\mathbf{F}_{\mathbf{B}}=\boldsymbol{\rho}_{\mathbf{f}} \mathbf{g V}$ and $\mathbf{W}=\boldsymbol{\rho}_{\mathbf{o}} \mathbf{g} \mathbf{V}_{\mathbf{o}}$
Be carful: V is the volume of the object beneath the fluid level (only the submerged volume).

In this case we have the following relationship:

$$
\frac{\rho_{o}}{\rho_{f}}=\frac{V}{V_{o}}
$$

The fraction of the object that lies above the fluid level is:

$$
\text { fraction }=1-\frac{V}{V_{o}}=1-\frac{\rho_{o}}{\rho_{f}}
$$

$\boldsymbol{\rho}_{\mathbf{o}}$ is the density of the object and $\boldsymbol{\rho}_{\mathbf{f}}$ is the density of the fluid.
$>$ An ideal fluid has the following properties:

- The flow is steady
- The flow is incompressible
- The flow is nonviscous and
- The flow is irrotational

For and ideal fluid the volume flow rate, R, is constant, that is:

$$
R=A_{1} v_{1}=A_{1} v_{2}
$$

where A is the cross section area and v is the speed of the fluid particles.

This equation is called the continuity equation. The unit of the volume flow rate is $\mathrm{m}^{3} / \mathrm{s}$.

You can also calculate the mass flow rate as:

$$
\rho A_{1} v_{1}=\rho A_{2} v_{2}
$$

The unit is kg / s.
> Bernoulli equation is a consequence of conservation of energy.

It is written in this form:

$$
P_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\rho g y_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

Special case:

- If the fluid flow is leveled $\left(y_{1}=y_{2}=0\right)$ then,

$$
P_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

- If the fluid is static $\left(\mathrm{v}_{1}=\mathrm{v}_{2}=0\right)$ then

$$
P_{1}+\rho g y_{1}=P_{2}+\rho g y_{2}
$$

Note: In the case of a large container with a small hole, the speed v_{1} is taken to be zero.

