
## **Chapter #9 (Systems of Paticles)**

- 1- Three identical particles each of mass = 1 kg are placed in the xy plane. The position vector of the first is  $\mathbf{r1} = (1\mathbf{i} + 4\mathbf{j})$  m and the second is  $\mathbf{r2} = (3\mathbf{i} + 1\mathbf{j})$  m. What would be the position vector of the third particle if the center of mass of the three particles were at (3 m, 3 m)?
- a. r3 = (5i + 4j) m
- b. r3 = (3i 1j) m
- c. r3 = (1i + 2j) m
- d. r3 = (2i 6j) m
- e. r3 = (4i + 3j) m
- **2-** An object at rest explodes into three pieces A, B and C. After the explosion, A has a mass of 2.0 kg and velocity (3.0 \*i) m/s, B has a mass of 3.0 kg and velocity (-1.0 \*j) m/s, and C has a mass of 1.0 kg and velocity v. Find the velocity v.
- a. (-6\*i + 3\*j) m/s
- b. (3\*i + 6\*j) m/s
- c. (6\*i 3\*i) m/s
- d. (6\*i + 3\*j) m/s
- e. (3\*i 6\*j) m/s
- **3-** Three particles are placed in the xy plane. A 4-gram particle is located at (3, 4) m, and a 6-gram particle is located at (-2, -6)m. Where must a 2-gram particle be placed so that the center of mass of this three-particle system is located at the origin?
- a. (0, 10) m
- b. (6, -2) m
- c. (5, 10) m
- d. (9, 16) m
- e. (-2, 4) m
- **4-** A 2.0-kg particle has a velocity of 4.0 m/s in the positive x direction and a 3.0-kg particle has a velocity of 5.0 m/s in the positive y direction. What is the speed of their center of mass?
- a. 3.4 m/s
- b. 3.8 m/s
- c. 5.0 m/s
- d. 4.4 m/s
- e. 4.6 m/s
- 5- Two masses, 5 kg each, have velocities (in m/s): V1 = 12 i 16 j and V2 = -20 I + 14 j. Determine the momentum of the center mass of the two masses (in kg m/s).
- a. 40 i 10 j
- b. 160 i 150 j
- c. -40 i + 10 j
- d. 40 i 10 j
- e. -160 i + 150 j
- **6** A uniform wire of mass M and length 2 m is bent to be all in one plane (see the figure). Find its center of mass with respect to point O.
- a. (0, 1/8)
- b. (-1, 1/8)
- c. (1/2, 1/3)
- d. (1/8, 3/8)
- e. (1/3, 1/3)

