Chapter \# 2 (Motion along a strait line)
Q1 A particle moves with a constant speed along the circumference of a circle of radius 5 m . It completes one revolution every 20 s . What is the magnitude of its average velocity during the first 5 s ?
Assume that at $\mathrm{t}=0$, the particle is on +x -axis see figure 1). [sqrt(2) m / s]

Q2 The Figure represents the straight-line motion of a car.
What is the distance traveled by the car from $\mathrm{t}=0$ to $\mathrm{t}=5 \mathrm{~h}$?
A. 480 km

Q3 A particle moves along the x -axis according to the equation: $\mathbf{x}=\mathbf{5 0} \mathbf{*} \mathbf{t}+\mathbf{1 0} \boldsymbol{*} \mathbf{t} * \boldsymbol{2}$ where x is in m and t is in s . Calculate the instantaneous velocity of the particle at $\mathrm{t}=$ 3 s .
A. $110 \mathrm{~m} / \mathrm{s}$

Q4 A baloon carrying a package is ascending (going vertically upward) at the rate of $12 \mathrm{~m} / \mathrm{s}$. When it is 80 m bove the ground the package is released. How long does it take the package to reach the ground? [5.4 s]

Q5 The position of a particle moving along the x axis is described by the equation

$$
\mathrm{x}(\mathrm{t})=5.0+2.0 \mathrm{t}+\mathrm{t} * * 3
$$

Find its average acceleration for the time interval $\mathrm{t}=1.0 \mathrm{~s}$ to $\mathrm{t}=2.0 \mathrm{~s}$. [9.0 m/s**2]
Q6 A racing car traveling with constant acceleration increases its speed from $10 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$ over a distance of 80 m ? How long does this take? [4.0 s]

Q7 An object is thrown vertically upward at $35 \mathrm{~m} / \mathrm{s}$. Taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the velocity of the object 5 seconds later is: [$15 \mathrm{~m} / \mathrm{s}$ down]

Q8 A stone is thrown vertically upward with an initial speed of $19.5 \mathrm{~m} / \mathrm{s}$. It will rise to a maximum height of: [19.4 m]

Q9 A stone is released from rest from the edge of a building 190 m above the ground. Neglecting air resistance, the speed of the stone, just before striking the ground, is: [$61 \mathrm{~m} / \mathrm{s}$]

Q10 A projectile is shot vertically upward with a given initial velocity. It reaches a maximum height of 100 m . If, on a second shot, the initial velocity is doubled then the projectile will reach a maximum height of: [400 m]

Q11 An object is released from rest at a height H. It takes 2.00 s for the object to fall from point A to point B (see the Figure). What is the initial height H? [385 m]

