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CHAPTER 20 
 
1. (a) The maximum force will be produced when the wire and the magnetic field are perpendicular,  
  so we have 
   Fmax = ILB,    or    
   Fmax/L = IB = (9.80 A)(0.80 T) =      7.8 N/m. 
 (b) We find the force per unit length from 
   F/L = IB sin 45.0° = (Fmax/L ) sin 45.0° = (7.8 N/m) sin 45.0° =      5.5 N/m. 
 
 
2. The force on the wire is produced by the component of the magnetic field perpendicular to the wire: 
  F  = ILB sin 40°  
   = (5.5 A)(1.5 m)(5.5 × 10–5 T) sin 40° =      2.9 × 10–4 N perpendicular to the wire and to B.  
 
 
3. For the maximum force the wire is perpendicular to the field, so we find the current from 
  F = ILB; 
  0.900 N = I(4.20 m)(0.0800 T), which gives I =      2.68 A.   
 
 
4. The maximum force will be produced when the wire and the magnetic field are perpendicular,  
 so we have 
  Fmax = ILB; 
  4.14 N = (25.0 A)(0.220 m)B, which gives B =      0.753 T.   
 
 
5. To find the direction of the force on the electron, we point our fingers west and curl them upward into 

the magnetic field.  Our thumb points north, which would be the direction of the force on a positive 
charge.  Thus the force on the electron is south. 

  F = qvB = (1.60 × 10–19 C)(3.58 × 106 m/s)(1.30 T) =       7.45 × 10–13 N  south. 
 
 
6. To find the direction of the force on the electron, we point our fingers upward and curl them forward 

into the magnetic field.  Our thumb points left, which would be the direction of the force on a positive 
charge.  Thus the force on the electron is right.  As the electron deflects to the right, the force will always 
be perpendicular, so the electron will travel in a       clockwise vertical circle. 

 The magnetic force provides the radial acceleration, so we have 
  F = qvB = mv2/r, so the radius of the path is 
  r  = mv/qB; 
   = (9.11 × 10–31 kg)(1.80 × 106 m/s)/(1.60 × 10–19 C)(0.250 T) =      4.10 × 10–5 m. 
 
 
7. To find the direction of the force on the electron, we point our fingers in the direction of v and curl them 

into the magnetic field B.  Our thumb points in the direction of the force on a positive charge.  Thus the 
force on the electron is opposite to our thumb.  

 (a) Fingers out, curl down, thumb right, force      left. 
 (b) Fingers down, curl back, thumb right, force      left. 
 (c) Fingers in, curl right, thumb down, force      up. 
 (d) Fingers right, curl up, thumb out, force      in. 
 (e) Fingers left, but cannot curl into B, so force is      zero. 
 (f) Fingers left, curl out, thumb up, force      down. 
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8. We assume that we want the direction of B that produces the maximum force, i. e., perpendicular to v.  
Because the charge is positive, we point our thumb in the direction of F and our fingers in the direction  

 of v.  To find the direction of B, we note which way we should curl our fingers, which will be the 
direction of the magnetic field B.  

 (a) Thumb out, fingers left, curl      down. 
 (b) Thumb up, fingers right, curl      in. 
 (c) Thumb down, fingers in, curl      right. 
 
 
9. To produce a circular path, the magnetic field is perpendicular to the velocity.  The magnetic force 

provides the centripetal acceleration: 
  qvB = mv2/r,   or   
  r = mv/qB; 
  0.25 m = (6.6 × 10–27 kg)(1.6 × 107 m/s)/2(1.60 × 10–19 C) B, which gives B =        1.3 T. 
 
 
10. The greatest force will be produced when the velocity and the magnetic field are perpendicular.   
 We point our thumb down (a negative charge!), and our fingers south.  We must curl our fingers to the 

west, which will be the direction of the magnetic field.  We find the magnitude from 
  F = qvB; 
  2.2 × 10–12 N = (1.60 × 10–19 C)(1.8 × 106 m/s)B, which gives B =        7.6 T  west. 
 
 
11. The force is maximum when the current and  
 field are perpendicular: 
  Fmax = ILB. 
 When the current makes an angle θ with the  
 field, the force is 
  F = ILB sin θ. 
 Thus we have 
  F/Fmax = sin θ = 0.45,   or   θ =       27°. 
 
 
12. (a) We see from the diagram that the magnetic field is up,  
  so the top pole face is a      south pole.  
 (b) We find the current from 
   F = ILB; 
   5.30 N = I(0.10 m)(0.15 T), which gives I =      3.5 × 102 A. 
 (c) The new force is 
   F′ = ILB sin θ = F sin θ = (5.30 N) sin 80° =      5.22 N. 
  Note that the wire could be tipped either way. 
 
 
13. The magnetic force provides the centripetal acceleration: 
  qvB = mv2/r,   or    mv = qBr. 
 The kinetic energy of the electron is 
  KE = !mv2 = !(qBr)2/m  
   = ![(1.60 × 10–19 C)(1.15 T)(8.40 × 10–3 m)]2/(1.67 × 10–27 kg)  
   = 7.15 × 10–16 J = (7.15 × 10–16 J)/(1.60 × 10–19 J/eV) = 4.47 × 103 eV =      4.47 keV. 
 

Fmax (into page) F  (into page)

I

B

I

Bθ

 

F (out of page)

I

B

 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 20 

 Page 20 – 3 

14. The magnetic force provides the centripetal acceleration: 
  qvB = mv2/r,   or    mv = qBr. 
 The kinetic energy of the electron is 
  KE = !mv2 = !(qBr)2/m = (q2B2/2m)r2. 
 
 
15. The magnetic force provides the centripetal acceleration: 
  qvB = mv2/r,   or    mv = p = qBr. 
 
 
16. The magnetic force provides the centripetal acceleration: 
  qvB = mv2/r,   or    mv = p = qBr. 
 The angular momentum is 
  L = mvr = qBr2. 
 
 
17. We find the required acceleration from 
  v2 = v0

2 + 2ax; 
  (30 m/s)2 = 0 + 2a(1.0 m), which gives a = 450 m/s2. 
 This acceleration is provided by the force from the  magnetic field: 
  F = ILB = ma; 
  I(0.20 m)(1.7 T) = (1.5 × 10–3 kg)(450 m/s2), which gives I =       2.0 A. 
 The force is away from the battery, fingers in the direction of I would have to curl down; thus the field 

points      down. 
 
 
18. The magnetic force produces an acceleration perpendicular to the original motion: 
  a⊥ = qvB/m = (8.10 × 10–9 C)(180 m/s)(5.00 × 10–5 T)/(3.80 × 10–3 kg) = 1.92 × 10–8 m/s2. 
 The time the bullet takes to travel 1.00 km is 
  t = L/v = (1.00 × 103 m)/(180 m/s) = 5.56 s. 
 The small acceleration will produce a small deflection, so we assume the perpendicular acceleration is 

constant.  We find the deflection of the electron from 
  y = v0yt + !at2 = 0 + !(1.92 × 10–8 m/s2)(5.56 s)2 =      3.0 × 10–7 m. 
 This justifies our assumption of constant acceleration. 
 
 
19. The magnetic field of a long wire depends on the distance from the wire: 
  B = (µ0/4¹)2I/r 
   = (10–7 T · m/A)2(15 A)/(0.15 m) =        2.0 × 10–5 T. 
 When we compare this to the Earth’s field, we get 
  B/BEarth = (2.0 × 10–5 T)/(5.5 × 10–5 T) = 0.36 =      36%. 
 
 
20. We find the current from 
  B = (µ0/4¹)2I/r; 
  5.5 × 10–5 T = (10–7 T · m/A)2I/(0.30 m), which gives I =        83 A. 
 
 
21. The two currents in the same direction will be attracted with a force of 
  F  = I1(µ0I2/2¹d)L = µ0I1I2L/2¹d 
   = (4¹ × 10–7 T · m/A)(35 A)(35 A)(45 m)/2¹(0.060 m) =       0.18 N attraction. 
 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 20 

 Page 20 – 4 

22. Because the force is attractive, the second current must be in the same direction as the first.  We find the 
magnitude from 

  F/L = µ0I1I2/2¹d 
  8.8 × 10–4 N/m = (4¹ × 10–7 T · m/A)(12 A)I2/2¹(0.070 m), which gives I2 =       26 A upward. 
 
 
23. The magnetic field produced by the wire must be less than 1% of the magnetic field of the Earth.  We find 

the current from 
  B = (µ0/4¹)2I/r; 
  0.01(5.5 × 10–5 T) > (10–7 T · m/A)2I/(1.0 m), which gives I <        3 A. 
 
 
24. The magnetic field produced by the wire is 
  B = (µ0/4¹)2I/r = (10–7 T · m/A)2(30 A)/(0.086 m) = 6.98 × 10–5 T, 
 and will be perpendicular to the motion of the airplane. 
 We find the acceleration produced by the magnetic force from 
  F = qvB = ma; 
  (18.0 C)(1.8 m/s)(6.98 × 10–5 T) = (175 × 10–3 kg)a, which gives a = 1.29 × 10–2 m/s2 =      1.3 × 10–3 g. 
 
 
25. The magnetic field from the wire at a point south of a  
 downward current will be to the west, with a magnitude:  
  Bwire = (µ0/4¹)2I/r 
    = (10–7 T · m/A)2(30 A)/(0.20 m) = 3.0 × 10–5 T. 
 Because this is perpendicular to the Earth’s field, we find the  
 direction of the resultant field, and thus of the compass needle, from 
  tan θ = Bwire/BEarth = (3.0 × 10–5 T)/(0.45 × 10–4 T) = 0.667,   or  
  θ = 34° W of N. 
 
 
 
26. The magnetic field to the west of a wire with a current to the north will be up, with a magnitude: 
  Bwire = (µ0/4¹)2I/r 
    = (10–7 T · m/A)2(12.0 A)/(0.200 m) = 1.20 × 10–5 T. 
 The net downward field is 
  Bdown = BEarth sin 40° – Bwire = (5.0 × 10–5 T) sin 40° – 1.20 × 10–5 T = 2.01 × 10–5 T. 
 The northern component is Bnorth = BEarth cos 40° = 3.83 × 10–5 T. 
 We find the magnitude from 
  B = [(Bdown)2 + (Bnorth)2]1/2 = [(2.01 × 10–5 T)2 + (3.83 × 10–5 T)2]1/2 =       4.3 × 10–5 T. 
 We find the direction from 
  tan θ = Bdown/Bnorth = (2.01 × 10–5 T)/(3.83 × 10–5 T) = 0.525,   or   θ =       28° below the horizontal. 
 
 
27. Because a current represents the amount of charge that passes a given point, the effective current of the 

proton beam is 
  I = Æq/Æt = (109 protons/s)(1.60 × 10–19 C/proton) = 1.60 × 10–10 A. 
 The magnetic field from this current will be 
  B = (µ0/4¹)2I/r 
   = (10–7 T · m/A)2(1.60 × 10–10 A)/(2.0 m) =       1.6 × 10–17 T. 
 

θ
BEarth

I (down)

West
Bwire

B

 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 20 

 Page 20 – 5 

28. (a) When the currents are in the same direction, the fields between  
  the currents will be in opposite directions, so at the midpoint we have  
   Ba  = B2 – B1 = [(µ0/4¹)2I2/r] – [(µ0/4¹)2I/r]  
    = [(µ0/4¹)2/r](I2 – I) 
    = (10–7 T · m/A)2/(0.010 m)(15 A – I)  
    =     (2.0 × 10–5 T/A)(15 A – I) up,    with the currents as shown. 
 (b) When the currents are in opposite directions, the fields between  
  the currents will be in the same direction, so at the midpoint we have 
   Bb  = B2 + B1 = [(µ0/4¹)2I2/r] + [(µ0/4¹)2I/r]  
    = [(µ0/4¹)2/r](I2 + I) 
    = (10–7 T · m/A)2/(0.010 m)(15 A + I)  
    =     (2.0 × 10–5 T/A)(15 A + I) down,    with the currents as shown. 
 
 
 
 
29. Because the currents are in opposite directions, the fields  
 will be in opposite directions.  For the net field we have  
  B  = B1 – B2 = [(µ0/4¹)2I1/r1] – [(µ0/4¹)2I2/r2]  
   = [(µ0/4¹)2I]{[1/(L – !d)] – [1/(L + !d)]} 
   = [(µ0/4¹)2I/L]{[1/(1 – !d/L)] – [1/(1 + !d/L)]}. 
 Because d « L, we can use the approximation 1/(1 ± x) Å 1 — x: 
  B  = [(µ0/4¹)2I/L][(1 + !d/L) – (1 – !d/L)] 
   = [(µ0/4¹)2I/L](d/L) = (µ0/4¹)2Id/L2 
   = [(10–7 T · m/A)2(25 A)(2.0 × 10–3 m)/(0.100 m)2  
   =       1.0 × 10–6 T up,     with the currents as shown. 
 This is  
  (1.0 × 10–6 T)/(5.0 × 10–5 T) = 0.02 =     2% of the Earth’s field. 
 
 
30. The magnetic field of the Earth points in the original  
 direction of the compass needle.  The field of the wire will  
 be tangent to a circle centered at the wire.  We see from the  
 diagram that the field of the wire must be to the south to  
 produce a greater angle for the resultant field.  Thus the  
 current in the wire must be down.  From the vector diagram,  
 we have 
  B sin θ2 = BEarth sin θ1 ; 
  B cos θ2 = BEarth cos θ1 – Bwire . 
 When we divide the two equations, we get 
  tan θ2  = BEarth sin θ1)/(BEarth cos θ1 – Bwire); 
  tan 55° = [(0.50 × 10–4 T) sin 20°]/[(0.50 × 10–4 T) cos 20° – Bwire],  
 which gives Bwire = 3.50 × 10–4 T. 
 We find the current from 
  Bwire = (µ0/4¹)2I/r; 
  3.50 × 10–4 T = (10–7 T · m/A)2I/(0.080 m), which gives I =        14 A. 
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31. Because the currents and the separations are the same, we  
 find the force per unit length between any two wires from  
  F/L  = I1(µ0I2/2¹d) = µ0I2/2¹d 
    = (4¹ × 10–7 T · m/A)(8.0 A)2/2¹(0.380 m)  
    = 3.37 × 10–5 N/m. 
 The directions of the forces are shown on the diagram.   
 The symmetry of the force diagrams simplifies the vector  
 addition, so we have 
  FA/L  = 2(F/L) cos 30°  
    = 2(3.37 × 10–5 N/m) cos 30° =      5.8 × 10–5  up. 
  FB/L  = F/L   
    =      3.4 × 10–5 N/m 60° below the line toward C. 
  FC/L  = F/L   
    =      3.4 × 10–5 N/m 60° below the line toward B. 
 
 
32. The Coulomb force between the charges provides the centripetal acceleration: 
  ke2/r2 = mv2/r, which gives v = (ke2/mr)1/2.   
 The period of the electron’s orbit is  
  T  = 2¹r/v = 2¹r/(ke2/mr)1/2 = 2¹(mr3/ke2)1/2  
   = 2¹[(9.11 × 10–31 kg)(5.3 × 10–11 m)3/(9.0 × 109 N · m2/C2)(1.60 × 10–19 C)2]1/2  
   = 1.52 × 10–16 s. 
 Thus the effective current of the electron is  
  I = e/T = (1.60 × 10–19 C)/(1.52 × 10–16 s) = 1.05 × 10–3 A. 
 The magnitude of the magnetic field is  
  B = (µ0/2¹)I/r = (µ0/4¹)2I/r 
   = (10–7 T · m/A)2(1.05 × 10–3 A)/(5.3 × 10–11 m) =        12 T. 
 
 
33. We find the direction of the field for each wire from the tangent to the 

circle around the wire, as shown.  For their magnitudes, we have  
  BT  = (µ0/4¹)2IT/L 
    = (10–7 T · m/A)2(20.0 A)/(0.100 m) = 4.00 × 10–5 T.  
  BB  = (µ0/4¹)2IB/L 
    = (10–7 T · m/A)2(5.0 A)/(0.100 m) = 1.00 × 10–5 T.  
 Because the fields are perpendicular, we find the magnitude from 
  B  = (BT

2 + BB
2)1/2  

   = [(4.00 × 10–5 T)2 + (1.00 × 10–5 T)2]1/2 =       4.1 × 10–5 T. 
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34. (a) For the force produced by the magnetic field of the upper wire to  
  balance the weight, it must be up, i. e., an attractive force.  Thus  
  the currents must be in the same direction.  When we equate the  
  magnitudes of the two forces for a length L, we get 
   IBBTL = mg; 
   (µ0/4¹)2IBITL/d = ρ(¹r2L)g; 
   (4¹ × 10–7 T · m/A)2IB(48 A)/(0.15 m) =  
        (8.9 × 103 kg/m3)¹(1.25 m)2(9.80 m/s2),  
  which gives IB =       6.7 × 103 A to the right. 
 (b) The magnetic force will decrease with increasing separation.  If the wire is moved a small distance  
  above or below the equilibrium position, there will be a net force, away from equilibrium, and the  
  wire will be       unstable. 
 (c) If the second wire is above the first, there must be a repulsive magnetic force between the two wires  
  to balance the weight, which means the currents must be opposite.  Because the separation is the  
  same, the magnitude of the current is the same: 
   I2 =       6.7 × 103 A to the left. 
  The magnetic force will decrease with increasing separation.  If the wire is moved a small distance  
  above or below the equilibrium position, there will be a net force back toward equilibrium, and the  
  wire will be        stable for vertical displacements. 
 
 
35. Because (12)2 + (5)2 = (13)2 , we have a right triangle, so 
  tan α = d/L1 = (5.00 cm)/(12.0 cm) = 0.417,  α = 22.6°.  
 We find the direction of the field for each wire from  
 the tangent to the circle around the wire, as shown.   
 For their magnitudes, we have 
  B1 = (µ0/4¹)2I/L1 
   = (10–7 T · m/A)2(16.5 A)/(0.120 m) = 2.75 × 10–5 T.  
  B2 = (µ0/4¹)2IB/L2 
   = (10–7 T · m/A)2(16.5 A)/(0.130 m) = 2.54 × 10–5 T.  
 From the vector diagram, we have 
  Bx = B1 + B2 cos α  
   = 2.75 × 10–5 T + (2.54 × 10–5 T) cos 22.6°  
   = 5.09 × 10–5 T. 
  By = – B2 cos α ; 
   = – (2.54 × 10–5 T) cos 22.6° = – 0.976 × 10–5 T. 
 For the direction of the field, we have 
  tan θ = By/Bx = (0.976 × 10–5 T)/(5.09 × 10–5 T) = 0.192,  θ = 10.9°. 
 We find the magnitude from 
  Bx = B cos θ; 
  5.09 × 10–5 T = B cos 10.9°,  
 which gives B =      5.18 × 10–5 T  10.9° below the plane parallel to the two wires. 
 
 
36. We find the current in the solenoid from 
  B = µ0nI = µ0NI/L; 
  0.385 T =  (4¹ × 10–7 T · m/A)[(1000 turns)/(0.300 m)]I, which gives I =       91.9 A. 
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37. The mass, and thus the volume, of the wire is fixed, so we have ¹r2L = k; a smaller radius will give a 
greater length.  If we assume a given current (a variable voltage supply), the magnetic field of the 
solenoid will be determined by the density of turns: B = µ0nI.  The greatest density will be when the wires 
are closely wound.  In this case, the separation of turns is 2r, so the density of turns is 1/2r, which would 
indicate that the radius should be very small.   

 If D is the diameter of the solenoid, the number of turns is  
  N = L/¹D, 
 so the length of the solenoid is N2r = 2Lr/¹D = 2k/¹2rD. 
 The length of the solenoid must be much greater than the diameter, which will be true for small r, as long 

as the diameter is not large, which is the only restriction on the diameter.  These considerations indicate 
that a long and thin wire should be used.  However, we must be concerned with the resistance of the 
wire, because the thermal power generation, I 

2R, must be dissipated in the solenoid.  The resistance is 
  R = ρL/¹r2 = ρk/¹r4. 
 Thus a very thin wire will create thermal dissipation problems, which means that the insulation and/or 

wire could melt.  Thus the wire should be something       between long, thin and short, fat. 
 
 
38. (a) Each loop will produce a field along its axis.   
  For path 1, the symmetry means that the magnetic  
  field will have the same magnitude anywhere on the  
  path and be circular, so that B is parallel to the  
  path. 
  We apply Ampere's law to path 1, which is a circle  
  with radius R.  One side of every turn of the coil  
  passes through the area enclosed by this path,  
  so we have 
   · B|| Æ¬ = µ0 · I. 
  Because B|| = B is the same for all segments of the  
  path, and each turn has the same current, we get 
   B · Æ¬ = B(2¹R) = µ0NI,   or   B = µ0NI/2¹R. 
 (b) For path 2, the symmetry means that the magnetic  
  field will have the same magnitude anywhere on the  
  path and be circular, so that B is parallel to the path. 
  We apply Ampere's law to path 2, which is a circle with radius R.  For each coil the current on one  
  side will be opposite to the current on the other, so the net current through the area enclosed by this  
  path is zero, so we have 
   · B|| Æ¬ = µ0 · I; 
   B · Æ¬ = B(2¹R) = 0,   or   B = 0. 
 (c) The field inside the torus is     not uniform.     If we vary the radius of path 1, the analysis does not  
  change, so the magnetic field inside the torus varies as       1/R. 
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39. We choose a clockwise rectangular path shown in the diagram.   
 Because there are no currents through the rectangle, for  
 Ampere’s law we have 
  · B|| Æ¬ = µ0 · I = 0. 
 The sum on the left-hand side consists of four parts: 
  (· B|| Æ¬)left + (· B|| Æ¬)top + (· B|| Æ¬)right + (· B|| Æ¬)bottom = 0. 
 The field on the left side is constant and parallel to the path;  
 the field on the right is zero.  Thus we have 
  Bh + (· B|| Æ¬)top + 0 + (· B|| Æ¬)bottom = 0,  or  
  Bh = – [(· B|| Æ¬)top + (· B|| Æ¬)bottom]. 
 Thus there must be a component of B parallel to the paths on top  
 and bottom, as shown, so there must be a fringing field. 
 Note that the contributions to the sum from the top and bottom have the same signs. 
 
 
40. (a) We choose a circular path with radius r, centered on the axis  
  of the cylinder, so the symmetry means that the magnetic field  
  will have the same magnitude anywhere on the path and be  
  circular; B is parallel to the path.  Because the current is uniform  
  across the cross section, we find the current through the path  
  from the area: 
   I′ = (¹r2/¹r0

2)I = (r2/r0
2)I. 

  We apply Ampere's law to the path: 
   · B|| Æ¬ = µ0 · I. 
   B · Æ¬ = B(2¹r) = µ0(r2/r0

2)I,   or   B = µ0Ir/2¹r0
2. 

 (b) At the surface of the wire, r = r0 , so we have 
   B = µ0Ir/2¹r0

2 = µ0Ir0/2¹r0
2 = µ0I/2¹r0 ,  

  which is the expression for the magnetic field outside the wire. 
 (c) The field is zero at the center of the wire, and outside the  
  wire it decreases with distance, so the maximum is      
   at the surface of the wire.         
  For the given data, we have 
   Bmax  = µ0I/2¹r0  = (µ0/4¹)2I/r0   
     = (10–7 T · m/A)2(15.0 A)/(0.50 × 10–3 m)  
     =     6.0 × 10–3 T. 
 (d) Inside the wire we have 
   B/Bmax = r/r0 = 0.10,   or   r = 0.10r0 . 
  Outside the wire we have 
   B/Bmax = r0/r = 0.10,   or   r = 10r0 . 
 
 
41. When the coil comes to rest, the magnetic torque is balanced by the restoring torque: 
  NIAB = kφ. 
 Because the deflection is the same, we have 
  I1B1 = I2B2 ; 
  (63.0 µA)B1 = I2(0.860B1), which gives I2 =      73.3 µA. 
 
 
42. When the coil comes to rest, the magnetic torque is balanced by the restoring torque: 
  NIAB = kφ. 
 Because the deflection is the same, we have 
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  I1/k1 = I2/k2 ; 
  (36 µA)/k1 = I2/(0.80k1), which gives I2 =      29 µA. 
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43. If we assume that the magnetic field is constant, we have 
  τ2/τ1 = I2/I1 = 0.85,  
 so the torque will       decrease by 15%. 
 If we assume that the magnetic field is produced by the current, it will be proportional to the current and 

will also decrease by 15%, so we have 
  τ2/τ1 = (I2/I1)(B2/B1) = (0.85)(0.85) = 0.72,  
 so the torque will       decrease by 28%. 
 
 
44. When the coil is parallel to the magnetic field, the torque is maximum, so we have 
  τ = NIAB; 
  0.325 m · N = (1)(6.30 A)(0.220)2B, which gives B =      1.07 T. 
 
 
45. The angular momentum of the electron for the circular orbit is 
  L = mvr. 
 The time for the electron to go once around the orbit is 
  T = 2¹r/v, 
 so the effective current is  
  I = e/T = ev/2¹r. 
 The magnetic dipole moment is 
  M = IA = (ev/2¹r)¹r2 = evr/2 = (e/2m)L. 
 
 
46. (a) The angle between the normal to the coil and the field  
  is 34.0°, so the torque is 
   τ  = NIAB sin θ  
    = (11)(7.70 A)¹(0.090 m)2(5.50 T) sin 34.0°  
    =        6.63 × 10–5 m · N. 
 (b) From the directions of the forces shown on the diagram,  
  the      south edge       of the coil will rise. 
 
 
 
 
47. (a) The Hall emf is across the width of the sample, so the Hall field is 
   EH = åH/w = (6.5 × 10–6 V)/(0.030 m) =       2.2 × 10–4 V/m. 
 (b) The forces from the electric field and the magnetic field balance. We find the drift speed from 
   EH = vdB; 
   2.2 × 10–4 V/m = vd(0.80 T), which gives vd =      2.7 × 10–4 m/s. 
 (c) We find the density from 
   I = neAvd ; 
   30 A = n(1.60 × 10–19 C)(0.030 m)(500 × 10–6 m)(2.7 × 10–4 m/s),  
  which gives n =      4.6 × 1028 electrons/m3. 
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48. The Hall field is 
  EH = åH/w = (2.42 × 10–6 V)/(0.015 m) = 1.613 × 10–4 V/m. 
 To determine the drift speed, we first find the density of free electrons: 
  n  = [(0.971)(1000 kg/m3)(103 g/kg)/(23 g/mol)](6.02 × 1023 free electrons/mol)  
   = 2.543 × 1028 electrons/m3. 
 We find the drift speed from 
  I = neAvd ; 
  12.0 A = (2.543 × 1028 electrons/m3)(1.60 × 10–19 C)(0.015 m)(1.00 × 10–3 m)(2.7 × 10–4 m/s)vd ,  
  which gives vd = 1.967 × 10–4 m/s. 
 The forces from the electric field and the magnetic field balance, so we have 
  EH = vdB; 
  1.613 × 10–4 V/m = (1.967 × 10–4 m/s)B, which gives B =      0.820 T. 
 
 
49. (a) The sign of the ions will not change the magnitude of the Hall emf, but will  
   determine the polarity of the emf. 
 (b) The forces from the electric field and the magnetic field balance. We find the flow velocity from 
   åH = vdBw; 
   0.10 × 10–3 V = vd(0.070 T)(3.3 × 10–3 m), which gives vd =      0.43 m/s. 
 
 
50. For the circular motion, the magnetic force provides the centripetal acceleration: 
  qvB = mv2/r,   or    v = qBr/m. 
 To make the path straight, the forces from the electric field and the magnetic field balance: 
  qE = qvB = q(qBr/m)B,   or    
  E = qB2r/m = (1.60 × 10–19 C)(0.566 T)2(0.0510 m)/(1.67 × 10–27 kg) =       1.57 × 106 V/m. 
 
 
51. For the circular motion, the magnetic force provides the centripetal acceleration: 
  qvB = mv2/r,   or    r = mv/qB. 
 The velocities are the same because of the velocity selector, so we have 
  m/m0 = r/r0 ; 
  m1/(76 u) = (21.0 cm)/(22.8 cm) =      70 u; 
  m2/(76 u) = (21.6 cm)/(22.8 cm) =      72 u; 
  m3/(76 u) = (21.9 cm)/(22.8 cm) =      73 u; 
  m4/(76 u) = (22.2 cm)/(22.8 cm) =      74 u. 
 
 
52. We find the velocity of the velocity selector from 
  v = E/B = (2.48 × 104 V/m)/(0.68 T) = 3.65 × 104 m/s. 
 For the radius of the path, we have 
  r = mv/qB′ = [(3.65 × 104 m/s)/(1.60 × 10–19 C)(0.68 T)]m = (3.35 × 1023 m/kg)m. 
 If we let A represent the mass number, we can write this as 
  r = (3.35 × 1023 m/kg)(1.67 × 10–27 kg)A = (5.60 × 10–4 m)A = (0.560 mm)A. 
 The separation of the lines is the difference in the diameter, or 
  ÆD = 2 Ær = 2(0.560 mm) ÆA = (1.12 mm)(1) =       1.12 mm. 
 If the ions were doubly charged, all radii would be reduced by one-half, so the separation would be 
  0.56 mm. 
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53. (a) To make the path straight, the forces from the electric field  
  and the magnetic field balance: 
   qE = qvB ; 
   10,000 V/m = (4.8 × 106 m/s)B, which gives B =      2.1 × 10–3 T.  
 (b) Because the electric force is up, the magnetic force must be down, so  
  the magnetic field is     out of the page. 
 (c) If there is only the magnetic field, the radius of the circular orbit is 
   r = mv/qB. 
  The time to complete a circle is  
   T = 2¹r/v = 2¹m/qB, so the frequency is 
   f = 1/T = qB/2¹m = (1.60 × 10–19 C)(2.08 × 10–3 T)/2¹(9.11 × 10–31 kg) =      5.8 × 107 Hz. 
 
 
54. The velocity of the velocity selector is 
  v = E/B. 
 For the radius of the path, we have 
  r = mv/qB′ = mE/qB′B, so  
  r = km,   and   Ær = k Æm. 
 If we form the ratio, we get 
  Æm/m = Ær/r; 
  (28.0134 u – 28.0106 u)/(28.0134 u) = ! (0.50 × 10-3 m)/r, which gives r =      2.5 m. 
 
 
55. We find the speed acquired from the accelerating voltage from energy conservation: 
  0 = ÆKE + ÆPE; 
  0 = !mv2 – 0 + q(– V), which gives v = (2qV/m)1/2. 
 We combine this with the expression for the radius of the path:  
  R = mv/qB = m(2qV/m)1/2/qB,   or   m = qB2R2/2V. 
 
 
56. We find the permeability from 
  B = µnI; 
  1.8 T = µ[(600 turns)/(0.36 m)](40 A), which gives µ =       2.7 × 10–5 T · m/A. 
 
 
57. The magnetic force must be toward the center of the circular path,  
 so the magnetic field must be up. 
 The magnetic force provides the centripetal acceleration:  
  qvB = mv2/r,   or    mv = qBr; 
  4.8 × 10–16 kg · m/s = (1.60 × 10–19 C)B(1.0 × 103 m),  
 which gives B =       3.0 T  up. 
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58. The magnetic field at the loop from the wire will be into the  
 page, and will depend only on the distance from the wire r:  
  B = (µ0/4¹)2I1/r,  
 For the two vertical sides of the loop, the currents are in  
 opposite directions so their forces will be in opposite directions.   
 Because the current will be in the same average field, the  
 magnitudes of the forces will be equal, so Fc + Fd = 0.   
 For the sum of the two forces on the top and bottom of the loop,  
 we have 
  Fnet  = Fa – Fb = I2BaL – I2BbL   
   = I2[(µ0/4¹)2I1/a]L – I2[(µ0/4¹)2I1/(a + b)]L   
   = (µ0/4¹)(2I1I2L){(1/a) – [1/(a + b)]}  
   = (10–7 T · m/A)2(2.5 A)(2.5 A)(0.100 m)[(1/0.030 m) – (1/0.080 m)]  
   =      2.6 × 10–6 N  toward the wire. 
 
 
59. The radius of the path in the magnetic field is  
  r = mv/eB,   or    mv = eBr. 
 The kinetic energy is 
  KE = !mv2 = !(eBr)2/m. 
 If we form the ratio for the two particles, we have 
  KEp/KEe = (rp/re)2(me/mp); 
  1 = (rp/re)2[(9.11 × 10–31 kg)/(1.67 × 10–27 kg)], which gives rp/re =      42.8. 
 
 
60. The magnetic force on the electron must be up, so the velocity must be toward the west. 
 For the balanced forces, we have 
  mg = qvB; 
  (9.11 × 10–31 kg)(9.80 m/s2) = (1.60 × 10–19 C)v(0.50 × 10–4 T),  
 which gives v =       1.1 × 10–6 m/s  west. 
 
 
61. The force on the airplane is  
  F = qvB = (155 C)(120 m/s)(5.0 × 10–5 T) =       0.93 N. 
 
 
62. Even though the Earth’s field dips, the current and the field are perpendicular.  The direction of the force 

will be perpendicular to both the cable and the Earth’s field, so it will be 68° above the horizontal toward 
the north.  For the magnitude, we have 

  F  = ILB   
   = (330 A)(10 m)(5.0 × 10–5 T) =      0.17 N 68° above the horizontal toward the north. 
 
 
63. (a) We find the speed acquired from the accelerating voltage from energy conservation: 
   0 = ÆKE + ÆPE; 
   0 = !mv2 – 0 + q(– V), which gives  
   v = (2qV/m)1/2 = [2(2)(1.60 × 10–19 C)(2400 V)/(6.6 × 10–27 kg)]1/2 = 4.82 × 105 m/s. 
  For the radius of the path, we have 
   r  = mv/qB = (6.6 × 10–27 kg)(4.82 × 105 m/s)/(2)(1.60 × 10–19 C)(0.240 T)  
    = 4.1 × 10–2 m =       4.1 cm. 
 (b) The period of revolution is  
   T = 2¹r/v = 2¹m/qB = 2¹(6.6 × 10–27 kg)/(2)(1.60 × 10–19 C)(0.240 T) =       5.4 × 10–7 s. 
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64. If we consider a length L of the wire, for the balanced forces, we have 
  mg = ρ¹r2Lg = ILB; 
  (8.9 × 103 kg/m3)¹(0.500 m)2(9.80 m/s2) = I(5.00 × 10–5 T),  
 which gives I =       1.37 × 103 A. 
 
 
 
65. Because the currents and the separations are the same, we  
 find the force on a length L of the top wire from  
 either of the two bottom wires from  
  F = I1(µ0I2/2¹d)L = µ0I1I2L/2¹d 
   = (4¹ × 10–7 T · m/A)(20.0 A)I1L/2¹(0.380 m)  
   = (1.05 × 10–5 N/A · m)I1L. 
 The directions of the forces are shown on the diagram.   
 The symmetry of the force diagrams simplifies the  
 vector addition, so for the net force to be zero, we have 
  FA = 2F cos 30° = mg = ρ¹r2Lg; 
  2(1.05 × 10–5 N/A · m)I1L cos 30° = (8.9 × 103 kg/m3)¹(1.00 × 10–3 m)2(9.80 m/s2)L,  
 which gives I1 =       1.50 × 104 A. 
 
 
66. (a) The force from the magnetic field will accelerate  
  the rod: 
   F = ILB = ma, which gives a = ILB/m.  
  Because the rod starts from rest and the  
  acceleration is constant, we have 
   v = v0 + at = 0 + (ILB/m)t =       ILBt/m. 
 (b) The total normal force on the rod is mg, so  
  there is a friction force of µkmg.  For the

 acceleration, we have 
   ·F = ILB – µkmg = ma, which gives a = (ILB/m) – µkg. 
  For the speed we have 
   v = at =       [(ILB/m) – µkg]t. 
 (c) For a current toward the north in an upward field, the force will be to the      east. 
 
 
67. We find the speed acquired from the accelerating voltage from energy conservation: 
  0 = ÆKE + ÆPE; 
  0 = !mv2 – 0 + (– e)(V),   or   v = (2eV/m)1/2. 
 If we assume that the deflection is small, the time the electron takes to reach the screen is 
  t = L/v = L(m/2eV)1/2. 
 The magnetic force produces an acceleration perpendicular to the original motion: 
  a⊥ = evB/m.  
 For a small deflection, we can take the force to be constant, so the deflection of the electron is 
  d  = !a⊥t2 = !(evB/m)(L/v)2 = !eBL2/mv = !BL2(e/2mV)1/2  
   = !(5.0 × 10–5 T)(0.20 m)2[(1.60 × 10–19 C)/2(9.11 × 10–31 kg)V]1/2 = (0.296 m · V1/2)/V1/2. 
 (a) For a voltage of 2.0 kV, we have 
   d = (0.296 m · V1/2)/V1/2 = (0.296 m · V1/2)/(2.0 × 103 V)1/2 = 6.6 × 10–3 m =      6.6 mm. 
 (b) For a voltage of 30 kV, we have 
   d = (0.296 m · V1/2)/V1/2 = (0.296 m · V1/2)/(30 × 103 V)1/2 = 1.7 × 10–3 m =      1.7 mm. 
 These results justify our assumption of small deflection. 
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68. The component of the velocity parallel to the field does not change.   
 The component perpendicular to the field produces a force which  
 causes the circular motion.   
 We find the radius of the circular motion from 
  R  = mv⊥/qB  
   = (9.11 × 10–31 kg)(1.8 × 107 m/s)(sin 7.0°)/(1.60 × 10–19 C)(3.3 × 10–2 T)  
   = 3.78 × 10–4 m =      0.38 mm. 
 We find the time for one revolution: 
  T = 2¹R/v⊥ = 2¹(3.78 × 10–4 m)/(1.8 × 107 m/s) sin 7.0° = 1.08 × 10–9 s. 
 In this time, the distance the electron travels along the field is 
  d = v||T = (1.8 × 107 m/s)(cos 7.0°)(1.08 × 10–9 s) = 1.9 × 10–2 m =      1.9 cm. 
 
 
69. (a) The radius of the circular orbit is 
   r = mv/qB. 
  The time to complete a circle is  
   T = 2¹r/v = 2¹m/qB, so the frequency is 
   f = 1/T = qB/2¹m. 
  Note that this is independent of r. 
  Because we want the ac voltage to be maximum when the proton reaches the gap and minimum  
  (reversed) when the proton has made half a circle, the frequency of the ac voltage must be the  
  same:  f = 1/T = qB/2¹m. 
 (b) In a full circle, the proton crosses the gap twice.  If the gap is small, the ac voltage will not change  
  significantly from its maximum value while the proton is in the gap.    
  The energy gain from the two crossings is 
   ÆKE = 2qV0 . 
 (c) From r = mv/qB, we see that the maximum speed, and thus the maximum kinetic energy occurs at  
  the maximum radius of the path.  The maximum kinetic energy is  
   KEmax  = !mvmax

2 = !m(qBrmax/m)2 = (qBrmax)2/2m   
     = [(1.60 × 10–19 C)(0.50 T)(2.0 m)]2/2(1.67 × 10–27 kg)  
     = 7.66 × 10–12 J = (7.66 × 10–12 J)/(1.60 × 10–13 J/MeV) =       48 MeV. 
 (d) The cyclotron is like a swing because a small push is given in resonance with the natural  
  frequency of the motion. 
 
 
70. If the beam is perpendicular to the magnetic field, the force  
 from the magnetic field is always perpendicular to the  
 velocity, so it will change the direction of the velocity, but not  
 magnitude.  The radius of the path in the magnetic field is  
  R = mv/qB. 
 Protons with different speeds will have paths of different radii.   
 Thus slower protons will deflect more, and faster protons will  
 deflect less, than those with the design speed. 
 We find the radius of the path from 
  R  = mv/qB  
   = (1.67 × 10–27 kg)(1.0 × 10–7 m/s)/(1.60 × 10–19 C)(0.33 T)  
   = 0.316 m. 
 Because the exit velocity is perpendicular to the radial  
 line from the center of curvature, the exit angle is also  
 the angle the radial line makes with the boundary of the field: 
  sin θ = L/R = (0.050 m)/(0.316 m) = 0.158,  so       θ = 9.1°. 
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71. (a) The force on one side of the loop is 
   F = ILB  = (25.0 A)(0.200 m)(1.65 T) = 8.25 N. 
  When the loop is perpendicular to the magnetic field, the forces  
  at top and bottom will create a tension in the other two sides of  
  !F.  This produces a tensile stress of !F/A = F/2¹r2. 
  When the loop is parallel to the magnetic field, the forces  
  on right and left will create a shear in the other two sides.   
  This produces a shear stress of !F/A = F/2¹r2. 
  Because the magnitudes are the same and the tensile strength of  
  aluminum is equal to the shear strength, we can use either condition to  
  determine the minimum diameter.  With a safety factor of 10, we have 
   10(F/2¹r2) < Strength; 
   10(8.25 N)/2¹r2 < 200 × 106 N/m2,  
  which gives r > 2.56 × 10–4 m = 0.256 mm. 
  Thus the minimum diameter is       0.512 mm. 
 (b) The resistance of a single loop is 
   R = ρL/A = ρL/¹r2 = (2.65 × 10–8 Ω · m)(4)(0.200 m)/¹(2.56 × 10–4 m)2 =      0.103 Ω. 
 
 
72. (a) We find the resistance of the coil from  
   P = V2/R; 
   4.0 × 103 W = (120 V)2/R, which gives R = 3.60 Ω. 
  If the coil is tightly wound, each turn will have a length of ¹D.  We find the number of turns from  
  the length of wire required to give this resistance: 
   R = ρL/A = ρN¹D/w2; 
   3.60 Ω = (1.65 × 10–8 Ω · m)N¹(1.2 m)/(1.6 × 10–3 m)2, which gives N =      1.5 × 102 turns. 
 (b) We find the current in the coil from 
   I = V/R = (120 V)/(3.60 Ω) = 33.3 A. 
  We find the magnetic field strength from 
   B = µ0NI/2r 
    = (4¹ × 10–7 T · m/A)(1.5 × 102 turns)(33.3 A)/2(0.60 m) =       5.2 × 10–3 T. 
 (c) If we increase the number of turns by a factor k, the resistance will increase by this factor.  Because  
  the voltage is constant, the current will decrease by this factor, so the product NI will not change.   
  Thus the magnetic field strength     will not change. 
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