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CHAPTER 11 
 
1. We find the spring constant from the compression caused by the increased weight: 
  k = mg/x = (65 kg)(9.80 m/s2)/(0.028 m) = 2.28 × 104 N/m. 
 The frequency of vibration will be 
  f = (k/m)1/2/2¹ = [(2.28 × 104 N/m)/(1065 kg)]1/2/2¹ =       0.74 Hz. 
 
 
2. We find the spring constant from the elongation caused by the increased weight: 
  k = Æmg/Æx = (80 N – 55 N)/(0.85 m – 0.65 m) =       1.3 × 102 N/m. 
 
 
3. In one period the particle will travel from one extreme position to the other (a distance of 2A) and back 

again.  The total distance traveled is 
  d = 4A = 4(0.25 m) =        1.00 m. 
 
 
4. (a) We find the spring constant from the elongation caused by the weight: 
   k = mg/Æx = (2.7 kg)(9.80 m/s2)/(0.039 m) =       6.8 × 102 N/m. 
 (b) Because the fish will oscillate about the equilibrium position, the amplitude will be the distance  
  the fish was pulled down from equilibrium: 
   A = 2.5 cm. 
  The frequency of vibration will be 
   f = (k/m)1/2/2¹ = [(6.8 × 102 N/m)/(2.7 kg)]1/2/2¹ =       2.5 Hz. 
 
 
5. Because the mass starts at the maximum displacement, we have  
  t 0 T/4 T/2 3T/4 T 5T/4 
  x A 0 – A 0 A 0 
 
 We see that the curve resembles a        cosine wave. 
 
 
 
 
6. (a) We find the effective spring constant from the frequency: 
   f1 = (k/m1)1/2/2¹; 
   4.0 Hz = [k/(0.15 × 10–3 kg)]1/2/2¹, which gives k =       9.5 × 10–2 N/m. 
 (b) The new frequency of vibration will be 
   f2 = (k/m2)1/2/2¹ = [(9.5 × 10–2 N/m)/(0.50 × 10–3 kg)]1/2/2¹ =       2.2 Hz. 
 
 
7. (a) We find the effective spring constant from the frequency: 
   f1 = (k/m1)1/2/2¹; 
   2.5 Hz = [k/(0.050 kg)]1/2/2¹, which gives k =       12 N/m. 
 (b) Because the size and shape are the same, the spring constant will be the same.   
  The new frequency of vibration will be 
   f2 = (k/m2)1/2/2¹ = [(12 N/m)/(0.25 kg)]1/2/2¹ =       1.1 Hz. 
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8. The dependence of the frequency on the mass is  
  f = (k/m)1/2/2¹. 
 Because the spring constant does not change, we have 
  f2/f1 = (m1/m2)1/2; 
  f2/(3.0 Hz) = [(0.60 kg)/(0.38 kg)]1/2, which gives f2 =       3.8 Hz. 
 
 
9. (a) The velocity will be maximum at the equilibrium position: 
   v0 = Aω = 2¹fA = 2¹(3.0 Hz)(0.15 m) =       2.8 m/s. 
 (b) We find the velocity at the position from 
   v  = v0[1 – (x2/A2)]1/2 
    = (2.8 m/s){1 – [(0.10 m)2/(0.15 m)2]}1/2 =       2.1 m/s. 
 (c) We find the total energy from the maximum kinetic energy: 
   E = KEmax = !mv0

2 = !(0.50 kg)(2.8 m/s)2 =       2.0 J. 
 (d) Because x = A at t = 0, we have a cosine function: 
   x = A cos (ωt) = A cos (2¹ft) =        (0.15 m) cos [2¹(3.0 Hz)t]. 
 
 
10. The dependence of the frequency on the mass is  
  f = (k/m)1/2/2¹. 
 Because the spring constant does not change, we have 
  f2/f1 = (m/m2)1/2; 
  (0.60 Hz)/(0.88 Hz) = [m/(m + 0.600 kg)]1/2, which gives m =       0.52 kg. 
 
 
11. In the equilibrium position, the net force is zero.  When the mass is  
 pulled down a distance x, the net restoring force is the sum of the  
 additional forces from the springs, so we have 
  Fnet = ÆF2 + ÆF1 = – kx – kx = – 2kx,  
 which gives an effective force constant of 2k. 
 We find the frequency of vibration from 
  f = (keff/m)1/2/2¹ =       (2k/m)1/2/2¹. 
 
 
 
12. We find the spring constant from the elongation caused by the mass: 
  k = Æmg/Æx = (1.62 kg)(9.80 m/s2)/(0.315 m) = 50.4 N/m. 
 The period of the motion is independent of amplitude: 
  T = 2¹(m/k)1/2 = 2¹[(1.62 kg)/(50.4 N/m)]1/2 = 1.13 s. 
 The time to return to the equilibrium position is one-quarter of a period: 
  t = (T = ((1.13 s) =       0.282 s. 
 
 
13. We find the spring constant from the compression caused by the force: 
  k = F/Æx = (80.0 N)/(0.200 m) = 400 N/m. 
 The ball will leave at the equilibrium position, where the kinetic energy is maximum.  Because this is also 

the maximum potential energy, we have 
  KEmax = !mv0

2 = PEmax = !kA2; 
  !(0.150 kg)v0

2 =  !(400 N/m)(0.200 m)2, which gives v0 =        10.3 m/s. 
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14. (a) The period of the motion is independent of amplitude: 
   T = 2¹(m/k)1/2 = 2¹[(0.750 kg)/(124 N/m)]1/2 =       0.489 s. 
  The frequency is 
   f = 1/T = 1/(0.489 s) =       2.04 Hz. 
 (b) Because the mass is struck at the equilibrium position, the initial speed is the maximum speed. 
  We find the amplitude from 
   v0 = Aω = 2¹fA; 
   2.76 m/s = 2¹(2.04 Hz)A, which gives A =       0.215 m. 
 (c) The maximum acceleration is 
   amax = ω2A = (2¹f)2A = [2¹(2.04 Hz)]2(0.215 m) =        35.5 m/s2. 
 (d) Because the mass starts at the equilibrium position, we have a sine function.  If we take the  
  positive x-direction in the direction of the initial velocity, we have 
   x = A sin (ωt) = A sin (2¹ft) = (0.215 m) sin [2¹(2.04 Hz)t] =        (0.215 m) sin [(12.8 s–1)t]. 
 (e) We find the total energy from the maximum kinetic energy: 
   E = KEmax = !mv0

2 = !(0.750 kg)(2.76 m/s)2 =       2.86 J. 
 
 
15. (a) The work done on the spring increases the potential energy: 
   W = PEmax = !kA0

2; 
   3.0 J = !k(0.12 m)2 , which gives k =       4.2 × 102 N/m. 
 (b) The maximum acceleration is produced by the maximum restoring force: 
   Fmax = kA = ma; 
   (4.17 × 102 N/m)(0.12 m) = m(15 m/s2), which gives m =         3.3 kg. 
 
 
16. Because the mass is released at the maximum displacement, we have 
  x = x0 cos (ωt);    v = – v0 sin (ωt);    a = – amax cos (ωt). 
 (a) We find ωt from 
   v = – !v0 = – v0 sin (ωt), which gives ωt = 30°. 
  Thus the distance is 
   x = x0 cos (ωt) = x0 cos (30°) =      0.866 x0. 
 (b) We find ωt from 
   a = – !amax = – amax cos (ωt), which gives ωt = 60°. 
  Thus the distance is 
   x = x0 cos (ωt) = x0 cos (60°) =      0.500 x0. 
 
 
17. (a) The amplitude is the maximum value of x:        0.45 m. 
 (b) We find the frequency from the coefficient of t: 
   2¹f = 8.40 s–1, which gives f =        1.34 Hz. 
 (c) The maximum speed is 
   v0 = ωA = (8.40 s–1)(0.45 m) = 3.78 m/s. 
  We find the total energy from the maximum kinetic energy: 
   E = KEmax = !mv0

2 = !(0.50 kg)(3.78 m/s)2 =       3.6 J. 
 (d) We find the velocity at the position from 
   v  = v0[1 – (x2/A2)]1/2 
    = (3.78 m/s){1 – [(0.30 m)2/(0.45 m)2]}1/2 = 2.82 m/s. 
  The kinetic energy is 
   KE = !mv2 = !(0.50 kg)(2.82 m/s)2 =       2.0 J. 
  The potential energy is 
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   PE = E – KE = 3.6 J – 2.0 J =       1.6 J. 
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18. (a) The amplitude is the maximum value of x:        0.35 m. 
 (b) We find the frequency from the coefficient of t:  
   2¹f = 5.50 s–1, which gives f =        0.875 Hz. 
 (c) The period is 
   T = 1/f = 1/(0.875 Hz) =        1.14 s. 
 (d) The maximum speed is 
   v0 = ωA = (5.50 s–1)(0.35 m) = 1.93 m/s. 
  We find the total energy from the maximum kinetic energy: 
   E = KEmax = !mv0

2 = !(0.400 kg)(1.93 m/s)2 =       0.74 J. 
 (e) We find the velocity at the position from 
   v  = v0[1 – (x2/A2)]1/2 
    = (1.93 m/s){1 – [(0.10 m)2/(0.35 m)2]}1/2 = 1.84 m/s. 
  The kinetic energy is 
   KE = !mv2 = !(0.400 kg)(1.84 m/s)2 =       0.68 J. 
  The potential energy is 
   PE = E – KE = 0.74 J – 0.68 J =       0.06 J. 
 
 
19. (a) We find the frequency from  
   f = (k/m)1/2/2¹ = [(210 N/m)/(0.250 kg)]1/2/2¹ = 4.61 Hz, so 
   ω = 2¹f = 2¹(4.61 Hz) = 29.0 s–1. 
  Because the mass starts at the equilibrium position moving in the positive direction, we have a  
  sine function: 
   x = A sin (ωt) = (0.280 m) sin [(29.0 s–1)t]. 
 (b) The period of the motion is 
   T = 1/f = 1/(4.61 Hz) = 0.217 s. 
  It will take one-quarter period to reach the maximum extension, so the spring will have  
  maximum extensions at        0.0542 s, 0.271 s, 0.488 s, … . 
  It will take three-quarters period to reach the minimum extension, so the spring will have  
  minimum extensions at        0.163 s, 0.379 s, 0.596 s, … . 
 
 
20. (a) We find the frequency from the period: 
   f = 1/T = 1/(0.55 s) = 1.82 Hz, so 
   ω = 2¹f = 2¹(1.82 Hz) = 11.4 s–1. 
  The amplitude is the compression: 0.10 m.  Because the mass is released at the maximum  
  displacement, we have a cosine function: 
   y = A cos (ωt) = (0.10 m) cos [(11.4 s–1)t]. 
 (b) The time to return to the equilibrium position is one-quarter of a period: 
   t = (T = ((0.55 s) =       0.14 s. 
 (c) The maximum speed is 
   v0 = ωA = (11.4 s–1)(0.10 m) =       1.1 m/s. 
 (d) The maximum acceleration is 
   amax = ω2A = (11.4 s–1)2(0.10 m) =       13 m/s2. 
  The maximum magnitude of the acceleration occurs at the endpoints of the motion, so it will be  
  attained first at       the release point. 
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21. Immediately after the collision, the block-bullet system will have its maximum velocity at the 
equilibrium position.  We find this velocity from energy conservation: 

  KEi + PEi = KEf + PEf ; 
  !(M + m)v0

2 + 0 = 0 + !kA2; 
  !(0.600 kg + 0.025 kg)v0

2 = !(6.70 × 103 N/m)(0.215 m)2, which gives v0 = 22.3 m/s. 
 We find the initial speed of the bullet from momentum conservation for the impact: 
  mv + 0 = (M + m)v0; 
  (0.025 kg)v = (0.600 kg + 0.025 kg)(22.3 m/s), which gives v =        557 m/s. 
 
 
22. Because the frequencies and masses are the same, the spring constant must be the same.  We can 

compare the two maximum potential energies: 
  PE1/PE2 = !kA1

2/!kA2
2 = (A1/A2)2; 

  10 = (A1/A2)2,   or         A1 = 3.16A2. 
 
 
23. (a) The total energy is the maximum potential energy, so we have 
   PE = !PEmax; 
   !kx2 = !(!kA2), which gives x =       0.707A. 
 (b) We find the position from 
   v  = v0[1 – (x2/A2)]1/2; 
   !v0 = v0[1 – (x2/A2)]1/2, which gives x =        0.866A. 
 
 
24. We use a coordinate system with down positive.   
 With x0 a magnitude, at the equilibrium position we have  
   ·F = – kx0 + mg = 0.  
 If the spring is compressed a distance x from the equilibrium  
 position, we have 
  ·F = – k(x0 + x) + mg = 0.  
 When we use the equilibrium condition, we get 
  ·F = F = – kx. 
 Note that x is negative, so the force is positive. 
 
 
25. For the vertical spring there are both gravitational and elastic  
 potential energy terms. We choose the unloaded position of  
 the spring as the reference level with down positive.   
 With x0 a magnitude, at the equilibrium position we have  
   ·F = – kx0 + mg = 0,   or   kx0 = mg.  
 When the spring is stretched a distance x from the equilibrium  
 position, the stretch of the spring is x + x0.   
 For the total energy we have 
  E  = KE + PEgrav  + PEspring  
   = !mv2 – mg(x + x0) + !k(x + x0)2 = !mv2 – mgx – mg x0 + !kx2 + kxx0 + !kx0

2. 
 When we use the equilibrium  condition, we get 
  E = !mv2 – mgx0 + !kx2 + !kx0

2. 
 Because the terms containing x0 are constant, we have 
  E + mgx0 – !kx0

2 = (a constant) = E′ = !mv2 + !kx2. 
 If we had chosen a reference level for the gravitational potential energy halfway between the unloaded 
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position and the equilibrium position, the terms added to E would cancel and E = E′. 
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26. We find the period from the time for N oscillations: 
  T = t/N = (34.7 s)/8 = 4.34 s. 
 From this we can get the spring constant: 
  T = 2¹(m/k)1/2; 
  4.34 s = 2¹[(65.0 kg)/k]1/2, which gives k =       136 N/m. 
 At the equilibrium position, we have 
  mg = kx0; 
  (65.0 kg)(9.80 m/s2) = (136 N/m)x0 , which gives x0 = 4.7 m. 
 Because this is how much the cord has stretched, we have 
  L = D – x0 = 25.0 m – 4.7 m =       20.3 m. 
 
 
27. (a) If we apply a force F to stretch the springs, the total  
  displacement Æx is the sum of the displacements of the two  
  springs: Æx = Æx1 + Æx2. 
  The effective spring constant is defined from F = – keff Æx. 
  Because they are in series, the force must be the same in  
  each spring:  
   F1 = F2 = F = – k1 Æx1 = – k2 Æx2.   
  Then Æx = Æx1 + Æx2 becomes  
  – F/keff = – (F/k1) – (F/k2),    or     1/keff = (1/k1) + (1/k2). 
  For the period we have 
   T = 2¹(m/keff)1/2 = 2¹{m[(1/k1) + (1/k2)]}1/2. 
 (b) In the equilibrium position, we have 
   Fnet = F20 – F10 = 0,   or   F10 = F20. 
  When the object is moved to the right a distance x, we have 
   Fnet = F20 – k2x – (F10 + k1x) = – (k1 + k2)x. 
  The effective spring constant is keff = k1 + k2 , so the period is  
   T = 2¹(m/keff)1/2 = 2¹[m/(k1 + k2)]1/2. 
 
 
28. (a) We find the period from the time for N oscillations: 
   T = t/N = (50 s)/36 =       1.4 s. 
 (b) The frequency is 
   f = 1/T = 1/(1.39 s) =       0.72 Hz. 
 
 
29. (a) Because the period includes one “tick” and one “tock”, the period is two seconds.  We find the  
  length from 
   T = 2¹(L/g)1/2; 
   2.00 s = 2¹[(L/(9.80 m/s2)]1/2, which gives L =       0.993 m. 
 (b) We see that an increase in L will cause an increase in T.  This means that there will be fewer  
  swings each hour, so the clock will run      slow. 
 
 
30. (a) For the period on Earth we have 
   T = 2¹(L/g)1/2 = 2¹[(0.50 m)/(9.80 m/s2)]1/2 =       1.4 s. 
 (b) In a freely falling elevator, the effective g is zero, so the period would be       infinite (no swing). 
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31. (a) For the frequency we have 
   f = (g/L)1/2(1/2¹) = [(9.80 m/s2)/(0.66 m)]1/2(1/2¹) =       0.61 Hz.  
 (b) We use energy conservation between the release point and the  
  lowest point: 
   KEi + PEi = KEf + PEf ; 
   0 + mgh = !mv0

2 + 0; 
   (9.80 m/s2)(0.66 m)(1 – cos 12°) = !v0

2,  
  which gives v0 =       0.53 m/s. 
 (c) The energy stored in the oscillation is the initial potential energy: 
   PEi = mgh = (0.310 kg)(9.80 m/s2)(0.66 m)(1 – cos 12°) =       0.044 

J. 
 
 
 
 
 
32. We use energy conservation between the release point and the  
 lowest point: 
  KEi + PEi = KEf + PEf ; 
  0 + mgh = !mv0

2 + 0,   or   v0
2 = 2gh = 2gL(1 – cos θ0). 

 When we use a trigonometric identity, we get 
  v0

2 = 2gL(2 sin2 !θ0). 
 For a simple pendulum θ0 is small, so we have sin !θ0 ≈ !θ0.   
 Thus we get 
  v0

2 = 2gL2 (!θ0)2,   or        v0 = θ0(gL)1/2. 
 
 
 
 
 
 
33. We assume that 15° is small enough that we can consider this a simple pendulum, with a period 
  T = 1/f = 1/(2.0 Hz) = 0.50 s.   
 Because the pendulum is released at the maximum angle, the angle will oscillate as a cosine function: 
  θ = θ0 cos (2¹ft) = (15°) cos [2¹(2.0 Hz)t] =  (15°) cos [(4.0¹ s–1)t]. 
 (a) θ = (15°) cos [2¹(2.0 Hz)(0.25 s)] =        – 15°. 
  This is expected, since the time is half a period. 
 (b) θ = (15°) cos [2¹(2.0 Hz)(1.60 s)] =        + 4.6°. 
 (c) θ = (15°) cos [2¹(2.0 Hz)(500 s)] =        + 15°. 
  This is expected, since the time is one thousand periods. 
 
 
34. The speed of the wave is 
  v = fλ = λ/T = (8.5 m)/(3.0 s) =       2.8 m/s. 
 
 
35. We find the wavelength from 
  v = fλ; 
  330 m/s = (262 Hz)λ, which gives λ =       1.26 m. 
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36. For AM we find the wavelengths from 
  λAMhigher = v/fAMlower = (3.00 × 108 m/s)/(550 × 103 Hz) =       545 m; 
  λAMlower = v/fAMhigher = (3.00 × 108 m/s)/(1600 × 103 Hz) =       188 m. 
 For FM we have 
  λFMhigher = v/fFMlower = (3.00 × 108 m/s)/(88.0 × 106 Hz) =       3.41 m; 
  λFMlower = v/fFMhigher = (3.00 × 108 m/s)/(108 × 106 Hz) =       2.78 m. 
 
 
37. We find the speed of the longitudinal (compression) wave from 
  v = (B/ρ)1/2 for fluids and v = (E/ρ)1/2 for solids. 
 (a)  For water we have 
   v = (B/ρ)1/2 = [(2.0 × 109 N/m2)/(1.00 × 103 kg/m3)]1/2 =      1.4 × 103 m/s. 
 (b)  For granite we have 
   v = (E/ρ)1/2 = [(45 × 109 N/m2)/(2.7 × 103 kg/m3)]1/2 =      4.1 × 103 m/s. 
 (c)  For steel we have 
   v = (E/ρ)1/2 = [(200 × 109 N/m2)/(7.8 × 103 kg/m3)]1/2 =      5.1 × 103 m/s. 
 
 
38. Because the modulus does not change, the speed depends on the density: 
  v ∝ (1/ρ)1/2. 
 Thus we see that the speed will be greater in the       less dense rod. 
 For the ratio of speeds we have 
  v1/v2 = (ρ2/ρ1)1/2 = (2)1/2 =       1.41. 
 
 
39. We find the speed of the wave from 
  v = [FT/(m/L)]1/2 = {(150 N)/[(0.55 kg)/(30 m)]}1/2 = 90.5 m/s. 
 We find the time from 
  t = L/v = (30 m)/(90.5 m/s) =       0.33 s. 
 
 
40. The speed of the longitudinal (compression) wave is 
  v = (E/ρ)1/2,  
 so the wavelength is 
  λ = v/f = (E/ρ)1/2/f = [(100 × 109 N/m2)/(7.8 × 103 kg/m3)]1/2/(6,000 Hz) =       0.60 m. 
 
 
41. The speed of the longitudinal wave is 
  v = (B/ρ)1/2,  
 so the distance that the wave traveled is 
  2D = vt = (B/ρ)1/2t; 
  2D = [(2.0 × 109 N/m2)/(1.00 × 103 kg/m3)]1/2(3.0 s), which gives D = 2.1 × 103 m =       2.1 km. 
 
 
42. (a) Because both waves travel the same distance, we have 
   Æt = (d/vS) – (d/vP) = d[(1/vS) – (1/vP)]; 
   (2.0 min)(60 s/min) = d{[1/(5.5 km/s)] – [1/(8.5 km/s)]}, which gives d =       1.9 × 103 km. 
 (b) The direction of the waves is not known, thus the position of the epicenter     cannot be determined. 
  It would take at least one more station to find the intersection of the two circles. 
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43. For the surface wave we have 
  ω = 2¹f = 2¹(0.50 Hz) = ¹ s–1. 
 The object will leave the surface when the maximum acceleration of the SHM becomes greater than g, so 

the normal force becomes zero.  Thus we have 
  amax = ω2A > g; 
  (¹ s–1)2A > 9.80 m/s2, which gives A >       1.0 m. 
 
 
44. We assume that the wave spreads out uniformly in all directions.  
 (a) The intensity will decrease as 1/r2, so the ratio of intensities is 
   I2/I1 = (r1/r2)2 = [(10 km)/(20 km]2 =       0.25. 
 (b) Because the intensity depends on A2, the amplitude will decrease as 1/r, so the ratio of  
  amplitudes is 
   A2/A1 = (r1/r2) = [(10 km)/(20 km] =       0.50. 
 
 
45. We assume that the wave spreads out uniformly in all directions.  
 (a) The intensity will decrease as 1/r2, so the ratio of intensities is 
   I2/I1 = (r1/r2)2; 
   I2/(2.0 × 106 J/m2 · s) = [(50 km)/(1.0 km)]2 , which gives I2 =       5.0 × 109 J/m2 · s. 
 (b) We can take the intensity to be constant over the small area, so we have 
   P2 = I2S = (5.0 × 109 J/m2 · s)(10.0 m2) =       5.0 × 1010 W. 
 
 
46. If we consider two concentric circles around the spot where the waves are generated, the same energy must 

go past each circle in the same time.  The intensity of a wave depends on A2, so for the energy passing 
through a circle of radius r, we have  

  E = I(2πr) = kA22πr = a constant. 
 Thus A must vary with r, in particular, we have A ∝ 1/Ãr. 
 
 
47. Because the speed and frequency are the same for the two waves, the intensity depends on the 

amplitude: 
  I ∝ A2. 
 For the ratio of intensities we have 
  I2/I1 = (A2/A1)2 ; 
  2 = (A2/A1)2 , which gives A2/A1 =        1.41. 
 
 
48. Because the speed and frequency are the same for the two waves, the intensity depends on the 

amplitude: 
  I ∝ A2. 
 For the ratio of intensities we have 
  I2/I1 = (A2/A1)2 ; 
  3 = (A2/A1)2 , which gives A2/A1 =        1.73. 
 
 
49. The bug will undergo SHM, so the maximum KE is also the maximum PE, which occurs at the maximum 

displacement.  For the ratio of energies we have 
  KE2/KE1 = PE2/PE1 = (A2/A1)2 = [!(4.5 cm)/!(6.0 cm)]2 =       0.56. 
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50.  
 
 
 
 

 (c) Because all particles of the string are at equilibrium positions, there is no potential energy.   
  Particles of the string will have transverse velocities, so they have        kinetic energy. 
 
 
51. All harmonics are present in a vibrating string.  Because the harmonic specifies the multiple of the 

fundamental, we have fn = nf1 , n = 1, 2, 3, … : 
  f1 = 1f1 = (1)(440 Hz) =      440 Hz; 
  f2 = 2f1 = (2)(440 Hz) =      880 Hz; 
  f3 = 3f1 = (3)(440 Hz) =      1320 Hz; 
  f4 = 4f1 = (4)(440 Hz) =      1760 Hz. 
 
 
52. From the diagram the initial wavelength is 2L, and the  
 final wavelength is 4L/3.  The tension has not changed,  
 so the velocity has not changed: 
  v = f1λ1 = f2λ2; 
  (294 Hz)(2L) = f2(4L/3), which gives f2 =       441 Hz. 
 
 
 
 
 
53. From the diagram the initial wavelength is L/2.   
 We see that the other wavelengths are 
  λ1 = 2L, λ2 = L  and λ3 = 2L/3.   
 The tension has not changed, so the velocity has not changed:  
  v = fλ = fnλn; 
  (280 Hz)(L/2) = f1(2L), which gives f1 =       70 Hz; 
  (280 Hz)(L/2) = f2(L), which gives f2 =       140 Hz; 
  (280 Hz)(L/2) = f3(2L/3), which gives f3 =       210 Hz. 
 
 
 
54. The oscillation corresponds to the fundamental with a frequency:  
  f1 = 1/T = 1/(2.5 s) = 0.40 Hz. 
 This is similar to the vibrating string, so all harmonics are present: 
  fn = nf1 =        n(0.40 Hz), n = 1, 2, 3, … . 
 We find the corresponding periods from 
  Tn = 1/fn = 1/nf1  = T/n =       (2.5 s)/n, n = 1, 2, 3, … . 
 
 
55. We find the wavelength from 
  v = fλ; 
  92 m/s = (475 Hz)λ, which gives λ = 0.194 m. 
 The distance between adjacent nodes is !λ, so we have 
  d = !λ = !(0.194 m) =       0.097 m. 

(a) (b)
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56. All harmonics are present in a vibrating string: fn = nf1 , n = 1, 2, 3, … .  The difference in frequencies for 
two successive overtones is 

  Æf = fn+1 – fn = (n + 1)f1 – nf1 = f1 , so we have f1 = 350 Hz – 280 Hz =      70 Hz. 
 
 
57. We find the speed of the wave from 
  v = [FT/(m/L0)]1/2 = {(520 N)/[(0.0036 kg)/(0.90 m)]}1/2 = 361 m/s. 
 The wavelength of the fundamental for a string is λ1 = 2L.  We find the fundamental frequency from 
  f1 = v/λ1 = (361 m/s)/2(0.60 m) =       300 Hz. 
 All harmonics are present so the first overtone is the second harmonic: 
  f2 = (2)f1 = (2)300 Hz =      600 Hz. 
 The second overtone is the third harmonic: 
  f3 = (3)f1 = (3)300 Hz =      900 Hz. 
 
 
58. We assume that the change in tension does not change the mass density, so the velocity variation 

depends only on the tension.  Because the wavelength does not change, we have 
  λ = v1/f1 = v2/f2 ,  or  FT2/FT1 = (f2/f1)2. 
 For the fractional change we have 
  (FT2 – FT1)/FT1 = (FT2/FT1) – 1 = (f2/f1)2 – 1 = [(200 Hz)/(205 Hz)]2 – 1 = – 0.048. 
 Thus the tension should be       decreased by 4.8%. 
 
 
59. The speed of the wave depends on the tension and the mass density: 
  v = (FT/µ)1/2. 
 The wavelength of the fundamental for a string is λ1 = 2L.  We find the fundamental frequency from 
  f1 = v/λ1 = (1/2L)(FT/µ)1/2. 
 All harmonics are present in a vibrating string, so we have  
  fn = nf1 = (n/2L)(FT/µ)1/2, n = 1, 2, 3, … .  
 
 
60. The hanging weight creates the tension in the string: FT = mg.  The speed of the wave depends on the 

tension and the mass density: 
  v = (FT/µ)1/2 = (mg/µ)1/2. 
 The frequency is fixed by the vibrator, so the wavelength is 
  λ = v/f = (1/f)(mg/µ)1/2.  With a node at each end, each loop corresponds to λ/2.   
 (a) For one loop, we have λ1/2 = L, or 
   2L = v1/f = (1/f)(m1g/µ)1/2; 
   2(1.50 m) = (1/60 Hz)[m1(9.80 m/s2)/(4.3 × 10–4 kg/m)]1/2, which gives m1 =       1.4 kg. 
 (b) For two loops, we have λ2/2 = L/2, or 
   L = v2/f = (1/f)(m2g/µ)1/2; 
   1.50 m = (1/60 Hz)[m2(9.80 m/s2)/(4.3 × 10–4 kg/m)]1/2, which gives m2 =       0.36 kg. 
 (c) For five loops, we have λ5/2 = L/5, or 
   2L/5 = v5/f = (1/f)(m5g/µ)1/2; 
   2(1.50 m)/5 = (1/60 Hz)[m5(9.80 m/s2)/(4.3 × 10–4 kg/m)]1/2, which gives m5 =       0.057 kg. 
 The amplitude of the standing wave can be much greater than the vibrator amplitude because of the 

resonance built up from the reflected waves at the two ends of the string. 
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61. The hanging weight creates the tension in the string: FT = mg.  The speed of the wave depends on the 
tension and the mass density: 

  v = (FT/µ)1/2 = (mg/µ)1/2, and thus is constant. 
 The frequency is fixed by the vibrator, so the constant wavelength is 
  λ = v/f = (1/f)(mg/µ)1/2 = (1/60 Hz)[(0.080 kg)(9.80 m/s2)/(5.6 × 10–4 kg/m)]1/2 = 0.624 m. 
 The different standing waves correspond to different integral numbers of loops, starting at one loop.  

With a node at each end, each loop corresponds to λ/2.  The lengths of the string for the possible 
standing wavelengths are 

  Ln = nλ/2 = n(0.624 m)/2 = n(0.312 m), n = 1, 2, 3, … ,  or   
  Ln = 0.312 m, 0.624 m, 0.924 m, 1.248 m, 1.560 m, … . 
 Thus we see that there are      4      standing waves for lengths between 0.10 m and 1.5 m. 
 
 
62. (a) The wavelength of the fundamental for a string is 2L, so the fundamental frequency is 
   f = (1/2L)(FT/µ)1/2. 
  When the tension is changed, the change in frequency is 
   Æf = f ′ – f = (1/2L)[(FT′/µ)1/2 – (FT/µ)1/2]  
    = (1/2L){(FT/µ)1/2[(FT′/FT)1/2 – 1]} = f{[(FT + ÆFT)/FT]1/2 – 1]}  
    = f{[1 + (ÆFT/FT)]1/2 – 1]}. 
  If ÆFT/FT is small, we have 
   [1 + (ÆFT/FT)]1/2 ≈ 1 + !(ÆFT/FT), so we get 
   Æf ≈ f[1 + !(ÆFT/FT) – 1] = !(ÆFT/FT)f. 
 (b) With the given data, we get 
   Æf =  !(ÆFT/FT)f; 
   442 Hz – 438 Hz = !(ÆFT/FT)(438 Hz), which gives ÆFT/FT = 0.018 =       1.8% (increase). 
 (c) For each overtone there will be a new wavelength, but the wavelength does not change when the  
  tension changes, so the formula       will apply       to the overtones. 
 
 
63. For the refraction of the waves we have 
  v2/v1 = (sin θ2)/(sin θ1); 
  v2/(8.0 km/s) = (sin 31°)/(sin 50°), which gives v2 =        5.4 km/s. 
 
 
64. For the refraction of the waves we have 
  v2/v1 = (sin θ2)/(sin θ1); 
  (2.1 km/s)/(2.8 km/s) = (sin θ2)/(sin 34°), which gives θ2 =        25°. 
 
 
65. The speed of the longitudinal (compression) wave for the solid rock depends on the modulus and the 

density: v = (E/ρ)1/2 .  The modulus does not change, so we have v ∝ (1/ρ)1/2. 
 For the refraction of the waves we have 
  v2/v1 = (ρ1/ρ2)1/2 = (SG1/SG2)1/2 = (sin θ2)/(sin θ1); 
  [(3.7)/(2.8)]1/2 = (sin θ2)/(sin 35°), which gives θ2 =        41°. 
 
 
66. (a) For the refraction of the waves we have 
   v2/v1 = (sin θ2)/(sin θi); 
  Because v2 > v1, θ2 > θi.  When we use the maximum value of θ2 , we get 
   v2/v1 = (sin 90°)/(sin θiM) = 1/(sin θiM),  or        θiM = sin–1(v1/v2). 
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 (b) We have   
   θiM = sin–1(v1/v2) = sin–1[(7.2 km/s)/(8.4 km/s)] = 59°. 
  Thus for angles        > 59°       there will be only reflection. 
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67. If we approximate the sloshing as a standing wave with the fundamental frequency, we have λ = 2D. 
 We find the speed of the waves from 
  v = fλ = (1.0 Hz)2(0.08 m) =       0.16 m/s. 
 
 
68. We choose h = 0 at the unstretched position of the net and let the stretch of the net be x.  We use energy 

conservation between the release point and the lowest point to find the spring constant: 
  KEi + PEi = KEf + PEf ; 
  0 + mghi = 0 + mghf + !kx1

2,   or   mg[hi – (– x1)] = !kx1
2; 

  (70 kg)(9.80 m/s2)(20 m + 1.1 m) = !k(1.1 m)2, which gives k = 2.39 × 104 N/m. 
 When the person lies on the net, the weight causes the deflection: 
  mg = kx2; 
  (70 kg)(9.80 m/s2) = (2.39 × 104 N/m)x2 , which gives x2  = 0.029 m =       2.9 cm. 
 We use energy conservation between the release point and the lowest point to find the stretch: 
  KEi + PEi = KEf + PEf ; 
  0 + mghi = 0 + mghf + !kx3

2,   or   mg[hi – (– x3)] = !kx3
2; 

  (70 kg)(9.80 m/s2)(35 m + x3) = !(2.39 × 104 N/m)x3
2. 

 This is a quadratic equation for x3 , for which the positive result is       1.4 m. 
 
 
69. The stress from the tension in the cable causes the strain.  We find the effective spring constant from 
  E = stress/strain = (FT/A)/(ÆL/L0),  or   
  k = FT/ÆL = EA/L0 = (200 × 109 N/m2)¹(3.2 × 10–3 m)2/(20 m) = 3.22 × 105 N/m. 
 We find the period from 
  T = 2¹(m/k)1/2 = 2¹[(1200 kg)/(3.22 × 105 N/m)]1/2 =       0.38 s. 
 
 
70. We ignore any frictional losses and use energy conservation: 
  KEi + PEi = KEf + PEf ; 
  !mv0

2 + 0 = 0 + !kx2; 
  !(1500 kg)(2 m/s)2 = !(500 × 103 N/m)x2, which gives x = 0.11 m =       11 cm. 
 
 
71. We treat the oscillation of the Jell-O as a standing wave  
 produced by shear waves traveling up and down.  The speed  
 of the shear waves is 
  v = (G/ρ)1/2 = [(520 N/m2)/(1300 kg/m3)]1/2 = 0.632 m/s. 
 Because the maximum shear displacement is at the top,  
 we estimate the wavelength as 
  λ = 4h = 4(0.040 m) = 0.16 m. 
 We find the frequency from 
  v = fλ; 
  0.632 m/s = f(0.16 m), which gives f =       4.0 Hz. 
 
 
72. The effective value of g is increased when the acceleration is upward and decreased when the 

acceleration is downward.  Because the length does not change, for the ratio of frequencies we have 
  f    ′/f = (g′/g)1/2. 
 (a) For the upward acceleration we get 
   f   ′/f = (g′/g)1/2 = [(g + !g)/g]1/2, which gives f    ′ =       1.22f. 
 (b) For the downward acceleration we get 

λ/4
² x

CM h
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   f    ′/f = (g′/g)1/2 = [(g – !g)/g]1/2, which gives f    ′ =       0.71f. 
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73. (a) We find the effective force constant from the displacement caused by the additional weight: 
   k Æy = mg,   or   k = Æmg/Æy = (75 kg)(9.80 m/s2)/(0.040 m) = 1.84 × 104 N/m. 
  We find the frequency of vibration from 
   f = (k/m)1/2(1/2¹) = [(1.84 × 104 N/m)/(250 kg)]1/2(1/2¹) =       1.4 Hz. 
 (b) The total energy is the maximum potential energy, so we have 
   E = PEmax = !kA2 = !(1.84 × 104 N/m)(0.040 m)2 =       15 J. 
  Note that this is similar to the weight hanging on a spring.  If we measure from the equilibrium  
  position, we ignore changes in mgh. 
 
 
74. The frequency of the sound will be the frequency of the needle passing over the ripples.  The speed of the 

needle relative to the ripples is v = rω, so the frequency is 
  f  = v/λ = rω/λ  
   = (0.128 m)(33 rev/min)(2¹ rad/rev)/(60 s/min)(1.70 × 10–3 m) =      260 Hz. 
 
 
75. (a) All harmonics are present in a vibrating string: fn = nf1 , n = 1, 2, 3, … .   
  The first overtone is f2 and the second overtone is f3. 
  For G we have 
   f2 = 2(392 Hz) =       784 Hz;        f3 = 3(392 Hz) =       1176 Hz. 
  For A we have 
   f2 = 2(440 Hz) =       880 Hz;        f3 = 3(440 Hz) =       1320 Hz. 
 (b) The speed of the wave in a string is v = [FT/(M/L)]1/2.  Because the lengths are the same, the  
  wavelengths of the fundamentals must be the same.  For the ratio of frequencies we have 
   fA/fG = vA/vG = (MG/MA)1/2; 
   (440 Hz)/(392 Hz) = (MG/MA)1/2, which gives MG/MA =       1.26. 
 (c) Because the mass densities and the tensions are the same, the speeds must be the same.  The  
  wavelengths are proportional to the lengths, so for the ratio of frequencies we have 
   fA/fG = λG/λA = LG/LA; 
   (440 Hz)/(392 Hz) = LG/LA , which gives LG/LA =       1.12. 
 (d) The speed of the wave in a string is v = [FT/(M/L)]1/2.  Because the lengths are the same, the  
  wavelengths of the fundamentals must be the same.  For the ratio of frequencies we have 
   fA/fG = vA/vG = (FTA/FTG)1/2; 
   (440 Hz)/(392 Hz) = (FTA/FTG)1/2, which gives FTG/FTA =       0.794. 
 
 
76. (a) We find the spring constant from energy conservation: 
   KEi + PEi = KEf + PEf ; 
   !Mv0

2 + 0 = 0 + !kA2; 
   !(900 kg)(20 m/s)2 = !k(5.0 m)2, which gives k =       1.4 × 104 N/m. 
 (b) We find the period of the oscillation from 
   T = 2¹(m/k)1/2 = 2¹[(900 kg)/(1.44 × 104 N/m)]1/2 = 1.57 s. 
  The car will be in contact with the spring for half a cycle, so the time is 
   t = !T = !(1.57 s) =      0.79 s. 
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77. (a) The speed of the wave in a string is v = [FT/µ]1/2.  Because the tensions must be the same  
  anywhere along the string, for the ratio of velocities we have 
   v2/v1 = (µ1/µ2)1/2. 
 (b) Because the motion of one string is creating the motion of the other, the frequencies must be the  
  same.  For the ratio of wavelengths we have 
   λ2/λ1 = v2/v1 = (µ1/µ2)1/2. 
 (c) From the result for part (b) we see that, if µ2 > µ1 , we have λ2 < λ1 , so the       lighter cord       will  
  have the greater wavelength. 
 
 
78. The object will leave the surface when the maximum acceleration of the SHM becomes greater than g, so 

the normal force becomes zero.  For the pebble to remain on the board, we have 
  amax = ω2A = (2¹f)2A < g; 
  [2¹(3.5 Hz)]2A < 9.80 m/s2, which gives A < 2.0 × 10–2 m =      2.0 cm. 
 
 
79. In the equilibrium position, the net force is zero, so we have 
  Fbuoy = mg. 
 When the block is pushed into the water, there will be an additional  
 buoyant force, equal to the weight of the additional water displaced,  
 to bring the block back to the equilibrium position.  When the block is  
 pushed down a distance Æx, this net upward force is 
  Fnet = – ρwatergA Æx. 
 Because the net restoring force is proportional to the displacement, the  
 block will oscillate with SHM.  We find the effective force constant from  
 the coefficient of Æx: 
  k = ρwatergA. 
 
 
80. The distance the mass falls is the distance the spring is stretched.  We use energy conservation between the 

initial point, where the spring is unstretched, and the lowest point, our reference level for the gravitational 
potential energy, to find the spring constant: 

  KEi + PEi = KEf + PEf ; 
  0 + mgh = 0 + !kh2, which gives k = 2mg/h. 
 We find the frequency from 
  f  = (k/m)1/2/2¹ = (2mg/hm)1/2/2¹ = (2g/h)1/2/2¹ = [2(9.80 m/s2)/(0.30 m)]1/2/2¹ =       1.3 Hz. 
 
 

Fbuoy

mg
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81. The increase in temperature will cause the length of the brass rod to increase.  The period of the 
pendulum depends on the length, 

  T = 2¹(L/g)1/2, 
 so the period will be greater.  This means the pendulum will make fewer swings in a day, so the clock 

will be         slow. 
 We use TC for the temperature to distinguish it from the period.   
 For the length of the brass rod, we have 
  L = L0(1 + α ÆTC). 
 Thus the ratio of periods is 
  T/T0 = (L/L0)1/2 = (1 + α ÆTC)1/2. 
 Because α ÆTC is much less than 1, we have  
  T/T0 ≈ 1 + !α ÆTC ,   or   ÆT/T0 = !α ÆTC. 
 The number of swings in a time t is N = t/T.  For the same time t, the change in period will cause a 

change in the number of swings: 
  ÆN = (t/T) – (t/T0) = t(T0 – T)/TT0 ≈ – t(ÆT/T0)/T0, 
 because T ≈ T0.  The time difference in one day is 
  Æt = T0 ÆN = – t(ÆT/T0) = – t(!α ÆTC)  
   = – (1 day)(86,400 s/day)![19 × 10–6 (C°)–1](35°C – 20°C) =      – 12.3 s. 
 
 
82. When the water is displaced a distance Æx from equilibrium, the net  
 restoring force is the unbalanced weight of water in the height 2 Æx: 
  Fnet = – 2ρgA Æx. 
 We see that the net restoring force is proportional to the displacement, 

so       the block will oscillate with SHM. 
 We find the effective spring constant from the coefficient of Æx: 
  k = 2ρgA. 
 From the formula for k, we see that the effective spring constant  
 depends on       the density and the cross section. 
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