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CHAPTER 5 
 
1. The centripetal acceleration is 
  aR = v2/r = (500 m/s)2/(6.00 × 103 m)(9.80 m/s2/g) =        4.25g up. 
 
 
2. (a) The centripetal acceleration is 
   aR = v2/r = (1.35 m/s)2/(1.20 m) =        1.52 m/s2 toward the center. 
 (b) The net horizontal force that produces this acceleration is 
   Fnet = maR = (25.0 kg)(1.52 m/s2) =       38.0 N toward the center. 
 
 
3. The centripetal acceleration of the Earth is 
   aR = v2/r = (2¹r/T)2/r = 4¹2r/T2  
   = 4¹2(1.50 × 1011 m)/(3.16 × 107 s)2 =        5.93 × 10–3 m/s2 toward the Sun. 
 The net force that produces this acceleration is 
  Fnet = mEaR = (5.98 × 1024 kg)(5.93 × 10–3 m/s2) =       3.55 × 1022 N toward the Sun. 
 This force is the gravitational attraction from the       Sun. 
 
 
4. The force on the discus produces the centripetal acceleration: 
  F = maR = mv2/r;  
  280 N = (2.0 kg)v2/(1.00 m), which gives v =       12 m/s. 
 
 
5. We write ·F = ma from the force diagram for the stationary  
 hanging mass, with down positive:  
  mg – FT = ma = 0;   which gives  
  FT = mg. 
 For the rotating puck, the tension provides the centripetal  
 acceleration, ·FR = MaR: 
  FT = Mv2/R. 
  When we combine the two equations, we have 
  Mv2/R = mg, which gives  v = (mgR/M)1/2. 
 
 
 
6. For the rotating ball, the tension provides the centripetal acceleration, ·FR = MaR: 
  FT = Mv2/R. 
 We see that the tension increases if the speed increases, so the maximum tension determines the 

maximum speed: 
  FTmax = Mvmax

2/R; 
  60 N = (0.40 kg)vmax

2/(1.3 m), which gives       vmax = 14 m/s. 
 If there were friction, it would be kinetic opposing the motion of the ball around the circle.  Because this 

is perpendicular to the radius and the tension, it would have       no effect. 
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7. If the car does not skid, the friction is static, with Ffr ² µsFN. 
 This friction force provides the centripetal acceleration.   
 We take a coordinate system with the x-axis in the direction  
 of the centripetal acceleration. 
 We write ·F = ma from the force diagram for the auto: 
  x-component:  Ffr = ma = mv2/R; 
  y-component:  FN – mg = 0. 
 The speed is maximum when Ffr = Ffr,max = µsFN. 
 When we combine the equations, the mass cancels, and we get 
  µsg = vmax

2/R;  
  (0.80)(9.80 m/s2) = vmax

2/(70 m), which gives       vmax = 23 m/s. 
 The mass canceled, so the result is      independent of the mass. 
 
 
8. At each position we take the positive direction in the direction of  
 the acceleration. 
 (a) At the top of the path, the tension and the weight are downward.  
  We write ·F = ma from the force diagram for the ball: 
   FT1 + mg = mv2/R; 
   FT1 + (0.300 kg)(9.80 m/s2) = (0.300 kg)(4.15 m/s)2/(0.850 m),  
  which gives       FT1 = 3.14 N. 
 (b) At the bottom of the path, the tension is upward and the  
  weight is downward.  We write ·F = ma from the force diagram  
  for the ball: 
   FT2 – mg = mv2/R; 
   FT2 – (0.300 kg)(9.80 m/s2) = (0.300 kg)(4.15 m/s)2/(0.850 m),  
  which gives       FT2 = 9.02 N. 
 
 
 
9. The friction force provides the centripetal acceleration.   
 We take a coordinate system with the x-axis in the  
 direction of the centripetal acceleration. 
 We write ·F = ma from the force diagram for the auto:  
  x-component:  Ffr = ma = mv2/R; 
  y-component:  FN – mg = 0. 
 If the car does not skid, the friction is static, with Ffr ² µsFN. 
 Thus we have 
  mv2/R ² µsmg,   or 
  µs ³ v2/gR = [(95 km/h)/(3.6 ks/h)]2/(9.80 m/s2)(85 m).  Thus       µs ³ 0.84. 
 
 
10. The horizontal force on the astronaut produces the centripetal acceleration: 
  F = maR = mv2/r;  
  (7.75)(2.0 kg)(9.80 m/s2) = (2.0 kg)v2/(10.0 m), which gives v =       27.6 m/s. 
 The rotation rate is 
  Rate = v/2¹r = (27.6 m/s)/2¹(10.0 m) =      0.439 rev/s. 
 Note that the results are independent of mass, and thus are the same for all astronauts. 
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11. The static friction force provides the centripetal acceleration. 
 We write ·F = ma from the force diagram for the coin:  
  x-component:  Ffr = mv2/R;  
  y-component:  FN – mg = 0. 
 The highest speed without sliding requires  Ffr,max = µsFN. 
 The maximum speed before sliding is 
  vmax = 2¹R/Tmin = 2¹Rfmax  
      = 2¹(0.110 m)(36/min)/(60 min/s) = 0.415 m/s. 
 Thus we have 
  µsmg = mvmax

2/R  
  µs(9.80 m/s2) = (0.415 m/s)2/(0.110 m), which gives µs =       0.16. 
 
 
12. At the top of the trip, both the normal force and the weight  
 are downward. 
 We write ·F = ma from the force diagram for the passenger:  
  y-component:  FN + mg = mv2/R. 
 The speed v will be minimum when the normal 
 force is minimum.  The normal force can only push 
 away from the seat, that is, with our coordinate  
 system it must be positive, so  FNmin = 0. 
 Thus we have vmin

2 = gR,   or   
  vmin = (gR)1/2  
    = [(9.80 m/s2)(8.6 m)]1/2 =        9.2 m/s. 
 
 
 
 
 
 
13. At the top of the hill, the normal force is upward and the  
 weight is downward, which we select as the positive direction. 
 (a) We write ·F = ma from the force diagram for the car: 
   mcarg – FNcar = mv2/R; 
   (1000 kg)(9.80 m/s2) – FNcar = (1000 kg)(20 m/s)2/(100 m), 
  which gives        FNcar = 5.8 × 103 N. 
 (b) When we apply a similar analysis to the driver, we have 
   (70 kg)(9.80 m/s2) – FNpass = (70 kg)(20 m/s)2/(100 m),  
  which gives        FNpass = 4.1 × 102 N. 
 (c) For the normal force to be equal to zero, we have 
   (1000 kg)(9.80 m/s2) – 0 = (1000 kg)v2/(100 m),  
  which gives         v = 31 m/s       (110 km/h or 70 mi/h). 
 
 
14. To feel “weightless” the normal force will be zero and the only force acting on a passenger will be that 

from gravity, which provides the centripetal acceleration: 
  mg = mv2/R,  or  v2 = gR; 
  v2 = (9.80 m/s2)(50 ft)(0.305 m/ft), which gives v = 8.64 m/s.  
 We find the rotation rate from 
  Rate = v/2¹R = [(8.64 m/s)/2¹(50 ft)(0.305 m/ft)](60 s/min) =       11 rev/min. 
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15. We check the form of aR = v2/r by using the dimensions of each variable: 
  [aR] = [v/t] = [d/t2] = [L/T2]; 
  [v2] = [(d/t)2] = [(L/T)2] = [L2/T2]; 
  [r] = [d] = [L]. 
 Thus we have [v2/r] = [L2/T2]/[L] = [L/T2], which are the dimensions of aR. 
 
 
16. The masses will have different velocities: 
  v1 = 2¹r1/T = 2¹r1 f;     v2 = 2¹r2/T = 2¹r2 f. 
 We choose the positive direction toward the center of the circle.  
 For each mass we write ·Fr = mar:   
  m1: FT1 – FT2 =   m1v1

2/r1 = 4¹2m1r1 f 
2; 

  m2: FT2 =   m2v2
2/r2 = 4¹2m2r2 f 

2. 
 When we use this in the first equation, we get 
  FT1 = FT2 + 4¹2m1r1 f 

2;  thus 
  FT1 =  4¹2f 

2(m1r1 + m2r2);     FT2 = 4¹2f 
2m2r2. 

 
 
17. We convert the speed: (90 km/h)/(3.6 ks/h) = 25 m/s. 
 We take the x-axis in the direction of the centripetal  
 acceleration.  We find the speed when there is no need  
 for a friction force.   
 We write ·F = ma from the force diagram for the car: 
  x-component:  FN1 sin θ = ma1 = mv1

2/R; 
  y-component:  FN1 cos θ – mg = 0. 
 Combining these, we get  
  v1

2 = gR tan θ = (9.80 m/s2)(70 m) tan 12°,  
 which gives v1 = 12.1 m/s.  Because the speed is greater  
 than this, a friction force is required.  Because the car will  
 tend to slide up the slope, the friction force will be down the  
 slope.  We write ·F = ma from the force diagram for the car: 
  x-component:  FN2 sin θ + Ffr cos θ = ma2 = mv2

2/R; 
  y-component:  FN2 cos θ – Ffr sin θ – mg = 0. 
 We eliminate FN2 by multiplying the x-equation by cos θ, the y-equation by sin θ, and subtracting: 
  Ffr = m{[(v2

2/R ) cos θ ] – g sin θ} 
   = (1200 kg)({[(25 m/s)2/(70 m)] cos 12°} – (9.80 m/s2) sin 12°) =       8.0 × 103 N down the slope. 
 
 
18. The velocity of the people is 
  v = 2¹R/T = 2¹Rf = 2¹(5.0 m/rev)(0.50 rev/s) = 15.7 m/s. 
 The force that prevents slipping is an upward friction force.  
 The normal force provides the centripetal acceleration. 
 We write ·F = ma from the force diagram for the person: 
  x-component:  FN = mv2/R;  
  y-component:  Ffr – mg = 0. 
 Because the friction is static, we have 
   Ffr ² µsFN ,   or   mg ² µsmv2/R. 
 Thus we have  
  µs ³ gR/v2 = (9.80 m/s2)(5.0 m)/(15.7 m/s)2 =       0.20. 
 There is no force pressing the people against the wall.  They feel the normal force and thus are applying 
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the reaction to this, which is an outward force on the wall.  There is no horizontal force on the people 
except the normal force. 
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19. The mass moves in a circle of radius r and has a centripetal acceleration. 
 We write ·F = ma from the force diagram for the mass:  
  x-component:  FT cos θ = mv2/r; 
  y-component:  FT sin θ – mg = 0. 
 Combining these, we get 
  rg = v2 tan θ;  
  (0.600 m)(9.80 m/s2) = (7.54 m/s)2 tan θ, which gives 
  tan θ = 0.103,    or         θ = 5.91°. 
 We find the tension from 
  FT = mg/sin θ = (0.150 kg)(9.80 m/s2)/ sin 5.91° =        14.3 N. 
 
 
20. We convert the speeds: 
  (70 km/h)/(3.6 ks/h) = 19.4 m/s; 
  (90 km/h)/(3.6 ks/h) = 25.0 m/s. 
 At the speed for which the curve is banked perfectly,  
 there is no need for a friction force.  We take the x-axis  
 in the direction of the centripetal acceleration. 
 We write ·F = ma from the force diagram for the car: 
  x-component:  FN1 sin θ = ma1 = mv1

2/R; 
  y-component:  FN1 cos θ – mg = 0. 
 Combining these, we get v1

2 = gR tan θ.  
  (19.4 m/s)2 = (80 m)(9.80 m/s2)tan θ, which gives 
  tan θ = 0.482,    or      θ = 25.7°. 
 At a higher speed, there is need for a friction force, which will be down the incline.  If the automobile 

does not skid, the friction is static, with Ffr ² µsFN. 
 We write ·F = ma from the force diagram for the car: 
  x-component:  FN2 sin θ + Ffr cos θ = ma2 = mv2

2/R; 
  y-component:  FN2 cos θ – Ffr sin θ – mg = 0. 
 We eliminate Ffr by multiplying the x-equation by sin θ, the y-equation by cos θ, and adding: 
  FN2 = m{[(v2

2/R ) sin θ ] + g cos θ}. 
 By reversing the trig multipliers and subtracting, we eliminate FN2 to get 
  Ffr = m{[(v2

2/R ) cos θ ] – g sin θ}. 
 If the automobile does not skid, the friction is static, with Ffr ² µsFN:  
  m{[(v2

2/R ) cos θ ] – g sin θ} ² µsm{[(v2
2/R ) sin θ ] + g cos θ}, or 

  µs ³ {[(v2
2/R ) cos θ ] – g sin θ}/{[(v2

2/R ) sin θ ] + g cos θ} = [(v2
2/gR )] –  tan θ]/{[(v2

2/gR ) tan θ ] + 
1}. 

 When we express tan θ in terms of the design speed, we get 
   µs  ³ [(v2

2/gR ) –  (v1
2/gR )]/{[(v2

2/gR )(v1
2/gR )] + 1} = (1/gR )(v2

2 –  v1
2)/[(v1v2/gR )2 + 1] 

   = [1/(9.80 m/s2)(80 m)][(25.0)2 – (19.4 m/s)2]/{[(19.4 m/s)(25.0 m/s)/(9.80 m/s2)(80 m)]2 + 1}  
   =       0.23. 
 
 
21. At the bottom of the dive, the normal force is upward, which  
 we select as the positive direction, and the weight is downward.  
 The pilot experiences the upward centripetal acceleration at the  
 bottom of the dive.  We find the minimum radius of the circle  
 from the maximum acceleration: 
  amax = v2/Rmin; 
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  (9.0)(9.80 m/s2) = (310 m/s)2/Rmin , which gives  Rmin = 1.1 × 103 m. 
 Because the pilot is diving vertically, he must begin to pull out at an altitude equal to the minimum 

radius:       1.1 km. 
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22. For the components of the net force we have 
  ·Ftan = matan = (1000 kg)(3.2 m/s2) =        3.2 × 103 N; 
  ·FR = maR = (1000 kg)(1.8 m/s2) =        1.8 × 103 N. 
 
 
23. We find the constant tangential acceleration from the motion around the turn: 
  vtan

2  = v0
2 + 2atan(xtan – x0) 

  [(320 km/h)/(3.6 ks/h)]2 = 0 + 2atan[¹(200 m) – 0], which gives        atan = 6.29 m/s2. 
 The centripetal acceleration depends on the speed, so it will increase around the turn.  We find the speed 

at the halfway point from 
  v1

2  = v0
2 + 2atan(x1 – x0) 

   = 0 + 2(6.29 m/s2)[¹(100 m) – 0], which gives v1 = 62.8 m/s. 
 The radial acceleration is 
  aR = v1

2/R = (62.8 m/s)2/(200 m) =        19.7 m/s2. 
 The magnitude of the acceleration is 
  a = (atan

2 + aR
2)1/2 = [(6.29 m/s2)2 + (19.7 m/s2)2]1/2 = 20.7 m/s2. 

 On a flat surface, FN = Mg; and the friction force must provide the acceleration: Ffr = ma.   
  With no slipping the friction is static, so we have 
   Ffr ² µsFN ,   or   Ma ² µsMg. 
 Thus we have  
  µs ³ a/g = (20.7 m/s2)/(9.80 m/s2) =         2.11. 
 
 
24. (a) We find the speed from the radial component of the acceleration: 
   aR = a cos θ = v1

2/R ; 
   (1.05 m/s2) cos 32.0° = v1

2/(2.70 m), which gives v1 =        1.23 m/s.  
 (b) Assuming constant tangential acceleration, we find the speed from 
   v2 = v1 + atant = (1.23 m/s) + (1.05 m/s2)(sin 32.0°)(2.00 s) =       3.01 m/s. 
 
 
 
 
 
 
 
 
25. Because the spacecraft is 2 Earth radii above the surface, it is 3 Earth radii from the center.   
 The gravitational force on the spacecraft is 
  F  = GMm/r2 
   = (6.67 × 10–11 N · m2/kg2)(5.98 × 1024 kg)(1400 kg)/[3(6.38 × 106 m)]2 =      1.52 × 103 N. 
 
 
26. The acceleration due to gravity on the surface of a planet is 
  g = F/m = GM/R2. 
 For the Moon we have 
  gMoon = (6.67 × 10–11 N · m2/kg2)(7.35 × 1022 kg)/(1.74 × 106 m)2 =      1.62 m/s2. 
 
 
27. The acceleration due to gravity on the surface of a planet is 
  g = F/m = GM/R2. 
 If we form the ratio of the two accelerations, we have 
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  gplanet/gEarth = (Mplanet/MEarth)/(Rplanet/REarth)2,   or 
  gplanet = gEarth(Mplanet/MEarth)/(Rplanet/REarth)2 = (9.80 m/s2)(1)/(2.5)2 =       1.6 m/s2. 
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28. The acceleration due to gravity on the surface of a planet is 
  g = F/m = GM/R2. 
 If we form the ratio of the two accelerations, we have 
  gplanet/gEarth = (Mplanet/MEarth)/(Rplanet/REarth)2,   or 
  gplanet = gEarth(Mplanet/MEarth)/(Rplanet/REarth)2 = (9.80 m/s2)(2.5)/(1)2 =       24.5 m/s2. 
 
 
29. (a) The mass does not depend on the gravitational force, so it is         2.10 kg on both. 
 (b) For the weights we have 
   wEarth = mgEarth = (2.10 kg)(9.80 m/s2) =        20.6 N; 
   wplanet = mgplanet = (2.10 kg)(12.0 m/s2) =        25.2 N. 
 
 
30. The acceleration due to gravity at a distance r from the center of the Earth is 
  g = F/m = GMEarth/r2. 
 If we form the ratio of the two accelerations for the different distances, we have 
  gh/gsurface = [(REarth)/(REarth + h)]2 = [(6400 km)/(6400 km + 300 km)]2  
 which gives       gh = 0.91gsurface. 
 
 
31. The acceleration due to gravity on the surface of the neutron star is 
  g = F/m = GM/R2 = (6.67 × 10–11 N · m2/kg2)(5)(2.0 × 1030 kg)/(10 × 103 m)2 =      6.7 × 1012 m/s2. 
 
 
32. The acceleration due to gravity at a distance r from the center of the Earth is 
  g = F/m = GMEarth/r2. 
 If we form the ratio of the two accelerations for the different distances, we have 
  g/gsurface = (REarth/R)2; 
  1/10 = [(6400 km)/R]2 , which gives R =        2.0 × 107 m.    
 
 
33. The acceleration due to gravity on the surface of the white dwarf star is 
  g = F/m = GM/R2 = (6.67 × 10–11 N · m2/kg2)(2.0 × 1030 kg)/(1.74 × 106 m)2 =      4.4 × 107 m/s2. 
 
 
34. The acceleration due to gravity at a distance r from the center of the Earth is 
  g = F/m = GMEarth/r2. 
 If we form the ratio of the two accelerations for the different distances, we have 
  g/gsurface = [(REarth)/(REarth + h)]2 ; 
 (a) g = (9.80 m/s2)[(6400 km)/(6400 km + 3.2 km)]2 =        9.8 m/s2. 
 (b) g = (9.80 m/s2)[(6400 km)/(6400 km + 3200 km)]2 =        4.3 m/s2. 
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35. We choose the coordinate system shown in the figure and  
 find the force on the mass in the lower left corner.   
 Because the masses are equal, for the magnitudes of the  
 forces from the other corners we have 
  F1 = F3 = Gmm/r1

2 
    = (6.67 × 10–11 N · m2/kg2)(7.5 kg)(7.5 kg)/(0.60 m)2  
    = 1.04 × 10–8 N; 
  F2  = Gmm/r2

2 
   = (6.67 × 10–11 N · m2/kg2)(7.5 kg)(7.5 kg)/[(0.60 m)/cos 45°]2  
   = 5.21 × 10–9 N. 
 From the symmetry of the forces we see that the resultant will be  
 along the diagonal.  The resultant force is 
    F  = 2F1 cos 45° + F2 
       = 2(1.04 × 10–8 N) cos 45° + 5.21 × 10–9 N =        2.0 × 10–8 N toward center of the square. 
 
 
36. For the magnitude of each attractive  
 gravitational force, we have 
  FV  = GMEMV/rV

2 = GfVME
2/rV

2 
   = (6.67 × 10–11 N · m2/kg2)(0.815)(5.98 × 1024 kg)2/[(108 – 150) × 109 m]2  
   = 1.10 × 1018 N; 
  FJ = GMEMJ/rJ

2 = GfJME
2/rJ

2 
   = (6.67 × 10–11 N · m2/kg2)(318)(5.98 × 1024 kg)2/[(778 – 150) × 109 m]2  
   = 1.92 × 1018 N; 
  FS  = GMEMS/rV

2 = GfSME
2/rS

2 
   = (6.67 × 10–11 N · m2/kg2)(95.1)(5.98 × 1024 kg)2/[(1430 – 150) × 109 m]2  
   = 1.38 × 1017 N. 
 The force from Venus is toward the Sun; the forces from Jupiter and Saturn are away from the Sun.  For 

the net force we have 
  Fnet = FJ + FS – FV = 1.92 × 1018 N + 1.38 × 1017 N – 1.10 × 1018 N =         9.6 × 1017 N away from the Sun. 
 
 
37. The acceleration due to gravity on the surface of a planet is 
  g = F/m = GM/R2. 
 If we form the ratio of the two accelerations, we have 
  gMars/gEarth = (MMars/MEarth)/(RMars/REarth)2;   
  0.38 = [MMars/(6.0 × 1024 kg)]/(3400 km/6400 km)2 , which gives MMars =        6.4 × 1023 kg. 
 
 
38. We relate the speed of the Earth to the period of its orbit from 
  v = 2¹R/T. 
 The gravitational attraction from the Sun must provide the centripetal acceleration for the circular orbit: 
  GMEMS/R2 = MEv2/R = ME(2¹R/T)2/R = ME4¹2R/T2, so we have 
  GMS = 4¹2R3/T2; 
  (6.67 × 10–11 N · m2/kg2)MS = 4¹2(1.50 × 1011 m)3/(3.16 × 107 s)2, which gives  MS =        2.0 × 1030 kg. 
 This is the same as found in Example 5–17. 
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39. The gravitational attraction must provide the centripetal acceleration for the circular orbit: 
  GMEm/R2 = mv2/R,   or    
   v2 = GME/(RE + h)  
   = (6.67 × 10–11 N · m2/kg2)(5.98 × 1024 kg)/(6.38 × 106 m + 3.6 × 106 m),  
 which gives v =        6.3 × 103 m/s. 
 
 
40. The greater tension will occur when the elevator is accelerating upward,  
 which we take as the positive direction.  We write ·F = ma from the force  
 diagram for the monkey: 
  FT cos θ – mg = ma; 
  220 N – (17.0 kg)(9.80 m/s2) = (17.0 kg)a, which gives  
  a =      3.14 m/s2 upward. 
 Because the rope broke, the tension was at least 220 N, so this is the  
 minimum acceleration. 
 
 
41. We relate the speed of rotation to the period of rotation from 
  v = 2¹R/T. 
 For the required centripetal acceleration, we have 
  aR = v2/R = (2¹R/T)2/R = 4¹2R/T2;  
  !(9.80 m/s2) = 4¹2(16 m)/T2, which gives T =       11 s. 
 
 
42. We relate the speed to the period of revolution from 
  v = 2¹R/T. 
 For the required centripetal acceleration, we have 
  aR = v2/R = (2¹R/T)2/R = 4¹2R/T2;  
  9.80 m/s2 = 4¹2(6.38 × 106 m)/T2, which gives T =       5.07 × 103 s (1.41 h). 
 The result is       independent of the mass       of the satellite. 
 
 
43. We relate the speed to the period of revolution from 
  v = 2¹R/T. 
 The required centripetal acceleration is provided by the gravitational attraction: 
  GMMm/R2 = mv2/R = m(2¹R/T)2/R = m4¹2R/T2, so we have 
  GMM = 4¹2(RM + h)3/T2; 
  (6.67 × 10–11 N · m2/kg2)(7.4 × 1022 kg) = 4¹2(1.74 × 106 m + 1.00 × 105 m)3/T2,  
 which gives  T = 7.06 × 103 s =         2.0 h. 
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44. We take the positive direction upward.  The spring scale reads the normal force expressed as an effective 
mass: FN/g.  We write ·F = ma from the force diagram: 

  FN – mg = ma,   or   meffective = FN/g = m(1 + a/g). 
 (a) For a constant speed, there is no acceleration, so we have 
   meffective = m(1 + a/g) = m =         58 kg. 
 (b) For a constant speed, there is no acceleration, so we have 
   meffective = m(1 + a/g) = m =         58 kg. 
 (c) For the upward (positive) acceleration, we have 
   meffective = m(1 + a/g) = m(1 + 0.33g/g) = 1.33(58 kg) =        77 kg. 
 (d) For the downward (negative) acceleration, we have 
   meffective = m(1 + a/g) = m(1 – 0.33g/g) = 0.67(58 kg) =        39 kg. 
 (e) In free fall the acceleration is – g, so we have 
   meffective = m(1 + a/g) = m(1 – g/g) =         0. 
 
 
45. We relate the orbital speed to the period of revolution from 
  v = 2¹R/T. 
  The required centripetal acceleration is provided by the gravitational attraction: 
  GMSm/R2 = mv2/R = m(2¹R/T)2/R = m4¹2R/T2, so we have 
  GMS = 4¹2R3/T2. 
 For the two extreme orbits we have 
  (6.67 × 10–11 N · m2/kg2)(5.69 × 1026 kg) = 4¹2(7.3 × 107 m )3/Tinner

2,  
 which gives  Tinner = 2.01 × 104 s =         5 h 35 min; 
  (6.67 × 10–11 N · m2/kg2)(5.69 × 1026 kg) = 4¹2(17 × 107 m )3/Touter

2,  
 which gives  Touter = 7.15 × 104 s =         19 h 50 min. 
 Because the mean rotation period of Saturn is between the two results, with respect to a point on the 

surface of Saturn, the edges of the rings are moving in opposite directions. 
 
 
46. The centripetal acceleration has a magnitude of  
  aR  = v2/R = (2¹R/T)2/R = 4¹2R/T2   
   = 4¹2(12.0 m)/(12.5 s)2 = 3.03 m/s2. 
 At each position we take the positive direction in the  
 direction of the acceleration.  Because the seat swings, the  
 normal force from the seat is upward and the weight is 

downward.  
 The apparent weight is measured by the normal force. 
 (a) At the top, we write ·F = ma from the force diagram: 
   – FTtop + mg = maR ,  or   FTtop = mg(1 – aR/g). 
  For the fractional change we have 
   Fractional change = (FTtop – mg)/mg = – aR/g  
    = – (3.03 m/s2)/(9.80 m/s2) =       – 0.309 (– 30.9%). 
 (b) At the bottom, we write ·F = ma from the force diagram: 
   FTbottom – mg = maR ,  or   FTbottom = mg(1 + aR/g). 
  For the fractional change we have 
   Fractional change = (FTbottom – mg)/mg = + aR/g  
    = + (3.03 m/s2)/(9.80 m/s2) =       + 0.309 (+ 30.9%). 
 
 

+ y

mg

FN

 

mg

FNtop

R

FNbottom

mg
 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 5 

 Page 5 – 14 

47. The acceleration due to gravity is 
    g  = Fgrav/m = GM/R2  
       = (6.67 × 10–11 N · m2/kg2)(7.4 × 1022 kg)/(4.2 × 106 m)2 = 0.28 m/s2. 
 We take the positive direction toward the Moon.  The apparent weight  
 is measured by the normal force.  We write ·F = ma from the force diagram:  
   – FN + mg = ma, 
 (a) For a constant velocity, there is no acceleration, so we have 
   – FN + mg = 0,  or    
   FN = mg = (70 kg)(0.28 m/s2) =      20 N (toward the Moon). 
 (b) For an acceleration toward the Moon, we have 
   – FN + mg = ma,  or    
   FN = m(g – a) = (70 kg)(0.28 m/s2 – 2.9 m/s2) =      – 1.8 × 102 N (away from the Moon). 
 
 
48. We determine the period T and radius r of the satellite’s orbit, and relate the orbital speed to the period of 

revolution from 
  v = 2¹r/T. 
 We know that the gravitational attraction provides the centripetal acceleration: 
  GMplanetm/r2 = mv2/r = m(2¹r/T)2/r = m4¹2r/T2, so we have 
  Mplanet = 4¹2r3/GT2. 
 
 
49. We relate the speed to the period of revolution from 
  v = 2¹r/T, where r is the distance to the midpoint. 
 The gravitational attraction provides the centripetal acceleration: 
  Gmm/(2r)2 = mv2/r = m(2¹r/T)2/r = m4¹2r/T2, so we have 
   m  = 16¹2r3/GT2 
   = 16¹2(180 × 109 m)3/(6.67 × 10–11 N · m2/kg2)[(5.0 yr)(3.16 × 107 s/yr)]2 =      5.5 × 1029 kg. 
 
 
50. (a) We relate the speed of rotation to the period of revolution from 
   v = 2¹R/T. 
  We know that the gravitational attraction provides the centripetal acceleration: 
   GMplanetm/R2 = mv2/R = m(2¹R/T)2/R = m4¹2R/T2, so we have 
   Mplanet = 4¹2R3/GT2. 
  Thus the density is 
   ρ = Mplanet/V = [4¹2R3/GT2]/9¹R3 = 3¹/GT2. 
 (b) For the Earth we have 
   ρ = 3¹/GT2 = 3¹/(6.67 × 10–11 N · m2/kg2)[(90 min)(60 s/min)]2 =       4.8 × 103 kg/m3. 
  Note that the density of iron is 7.8 × 103 kg/m3. 
 
 
51. From Kepler’s third law, T2 = 4¹2R3/GME , we can relate the periods of the satellite and the Moon:  
  (T/TMoon)2 =  (R/RMoon)3; 
  (T/27.4 d)2 = [(6.38 × 106 m)/(3.84 × 108 m)]3, which gives T =        0.0587 days (1.41 h). 
   
52. From Kepler’s third law, T2 = 4¹2R3/GMS , we can relate the periods of Icarus and the Earth:  
  (TIcarus/TEarth)2 =  (RIcarus/REarth)3; 
  (410 d/365 d)2 = [RIcarus/(1.50 × 1011 m)]3, which gives        RIcarus = 1.62 × 1011 m. 
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53. From Kepler’s third law, T2 = 4¹2R3/GMS , we can relate the periods of the Earth and Neptune:  
  (TNeptune/TEarth)2 =  (RNeptune/REarth)3; 
  (TNeptune/1 yr)2 = [(4.5 × 1012 m)/(1.50 × 1011 m)]3, which gives TNeptune =        1.6 × 102 yr. 
 
 
54. We use Kepler’s third law, T2 = 4¹2R3/GME , for the motion of the Moon around the Earth: 
   T2 = 4¹2R3/GME ; 
  [(27.4 d)(86,400 s/d)]2 = 4¹2(3.84 × 108 m)3/(6.67 × 10–11 N · m2/kg2)ME ,  
 which gives  ME =       5.97 × 1024 kg. 
 
 
55. From Kepler’s third law, T2 = 4¹2R3/GMS , we can relate the periods of Halley’s comet and the Earth to 

find the mean distance of the comet from the Sun:  
  (THalley/TEarth)2 =  (RHalley/REarth)3; 
  (76 yr/1 yr)2 = [RHalley/(1.50 × 1011 m)]3, which gives  RHalley = 2.68 × 1012 m. 
 If we take the nearest distance to the Sun as zero, the farthest distance is 
  d = 2RHalley = 2(2.68 × 1012 m) =       5.4 × 1012 m.        
 It is still orbiting the Sun and thus is        in the Solar System.        The planet nearest it is       Pluto. 
 
 
56. We relate the speed to the period of revolution from 
  v = 2¹r/T, where r is the distance to the center of the Milky Way. 
 The gravitational attraction provides the centripetal acceleration: 
  GMgalaxyMS /r2 = MSv2/r = MS(2¹r/T)2/r = MS4¹2r/T2, so we have 
  Mgalaxy = 4¹2r3/GT2 
    = 4¹2[(30,000 ly)(9.5 × 1015 m/ly)]3/ 
      (6.67 × 10–11 N · m2/kg2)[(200 × 106 yr)(3.16 × 107 s/yr)]2 =      3.4 × 1041 kg. 
 The number of stars (“Suns”) is 
  (3.4 × 1041 kg)/(2.0 × 1030 kg) =        1.7 × 1011.     
 
 
57. From Kepler’s third law, T2 = 4¹2R3/GMJupiter ,  we have 
  MJupiter = 4¹2R3/GT2. 
 (a) MJupiter  = 4¹2RIo

3/GTIo
2 

    = 4¹2(422 × 106 m)3/(6.67 × 10–11 N · m2/kg2)[(1.77 d)(86,400 s/d)]2 =      1.90 × 1027 kg. 
 (b) MJupiter  = 4¹2REuropa

3/GTEuropa
2 

    = 4¹2(671 × 106 m)3/(6.67 × 10–11 N · m2/kg2)[(3.55 d)(86,400 s/d)]2 =      1.90 × 1027 kg; 
  MJupiter  = 4¹2RGanymede

3/GTGanymede
2 

    = 4¹2(1070 × 106 m)3/(6.67 × 10–11 N · m2/kg2)[(7.16 d)(86,400 s/d)]2 =      1.89 × 1027 kg; 
  MJupiter  = 4¹2RCallisto

3/GTCallisto
2 

    = 4¹2(1883 × 106 m)3/(6.67 × 10–11 N · m2/kg2)[(16.7 d)(86,400 s/d)]2 =      1.89 × 1027 kg. 
  The results are consistent. 
 
 
58. From Kepler’s third law, T2 = 4¹2R3/GMJupiter ,  we can relate the distances of the moons:  
  (R/RIo)3 = (T/TIo)2. 
 Thus we have 
  (REuropa/422 × 103 km)3 = (3.55 d/1.77 d)2, which gives       REuropa = 6.71 × 105 km. 
  (RGanymede/422 × 103 km)3 = (7.16 d/1.77 d)2, which gives       RGanymede = 1.07 × 106 km.  
  (RCallisto/422 × 103 km)3 = (16.7 d/1.77 d)2, which gives       RCallisto = 1.88 × 106 km. 
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 All values agree with the table. 
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59. (a) From Kepler’s third law, T2 = 4¹2R3/GMS ,  we can relate the periods of the assumed planet  
  and the Earth:  
   (Tplanet/TEarth)2 =  (Rplanet/REarth)3; 
   (Tplanet/1 yr)2 = (3)3, which gives        Tplanet = 5.2 yr. 
 (b)    No,      the radius and period are independent of the mass of the orbiting body. 
 
 
60. (a) In a short time interval t, the planet will travel a  
  distance vt along its orbit.  This distance has been  
  exaggerated on the diagram.  Kepler’s second law  
  states that the area swept out by a line from the Sun  
  to the planet in time t is the same anywhere on the  
  orbit.  If we take the areas swept out at the nearest  
  and farthest points, as shown on the diagram, and  
  approximate the areas as triangles (which is a good  
  approximation for very small t), we have 
   !dN(vNt) = !dF(vFt), which gives  vN/vF = dF/dN. 
 (b) For the average velocity we have 
   ( = 2¹[!(dN + dF)]/T = ¹(1.47 × 1011 m + 1.52 × 1011 m)/(3.16 × 107 s) = 2.97 × 104 m/s. 
  From the result for part (a), we have 
   vN/vF = dF/dN = 1.52/1.47 = 1.034,   or   vN is 3.4% greater than vF .  
  For this small change, we can take each of the extreme velocities to be ± 1.7% from the average.  
  Thus we have 
   vN = 1.017(2.97 × 104 m/s) =       3.02 × 104 m/s; 
   vF = 0.983(2.97 × 104 m/s) =        2.92 × 104 m/s. 
 
 
61. An apparent gravity of one g means that the normal force from the band  
 is mg, where 
  g = GME/RE

2.  
 The normal force and the gravitational attraction from the Sun provide  
 the centripetal acceleration: 
  GMSm/RSE

2 + mGME/RE
2  = mv2/RSE , or 

  v2  =  G[(MS/RSE) + (MERSE/RE
2)]  

   = (6.67 × 10–11 N · m2/kg2)[(1.99 × 1030 kg)/(1.50 × 1011 m) +  
       (5.98 × 1024 kg)(1.50 × 1011 m)/(6.38 × 106 m)2], which gives v = 1.2 × 106 m/s. 
 For the period of revolution we have 
  T = 2¹RSE/v = [2¹(1.50 × 1011 m)/(1.2 × 106 m/s)]/(86,400 s/day) =        9.0 Earth-days. 
 
 
62. The acceleration due to gravity at a distance r from the center of the Earth is 
  g = F/m = GMEarth/r2. 
 If we form the ratio of the two accelerations for the different distances, we have 
  g/gsurface = [REarth/(REarth + h)]2; 
  1/2 = [(6.38 × 103 km)/(6.38 × 103 km + h)]2 , which gives h =        2.6 × 103 km.  
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63. The net force on Tarzan will provide his centripetal acceleration,  
 which we take as the positive direction.   
 We write ·F = ma from the force diagram for Tarzan:  
  FT – mg = ma = mv2/R. 
 The maximum speed will require the maximum tension that Tarzan can create: 
  1400 N – (80 kg)(9.80 m/s2) = (80 kg)v2/(4.8 m), which gives v =      6.1 m/s. 
 
 
 
 
 
64. Yes.       If the bucket is traveling fast enough at the top of the  
 circle, in addition to the weight of the water a force from the  
 bucket, similar to a normal force, is required to provide the  
 necessary centripetal acceleration to make the water go in the  
 circle.  From the force diagram, we write 
  FN + mg = ma = mvtop

2/R. 
 The minimum speed is that for which the normal force is zero: 
  0 + mg = mvtop,min

2/R,   or          vtop,min = (gR)1/2. 
 
 
 
 
 
 
 
 
 
 
65. We find the speed of the skaters from the period of rotation: 
  v = 2¹r/T = 2¹(0.80 m)/(3.0 s) = 1.68 m/s. 
 The pull or tension in their arms provides the centripetal acceleration: 
  FT  = mv2/R; 
   = (60.0 kg)(1.68 m/s)2/(0.80 m) =       2.1 × 102 N. 
 
 
66. If we consider a person standing on a scale, the apparent weight is measured by the normal force.  The 

person is moving with the rotational speed of the surface of the Earth: 
  v = 2¹RE/T = 2¹(6.38 × 106 m)/(86,400 s) = 464 m/s. 
 We take down as positive and write ·F = ma: 
  – FN + mg = ma = mv2/RE ,  or   FN = mgeffective = mg – mv2/RE. 
 Thus geffective – g = – v2/RE =  – (464 m/s)2/(6.38 × 106 m) =        – 0.0337 m/s2 (0.343% of g). 
 
 
67. Because the gravitational force is always attractive, the two forces will be in opposite directions.  If we 

call the distance from the Earth to the Moon D and let x be the distance from the Earth where the 
magnitudes of the forces are equal, we have 

  GMMm/(D – x)2 = GMEm/x2, which becomes MMx2 = ME(D – x)2. 
  (7.35 × 1022 kg)x2 = (5.98 × 1024 kg)[(3.84 × 108 m) – x]2, which gives 
  x =        3.46 × 108 m from Earth’s center. 
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68. (a) People will be able to walk on the       inside surface farthest from the center,       so the normal  
  force can provide the centripetal acceleration. 
 (b) The centripetal acceleration must equal g: 
   g = v2/R = (2¹R/T)2/R = 4¹2R/T2; 
   9.80 m/s2 = (0.55 × 103 m)2/T2, which gives T = 47.1 s. 
  For the rotation speed we have 
   revolutions/day = (86,400 s/day)/(47.1 s/rev) =      1.8 × 103 rev/day.  
 
 
69. We take the positive direction upward.  The spring scale reads  
 the normal force expressed as an effective mass: FN/g.  
 We write ·F = ma from the force diagram: 
  FN – mg = ma,   or   meffective = FN/g = m(1 + a/g); 
  80 kg = (60 kg)[1 + a/(9.80 m/s2)],  
 which gives a =        3.3 m/s2 upward. 
 The direction is given by the sign of the result. 
 
 
70. At each position we take the positive direction in the direction  
 of the acceleration. 
 (a) The centripetal acceleration is 
   aR = v2/R, so we see that the radius is minimum for a  
  maximum centripetal acceleration: 
   (6.0)(9.80 m/s2) = [(1500 km/h)/(3.6 ks/h)]2/Rmin ,  
  which gives        Rmin = 3.0 × 103 m = 3.0 km. 
 (b) At the bottom of the circle, the normal force is upward and the  
  weight is downward.  We write ·F = ma from the force diagram  
  for the ball: 
   FNbottom – mg = mv2/R = m(6.0g); 
   FNbottom  – (80 kg)(9.80 m/s2) = (80 kg)(6.0)(9.80 m/s2),  
  which gives       FNbottom = 5.5 × 103 N. 
 (c) At the top of the path, both the normal force and the weight are  
  downward.  We write ·F = ma from the force diagram for  
  the ball: 
   FNtop + mg = mv2/R; 
   FNtop + (80 kg)(9.80 m/s2) = (80 kg)(6.0)(9.80 m/s2),  
  which gives       FNtop = 3.9 × 103 N. 
 
 
71. The acceleration due to gravity on the surface of a planet is 
  gP = Fgrav/m = GMP/r2, so we have 
  MP = gPr2/G. 
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72. (a) The attractive gravitational force on the plumb bob is 
   FM = GmMM/DM

2. 
  Because ·F = 0, we see from the force diagram: 
   tan θ = FM/mg = (GmMM/DM

2)/(mGME/RE
2),  

  where we have used GME/RE
2 for g. 

  Thus we have 
   θ = tan–1 (MMRE

2/MEDM
2). 

 (b) For the mass of a cone with apex half-angle α, we have 
      MM  = ρV = ρ@¹h3 tan2 α 
     = (3 × 103 kg/m3)@¹(4 × 103 m)3 tan2 30° =        7 × 1013 kg. 
 (c) Using the result from part (a) for the angle, we have 
     tan θ  = MMRE

2/MEDM
2 

      = (7 × 1013 kg)(6.4 × 106 m)2/(56 × 1024 kg)(5 × 103 m)2 = 2 × 10–5,  
  which gives      θ ≈ (1 × 10–3)°. 
 
 
73. We convert the speed: (100 km/h)/(3.6 ks/h) = 27.8 m/s. 
 At the speed for which the curve is banked perfectly,  
 there is no need for a friction force.  We take the x-axis  
 in the direction of the centripetal acceleration. 
 We write ·F = ma from the force diagram for the car: 
  x-component:  FN1 sin θ = ma1 = mv1

2/R; 
  y-component:  FN1 cos θ – mg = 0. 
 Combining these, we get v1

2 = gR tan θ;  
  (27.8 m/s)2 = (60 m)(9.80 m/s2) tan θ, which gives 
  tan θ = 1.31,    or    θ = 52.7°. 
 At a higher speed, there is need for a friction force, which  
 will be down the incline to help provide the greater centripetal acceleration.  If the automobile does not 

skid, the friction is static, with Ffr ² µsFN. 
 At the maximum speed, Ffr = µsFN.  We write ·F = ma from the force diagram for the car: 
  x-component:  FN2 sin θ + µsFN2 cos θ = ma2 = mvmax

2/R; 
  y-component:  FN2 cos θ – µsFN2 sin θ – mg = 0,  or  FN2(cos θ – µs sin θ) = mg. 
 When we eliminate FN2 by dividing the equations, we get 
  vmax

2 = gR[(sin θ + µs cos θ)/(sin θ – µs cos θ)] 
    = (9.80 m/s2)(60 m)[(sin 52.7° + 0.30 cos 52.7°)/(sin 52.7° – 0.30 cos 52.7°)],  
 which gives vmax = 39.5 m/s = 140 km/h. 
 At a lower speed, there is need for a friction force, which will be up the incline to prevent the car from 

sliding down the incline.  If the automobile does not skid, the friction is static, with Ffr ² µsFN. 
 At the minimum speed, Ffr = µsFN.  The reversal of the direction of Ffr can be incorporated in the above 

equations by changing the sign of µs , so we have 
  vmin

2 = gR[(sin θ – µs cos θ)/(sin θ + µs cos θ)] 
    = (9.80 m/s2)(60 m)[(sin 52.7° – 0.30 cos 52.7°)/(sin 52.7° + 0.30 cos 52.7°)],  
 which gives vmin = 20.7 m/s = 74 km/h.  
 Thus the range of permissible speeds is      74 km/h < v < 140 km/h. 
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74. We relate the speed to the period from 
  v = 2¹R/T. 
 To be apparently weightless, the acceleration of gravity must be the required centripetal acceleration, so 

we have 
  aR = g = v2/R = (2¹R/T)2/R = 4¹2R/T2;  
  9.80 m/s2 = 4¹2(6.38 × 106 m)/T2, which gives T =       5.07 × 103 s (1.41 h). 
 
 
75. (a) The attractive gravitational force between the stars is providing the required centripetal  
  acceleration for the circular motion. 
 (b)  We relate the orbital speed to the period of revolution from 
   v = 2¹r/T, where r is the distance to the midpoint. 
  The gravitational attraction provides the centripetal acceleration: 
   Gmm/(2r)2 = mv2/r = m(2¹r/T)2/r = m4¹2r/T2, so we have 
    m  = 16¹2r3/GT2 
    = 16¹2(4.0 × 1010 m)3/(6.67 × 10–11 N · m2/kg2)[(12.6 yr)(3.16 × 107 s/yr)]2 =      9.6 × 1026 kg. 
 
 
76. The chandelier swings out until the tension in the suspension provides  
 the centripetal acceleration, which is the centripetal acceleration of  
 the train.  The forces are shown in the diagram.   
 We write ·F = ma from the force diagram for the chandelier: 
  x-component:  FT sin θ = mv2/r;  
  y-component:  FT cos θ – mg = 0. 
 When these equations are combined, we get 
  tan θ = v2/rg; 
  tan 17.5° = v2/(275 m)(9.80 m/s2), which gives v =        29.2 m/s. 
 
 
 
77. The acceleration due to gravity on the surface of a planet is 
  gP = Fgrav/m = GMP/R2. 
 If we form the ratio of the expressions for Jupiter and the Earth, we have 
  gJupiter/gEarth = (MJupiter/MEarth)(REarth/RJupiter)2; 
  gJupiter/gEarth = [(1.9 × 1027 kg)/(6.0 × 1024 kg)][(6.38 × 106 m)/(7.1 × 107 m)]2,  
 which gives  gJupiter = 2.56gEarth . 
 This has not taken into account the centripetal acceleration.  We ignore the small contribution on Earth.  

The centripetal acceleration on the equator of Jupiter is  
  aR = v2/R = (2¹R/T)2/R = 4¹2R/T2  
   = 4¹2(7.1 × 107 m)/[(595 min)(60 s/min)]2 = 2.2 m/s2 =  0.22gEarth . 
 The centripetal acceleration reduces the effective value of g: 
  g′Jupiter = gJupiter – aR = 2.56gEarth – 0.22gEarth =       2.3gEarth. 
 
 
78. The gravitational attraction from the core must provide the centripetal acceleration for the orbiting stars: 
  GMstarMcore/R2 = Mstarv2/R, so we have 
    Mcore  = v2R/G 
    = (780 m/s)2(5.7 × 1017 m)/(6.67 × 10–11 N · m2/kg2) =       5.2 × 1033 kg. 
 If we compare this to our Sun, we get 
  Mcore/MSun = (5.2 × 1033 kg)/(2.0 × 1030 kg) =       2.6 × 103 ×. 
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