Student ID: _____ Student Name: ____

Q1. Q13. A plane, diving with constant speed at an angle of 37.0 degrees with the vertical, releases a package at a height of 950 m. The package hits the ground 6.00 s after release. Find the speed of the plane. (Ans: 161 m/s)

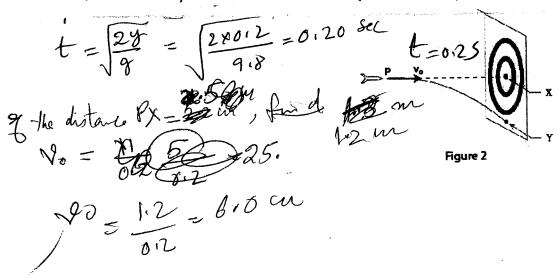
Q#2.: Q11. A boy wishes to swim across a river from A to B. He can swim at 1.0 m/s in still water and the river is flowing at 0.50 m/s (Fig 3, T061). At what angle θ should he be heading?

$$\frac{7}{9} \cos \theta = \frac{1}{10} \cos \theta = 0.5$$

$$\frac{1}{9} \cos \theta = \frac{1}{10} \cos \theta = 0.5$$

$$\frac{1}{9} \cos \theta = \frac{1}{10} \cos \theta = 0.5$$

$$\frac{1}{9} \cos \theta = \frac{1}{9} \cos \theta = 0.5$$


$$\frac{1}{9} \cos \theta = \frac{1}{9} \cos \theta = 0.5$$

$$\frac{1}{9} \cos \theta = \frac{1}{9} \cos \theta = 0.5$$

$$\frac{1}{9} \cos \theta = \frac{1}{9} \cos \theta = 0.5$$

Student ID: Student Name	2 :

Q#1. An arrow is shot horizontally from a point P toward X as shown in Fig 2, T061. It hits at a point Y, 0.20 m below point X later. If the the distance PX = 1.2 m, determine speed of the arrow at P. (Ans: 6.0 m/s)

Q#2. A river is flowing 0.20 m/s east. A boat in this river has a speed of 0.40 m/s directed 60° south of east relative to the earth. Find the velocity of the boat relative to the river. (Ans: 0.35 m/s, south)

Student ID:	Student	Name:	
-------------	---------	-------	--

Q1 A ball is thrown upward with a speed % at an angle of 45° above the horizontal. It reaches a maximum height of 8.0 m. What is the maximum height this ball would go if it is thrown upward with a speed (2 %) at an angle of 45° above the horizontal? A) 32 m

$$h = \frac{V_0 y}{2g}, h = \frac{V_0 y}{2g}$$

$$h' = \frac{V_0 y}{2g} = \frac{2}{2} \frac{V_0 y}{2g} = 4$$

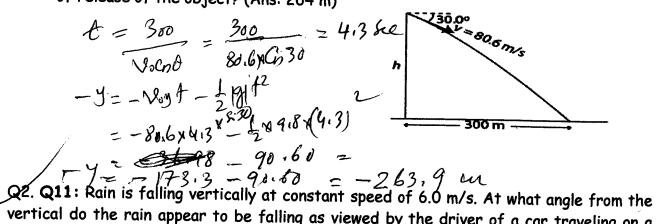
$$h' = \frac{V_0 y}{V_0 y} = \frac{2}{2} \frac{V_0 y}{V_0 y} = 4$$

$$h' = 4h = 4 \times 8 = 32 \text{ m}$$

Q2. T041: Q10: Car A travels with velocity (30 j) m/s (relative to the ground) and car B travels with speed of 50 m/s in a direction making an angle of 37 degrees with +x axis (relative to the ground) (see Fig 9). What is the velocity of car A relative to car B? (A1): (-40i) m/s

$$V_{AB} = V_{Ag} + V_{gB} = V_{Ag} - V_{Bg}$$

$$= 305 - V_{eg}G_{37}i - V_{Bg}G_{37}j$$

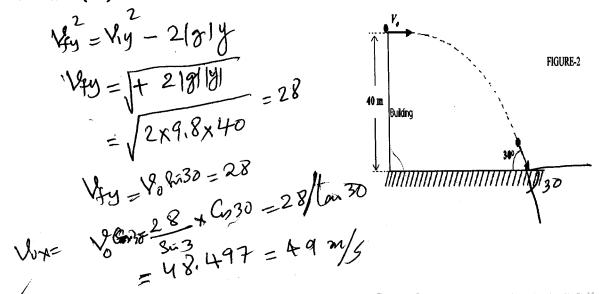

$$= 50 \times G_{37}i$$

$$= 305 - 39.93i - 30.095$$

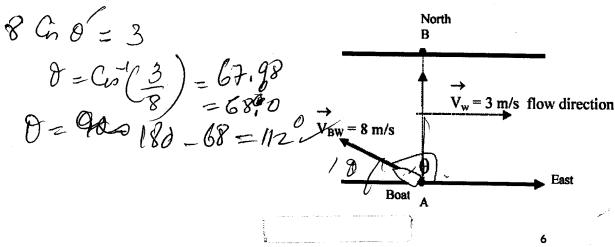
$$= -39.93i = -40i$$
Figure 9

Student ID:..... Student Name:...

Q1. A certain airplane has a speed of 80.6 m/s and is diving at an angle of 30.0° below the horizontal when it releases an object. The horizontal distance from the point of release was 300. m as shown in Fig.4. How high was the point of release of the object? (Ans: 264 m)

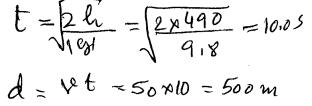


vertical do the rain appear to be falling as viewed by the driver of a car traveling on a


straight, level road with a speed of 8.0 m/s? (A1): 53 degrees.

Student ID: Student Name:

Q#1: A stone is thrown horizontally from the top of a 40m high hill. It strikes the ground at an angle of 30 degrees as shown in Fig.2. With what speed was it thrown? (A1): 49 m/s.



Q2. Q13: A wide river has a uniform flow speed of 3.0 m/s toward the east. A boat with a speed of 8.0 m/s relative to the water leaves point (A) and heads in such a way that it crosses to a point (B) (see Fig.2). In what direction relative to east must the boat be pointed? (A1): 112 degrees.

Student ID:..... Student Name:......

Q#1:. The plane shown in Fig 2, is in a level flight at a height of 490 m and a speed of 50 m/s when a package was released. The horizontal distance between the release point and the point where the package strikes the ground is: Ans: D) 500 m

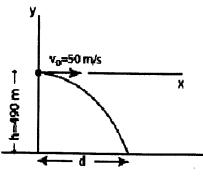
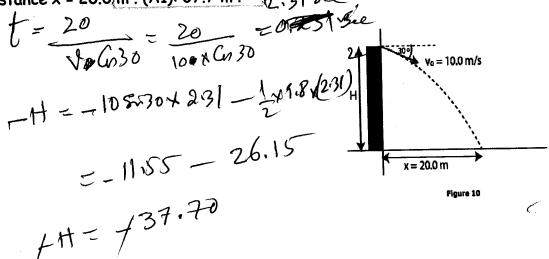


Figure 2


Q#2: . Car A is moving towards East with speed 15.0 m/s and car B is moving towards West with speed 25.0 m/s, both relative to the ground. Find the velocity of car B relative to car A.(Ans: 40.0 m/s towards West)

$$V_{BA} = V_{Bg} + V_{gA} = V_{Bg} - (V_{Ag}) = 15 \text{ m/s}$$

$$= -25i - 15i$$

Student Name:....

Q#1:A projectile is thrown from a height H with a speed of 10.0 m/s at an angle of 30 degrees below horizontal as shown in Fig 10. Find H, if the horizontal distance x = 20.0 m. (A1): 37.7 m. 2.3 | &e

tt= 137.70 H=37.7 m

Q2. Q11: Two roads intersect as shown in Figure 4. At this instant, a police car (P) is approaching the intersection along the x-axis at 80 km/h while a truck (T) is moving along the y-axis at 60 km/h. What is the velocity of the police car relative to truck? (A1): (80 i

-60 j) km/h

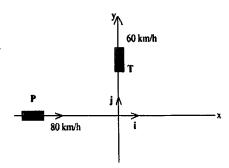
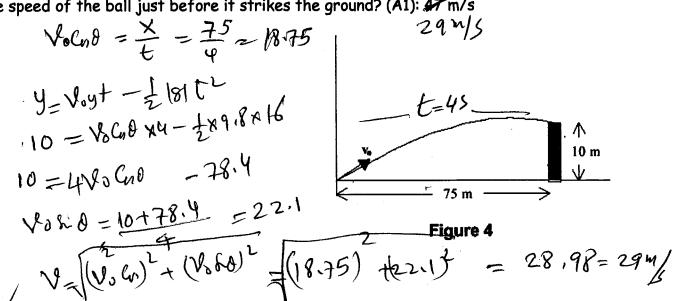



Figure 4

Student	ID:	Student	Name:
			• • • • • • • • • • • • • • • • • • • •

Q1) Q11: A ball is thrown horizontally from the top of a building 100 m high. The ball strikes the ground at a point 65 m from the base of the building (see figure 3). What is the speed of the ball just before it strikes the ground? (A1): 47 m/s

Q2. A river has a steady flow of 0.30 m/s. A student swims downstream a distance of 1.2 km and returns to the starting point. If the student can swim at a constant speed of v in still water and the downstream portion of the swim takes him 20 minutes, the time required for the entire swim is: (A1): 70 minutes.

(A1): 70 minutes.

$$\frac{1200}{V_{bw} + V_{w0}} = \frac{20 \text{ m}}{V_{bw}}$$

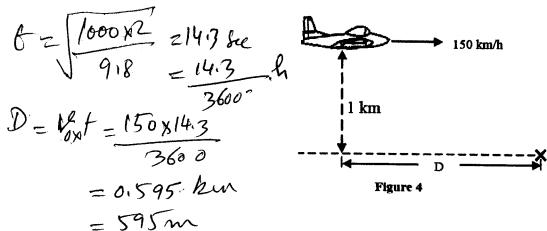
$$\frac{1200 \text{ m}}{V_{bw} + 0.3} = \frac{1200 \text{ m}}{V_{bw} + 0.3} = \frac{1-0.3}{0.7 - 0.3}$$

$$\frac{1200 \text{ m}}{V_{bw} + 0.3} = \frac{1200}{0.7 - 0.3} = \frac{1200}{0.4} = \frac{3000 \text{ fee}}{0.7 + 0.3}$$

$$\frac{1200 \text{ m}}{V_{bw} + 0.3} = \frac{1200}{0.4} = \frac{3000 \text{ fee}}{0.7 + 0.3}$$

$$\frac{1200 \text{ m}}{V_{bw} + 0.3} = \frac{1200}{0.4} = \frac{3000 \text{ fee}}{0.7 + 0.3}$$

$$\frac{1200 \text{ m}}{V_{bw} + 0.3} = \frac{1200}{0.4} = \frac{3000 \text{ fee}}{0.4} = \frac{3000 \text{ fee}}{0.4} = \frac{3000 \text{ fee}}{0.4}$$


$$\frac{1200 \text{ m}}{V_{bw} + 0.3} = \frac{1200}{0.4} = \frac{3000 \text{ fee}}{0.4} = \frac{3000 \text{ fee}}{0.4} = \frac{3000 \text{ fee}}{0.4}$$

Ch.#4 T133 Quiz #3 Phys101.02-v9

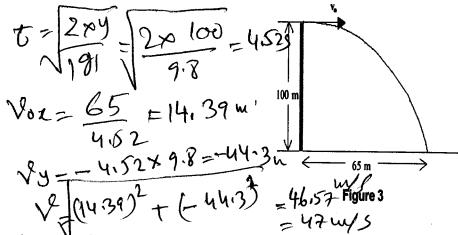
Student ID: _____ Student Name: ____

Q1 The airplane shown in Figure 4 flies horizontally at an altitude of 1.00 km with a speed of 150 km/h. At what distance D should it release a package to hit the target X?

A) 596 m

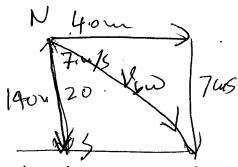
Q2. A boat is traveling at 14 km/h in still water (water is not flowing). A man runs directly across the boat, from one side to the other (perpendicular

to the direction of motion of the boat), at 6 km/h relative to the boat. The speed of the man relative to the ground is:


A) 15 km/h

$$V_{mq} = V_{mb} + V_{bb} = 63 + 14i$$

$$= 15i23 hu/h$$


Ctudent	Th.	Student	Name:	
SIUUEIII	-U .	 JIUUCIII	I AMILIE.	

Q1: Q11: A ball is thrown horizontally from the top of a building 100 m high. The ball strikes the ground at a point 65 m from the base of the building (see figure 3). What is the speed of the ball just before it strikes the ground? (A1): 47 m/s

Q2.: : A 140-m wide river flows with a uniform speed of 4.0 m/s toward the east. Starting from a point on the north bank it takes 20 s for a boat to cross the river with constant speed to a point directly across on the south bank. What is the speed of the boat relative to the water?

(A1): 8.1 m/s)

