Suggested problems: Chapter 26- HRW-Principles of Physics- ISV 10th Edition.

15. A heater contains a Nichrome wire (resistivity $5.00 \times 10^{-7} \Omega$.m) of length 5.85 m, with end-to-end potential difference of 112 V, and with a dissipation power of 4000 W. (a) What is wire's cross-sectional area? (b) If 100 V is used to obtain the same dissipation rate, what should the length be?

Answer:(a) $9.33 \times 10^{-7} \text{ m}^2$; (b) 4.66 m

20. Figure 26-21 gives the electric potential V(x) along a copper wire carrying uniform current, from a point of higher potential $V_s = 12.0 \ \mu V$ at x = 0 to a point of zero potential at $x_s = 3.00 \ m$. The wire has a radius of 2.20 mm.What is the current in the wire?

Fig. 26-21 Problem 20

Answer: 3.6 mA.

26. A small but measurable current of 1.2×10^{-10} A exists in a copper wire whose diameter is 3.0 mm. The number of charge carriers per unit volume is 8.49×10^{28} m⁻³. Assuming the current is uniform, calculate the (a) current density and (b) electron drift speed.

Answer: (a) $1.7 \times 10^{-5} \text{ A/m}^2$; (b) $1.3 \times 10^{-15} \text{ m/s}$.

30. A copper wire of cross-sectional area 2.40×10^{-6} m² and length 4.00 m has a current of 2.00 A uniformly distributed across that area. (a) What is the magnitude of the electric field along the wire? (b) How much electrical energy is transferred to thermal energy in 30 min?

 $\underline{\text{Answer:}}(a) \ 1.41 \times 10^{-2} \text{ V/m} \ ; (b) \ 203 \text{ J}$ 35. A wire initially has length L₀ and resistance 5.0 Ω . The resistance is to be increased to 45.0 Ω by stretching the wire. Assuming that the resistivity and density of the material are un affected by the stretching, find the ratio of new length to L₀.

Answer:3

42. Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 50.0 A. The resistance per unit length is to be 0.150 Ω /km. The densities of copper and aluminum are 8960 and 2600 kg/m³, respectively. Compute (a) the magnitude J of the current density and (b) the mass per unit length λ for a copper cable and (c) J and (d) λ for an aluminum cable.

<u>Answer:</u>(a) $4.44 \times 10^5 \text{ A/m}^2$; (b) 1.01 kg/m; (c) $2.73 \times 10^5 \text{ A/m}^2$; (d) 0.495 kg/m. 51. A common flashlight bulb is rated at 0.20 A and 3.2 V (the values of the current and voltage under operating conditions). If the resistance of the tungsten bulb filament at room temperature (20°C) is 1.1 Ω , what is the temperature of the filament when the bulb is on?

<u>Answer:</u> 3.0×10^3 °C.

52. An isolated conducting sphere has a 20 cm radius. One wire carries a current of 1.000 002 0 A into it. Another wire carries acurrent of 1.000 000 0 A out of it. How long would it take for thesphere to increase in potential by 1000 V?

<u>Answer:</u> 1.1×10^{-2} s.