23 ver 1.0

Suggested problems: Chapter 23- HRW-Principles of Physics- ISV 10th Edition.

6.Figure 23-23 gives magnitude of the electric fieldinside and outside a sphere with a positive charge distributed uniformly throughout its volume. The scale of the vertical axis is set by $E_x = 10 \times 10^7 \text{ N/C(a)}$ What is the charge on the sphere? (b) What is field magnitude at r=8.0 m?

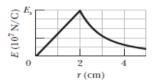


Fig. 23-23 Problem 6

Answer:(a) 4.4×10^{-6} C; (b) 6.2×10^{2} N?C

7. In Fig. 23-24, two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have excess surface charge densities of opposite signs and magnitude 2.31×10^{-22} C/m². In unit-vector notation, what is the electric field at points (a) to the left of the plates, (b) to the right of them, and (c) between them?

Answer: (a) zero; (b) zero; (c) $-2.61 \times 10^{-11} \hat{\imath}$ N/C

19. A long straight wire has fixed negative charge with a linear charge density of of magnitude 5.2 nC/m. The wire is to be enclosed by a coaxial, thin walled nonconducting cylinderical shell of radius 1.2 cm. The shell is to have positive charge on its outside surface with a surface charge density σ that makes the net electric field zero. Calculate σ .

Answer: $6.9 \times 10^{-8} \text{ C/m}^2$

26. An electron is released 9.0 cm from a very long non conducting rod with a uniform $4.5 \,\mu\text{C/m}$ What is the magnitude of the electron's initial acceleration?

Answer: 1.6×10¹⁷ m/s²

39. A uniform surface charge of density 8.0 nC/m² is distributed over the entire *xy*plane. Find (a) the net charge on the sphere (b) the total electric flux leaving the surface?(c) What is the net flux through a concentric Gaussian sphere of radius 2.0 cm?

Answer: (a) 6.4 μ C; (b) 7.3 x 10⁵ N.m²/C (c) 7.3 x 10⁵ N.m²/C

45. The square surface shown in Fig. 23-44 measures 6.8 mm on each side. It is immersed in a uniform electric field with magnitudeE = 1800 N/C and with field lines at an angle of $\theta = 35^{\circ}$ with a normal to the surface, as shown. Take that normal to be directed "outward," as though the surface were one face of a box. Calculate the electric flux through the surface.

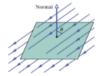


Fig. 23-44 Problem 45

Answer: -0.068 N.m²/C

48. Figure 23-48 shows two nonconductingspherical shells fixed inplace. Shell 1 has uniform surfacecharge density $+6.0 \,\mu\text{C/m}^2$ on itsouter surface and radius 3.0 cm; shell 2 has uniform surface chargedensity $+4.0 \,\mu\text{C/m}^2$ on its outersurface and radius 2.0 cm; the shellcenters are separated by L=12 cm. In unit-vector notation, what is thenet electric field at x=2.0 cm?

Fig. 23-46 Problem 48