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ABSTRACT 

 

NUCLEATION RATES OF ETHANOL AND METHANOL 

USING SAFT AND PC-SAFT EQUATIONS OF STATE 

 

By 

Fawaz Y. Hrahsheh 

Chairman: Dr. Abdalla Obeidat 

Co-Advisor: Dr. Hasan El-Ghanem 

 

    The two equations of state (EOS) called SAFT and PC-SAFT have been 

used with the most general Gibbsian form (P-form) of classical nucleation 

theory (CNT) are used to calculate the nucleation rate. It is found that using 

SAFT EOS and PC-SAFT EOS leads to good improvement in the calculation 

of nucleation rate of Methanol and Ethanol. 

     The SAFT and PC-SAFT EOSs improve the T-dependence and the S-

dependence of the calculation of nucleation rate for both Methanol and 

Ethanol using the P-form. 

     Data obtained for Methanol gives better agreement when compared with 

experimental results. 
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CHAPTER I 

1. INTRODUCTION 

The basic definition of nucleation is that being a kind of phase transition 

from the vapor to the liquid phase, which means that the transition of the 

system from a state to another state as a result of changes in its thermody-

namic properties. The nucleation process is isothermal phase transition similar 

to the condensation [1], which is usually associated with a critical size at 

which the probability of cluster formation is a maximum.  

 To understand the nucleation process which will be discussed in chapter 

two, some thermodynamic properties must be introduced such as thermody-

namic properties related to equation of state (EOS). As an example, the ideal 

gas equation of state is given by 

nRTTNkPV
B

==                                                                            (1.1) 

Where P  is the pressure, V  is the volume of the system, N  is the 

number of molecules, 
B

k  is the Boltzmann’s constant, n  is the number of 

moles, R  is the universal gas constant, and T  is the absolute temperature. 

The main use of the equation of state is that, knowing any three thermody-

namic properties, enable one to find the fourth property.  The efficiency of 

any equation of state depends on how close it can predict values to experim-

entally measured properties at equilibrium. 
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Because the nucleation process is an isothermal process, any change in 

the pressure will change the volume and the number of molecule of the phase. 

To image this process, assume that we have a container with a volume V 

occupied by a gas with a number of molecules N  at a pressure P  and a 

temperature T . If we increase the pressure on the system at the same 

temperature, the volume will decrease and the collisions among the molecules 

will increase, so, the molecules will start to condensate. This condensation 

will form clusters (i.e., microscopic droplets), which represent the embryos of 

the new phase (liquid phase). 

As it is known, the foreign particles (impurities), often, aid the 

condensation process (i.e., the impurities assist the nucleation process). The 

nucleation process, which occurs without any impurities, is called 

homogeneous nucleation [2] process, and that occurs with the impurities is 

called heterogeneous nucleation [3] process. 

Study of nucleation is widely used in cloud physics, material science, and 

crystal growth. 

The first thermodynamic description of the nucleation process is due to 

Gibbs [4], who proved that the nucleation process depends on the work of 

formation. The formation consists of two terms: a bulk (volumetric) term and 

a surface term. 

Practically, the nucleation rate which is defined as, the rate of formation 

of critical-size embryos per unit time per unit volume is the important 
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parameter (quantity) in our calculation, because it gives the rate of formation 

of the new phase. In 1926 Volmer and Weber [5] derived the first expression 

of the nucleation rate, by assuming that the nucleation should be proportional 

to the flux of molecules absorbed by the critical- size droplets. The theory of 

Volmer and Weber was derived kinetically by Becker and Döring [6], known 

in the literature as classical nucleation theory (CNT). The general expression 

of the nucleation rate is given by 








 −
∝

∗

Tk

W
J

B

exp                                                                       (1.2) 

Where ∗W is the maximum work of formation of critical-size droplet. 

Gibbs [4] was the first one who proved that the maximum work of formation 

can be given as  

2

3

*

)(3

16

vl
PP

W
−

=
σπ

                                                                         (1.3) 

Which is called P -form. Where σ  is the surface tension of the critical 

droplet, 
l
P  is the internal pressure of the droplet, and

v
P  is the actual pressure 

(the pressure after compression). 

Since the surface tension can’t be measured for small droplet, it is 

assumed to be equal to the measured surface tension for flat interface 
∞

σ . 

 The above equation is usually written as 

2

3

*

)(3

16

vl
PP

W
−

= ∞σπ
                                                                         (1.4) 
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Which is known as the P -form. 

 If the droplet is incompressible (see equation A.3.2), equation 1.4 can be 

written as  

2

32

*

)(3

16

µ
σπ

∆
= ∞l

v
W                                                                             (1.5)  

Which is called µ -form. Where 

)()(
velll
PP µµµ −=∆                                                                      (1.6) 

Where µ∆  is the difference in the chemical potential per molecule of the 

liquid phase and vapor phase, respectively (see equation A.4.4), 
l
v  is the 

specific volume (volume per molecule) of the droplet, and 
ve
P  is the 

equilibrium vapor-liquid pressure. 

Assuming that the gas is ideal, the last equation can be written as 

2

32

*

)ln(3

16

STk

v
W

B

l ∞=
σπ

                                                                    (1.7) 

Where S  is called the supersaturation ratio and defined as
vev

PP / . 

Equation 1.7 is known as the standard form of nucleation or simply S -form. 

The application of the S -form is straight forward since the equation 

requires a measured quantity, while using the P -form requires the knowledge 

of the internal pressure of the droplet, which can’t be measured for a small 

droplet. Although, one can take advantage of Gibbs formula by using an 

appropriate EOS for ∞=σσ . 
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Application of the P -form requires the assumption that the chemical 

potential at constant temperature is the same for the liquid-vapor phases. 

According to this assumption, Gibbs [4] introduced the concept of the 

reference state at which the chemical potential is the constant of phase 

transformation. 

)()(
reflvv

ρµρµ =                                                                              (1.8) 

This reference state is characterized by 
ref
P  and 

ref
ρ  as shown in the 

following figure    

 

Figure 1.1.The pressure–density isotherm for a pure fluid  

                      using Van der-Waals’s EOS. 

 

Mathematically, we use the equation of state to find the vapor number 

density 
v

ρ  at the actual pressure
v
P , point a in the figure. According to Gibbs 

approach there is a point like b  (
refref

P,ρ ) which has the same µ  as a . 

Thisµ  when substituted in the EOS gives 
ref

ρ  from which, 
ref
P is known.      
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Obeidat et al [7] are the first to use the P -form numerically. They 

calculated the nucleation rate of ethanol and methanol using cubic perturbed 

hard body CPHB [8] equation of state and they proved that, the P -form 

improves the results of S -form, but, the results of methanol and ethanol 

deviate from the experimental results. As shown in figure 1.2, P -form 

improve the results of S -form by one order of magnitude while the T -

dependence and S -dependence did not improved. 

 

Figure 1.2. Experimental nucleation rates of ethanol compared to calcu- 

lated rates using the S -form and the P -form of CNT with the CPHB EOS. 

 

Since, methanol and ethanol have a wide range of applications in physics 

and chemistry, scientists have investigated the nucleation rate of these 

substances. But no solid explanation has been made using classical nucleation 

rates, so more work is needed regarding this aspect. 
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Recall that methanol and ethanol are not ideal gases and the CPHB EOS 

is not an accurate equation at low temperature, for these reasons, we will use a 

more accurate equations of state at low temperature which are called 

statistical associating fluid theory SAFT EOS [9-10] and perturbed chain-

statistical associating fluid theory PC-SAFT EOS [11].  

The layout of this thesis will be as follows; chapter two deals with 

general theoretical background of all thermodynamic properties mainly 

equation of state and nucleation rate “ J ”.  

Chapter three deals with kinetics that enable us to calculate the rates.   

Chapter four explains in details the derivation of the work of formation in 

classical nucleation theory (CNT).  

Chapter five deals with the numerical results obtained using two equation 

of state (SAFT [9-10] and PC-SAFT [11]) with parameters appropriate to 

methanol and ethanol.  

Results of nucleation rates using SAFT and PC-SAFT will be discussed 

in chapter six.          
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CHAPTER II 

2. THERMODYNAMICS OF NUCLEATION 

 2.1. THERMODYNAMIC SURVEY 

If changes occur in the thermodynamic properties of a stable 

thermodynamic system, the system will transfer to a new more stable phase 

(minimum free energy). Where Gibbs free energy is given by 

µNG =                                                                                                (2.1) 

The Helmholtz free energy is given by 

PVNPVGF −=−= µ                                                                  (2.2) 

Where G  is the Gibbs free energy, N  is the number of molecules, µ  is 

the chemical potential, F  is the Helmholtz free energy, P  is the pressure, 

and V  is the total volume.    

Figure 2.1 illustrates the pressure-volume diagram using Van der-Waal’s 

equation of state EOS [12], given by  

RTbv
v

a
P =−+ ))((

2
                                                                        (2.3) 

Where a  and b  are characteristic parameters for the given substance.  



- 9 - 

 

Figure 2.1. Pressure-volume phases for a pure substance. 

 

 From the figure 2.1[8], for each isothermal line, there is an equilibrium 

vapor-liquid pressure 
e
P  (for example, the isothermal line at temperature

1
T ) 

has an equilibrium vapor-liquid pressure 
e
P  at points a  and f . The dashed 

line between a  and f  is the experimental line which represents the 

coexisting range of liquid and vapor at the equilibrium vapor-liquid pressure. 

The heavy-line dome which passes through all the equilibrium vapor-

liquid pressure points is called the binodal line and the peak of this dome is 

found at the critical point, which is the point at which the vapor and liquid are 

indistinguishable. For each theoretical isotherm, there are a maximum 

pressure of vapor (as b  for 
1

T ) and a minimum pressure of liquid  (as d  for 

1
T ). The dotted-line dome which passes through all the points of maximum 
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pressure of vapor and minimum pressure of liquid for several 

temperatures is called the spinodal line and the two dome intersect at the 

critical point “c ”.  

The vapor which has a pressure higher than 
e
P  and the liquid which has a 

pressure lower than 
e
P  will be in unstable state for some time and then each 

of them will return to its own stable region or transfer to the stable region of 

the other phase, from that, the region between the spinodal line and the 

binodal is called metastable region ( 0)/( <∂∂
T

Vp ), where the region between 

a and b for 
1

T  is the metastable region for the vapor phase and the region 

between f and d is the metastable region for liquid phase . 

The region inside the spinodal dome is called unphysical region or 

unstable region, because the volume of the fluid increases with increasing the 

pressure ( 0)/( >∂∂
T

Vp ), this unstable region is for both vapor and liquid 

phases.            

The vapor is said to be undersaturated, saturated or supersaturated if the 

actual pressure is less, equal or higher than the equilibrium vapor-liquid 

pressure respectively. 

 

2.2. THERMODYNAMIC DESCRIPTION OF NUCLEATION 

Since the free energy of the surface of the droplet is larger than that of the 

bulk of the droplet, the droplet starts to shrink. On the other hand if the  

molecule in the bulk of the droplet have enough excess free energy to transfer 
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from the bulk to the surface, the droplet starts to grow. This excess free 

energy can be obtained from an external work. The work which is needed to 

increase the surface of the droplet by unit area is known as the surface 

tension. Consequently, the surface of the droplet opposes the growth of the 

droplet.  

Because the external work has a role in the formation of the droplet, we 

must use the Helmholtz free energy (see equation 1.2) to derive the 

expression of the total work needed to form the droplet. 

Gibbs [4] is the first to show that the work of formation (i.e., free energy 

barrier) of the droplet equals the difference between the Helmholtz free 

energies before and after the formation, and he showed that, the work of 

formation consists of two terms: The bulk (volumetric) term and the surface 

term, where, the Gibbs’s formula of the work of formation is given as (see 

appendix A), 

σAPPVFW
vll

+−−=∆= )(                                                          (2.4) 

Where  W is the work of formation, F  is the Helmholtz free energy, V  

is the volume of the droplet, 
l
P  and 

v
P  are the internal pressure of the droplet 

and the actual pressure, respectively, A  is the surface area of the droplet, and 

σ  is the surface tension. 

 Figure 2.2 [8] illustrates the reversible work (free energy barrier) of 

formation of the droplet with its number of molecules. 
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Figure 2.2. Work of formation of a droplet. 
      

As we see in figure 2.2, the maximum reversible work of formation is 

found at point 
*n  and the growth of the droplet after 

*n  will be spontaneous. 

From that, the size of the droplet at 
*n  is called the critical-size droplet, 

because droplets with this size have the probability to transfer to the new 

phase (liquid) and the other droplets with sizes less than 
*n  will shrink 

(decay) to the old phase (gas), and the maximum reversible work which is 

needed to form this critical size droplet is the minimum work needed for 

phase transition. 

The formation of the critical-size droplets (embryos) which have the 

probability of growth spontaneously is called the nucleation process, and the 

number of critical-size droplets generated per unit volume per unit time is 

called the nucleation rate “J ”. 
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CHAPTER III 

3. KINETICS OF NUCLEATION RATE 

3.1. BECKER AND DöRING THEORY 

In 1935 Becker and Döring[6] introduced kinetic equations which can be 

used to describe the nucleation process of superheated vapor in metastable 

region. In this case we are dealing with two-component system (liquid and 

gas).        

The kinetic equation can be applied to the two-component system where 

the concentration of the gas is much more than that of the liquid. The 

distribution of the molecules of the old phase component is described by 

assuming that they condensate locally in clusters or droplets of several sizes. 

We use a variable n  for the sizes of the droplets to define the number of 

particles (molecules or atom) in the droplet. A cluster containing n  molecules 

is called n -cluster. 

Let the concentration of the n -cluster be represented by the notation 

)(nf . Clusters are assumed to be distributed uniformly and randomly, so 

)(nf  do not depend on the space variables.  

To obtain equations of the time description of )(nf , Becker and Döring 

[6] assumed that the clusters change size by absorbing single molecule (1-
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size) or by emitting single molecule (reversible process). As shown in 

figure 3.1. 

 

       Figure 3.1. The formation of n -size droplet by single molecule 

       absorption into ( 1−n )-size droplet or single molecule emission 

                 from ( 1+n )-size droplet. 

     

                                                    

From the above assumption, droplets can only grow or shrink by single 

events. Then )(nJ  is the difference between the rate of formation of n -size 

droplets by single-molecule absorption into ( 1−n )-molecule droplet and the 

rate of destruction of n -size droplets by single-molecule emission, can be 

written as 

)()()()1()1()1()( nnAnfnnAnfnJ αβ −−−−=                                     (3.1) 

Where )(nJ  has dimension of (1/(volume.second)), )(nf  and )1( −nf  

are the concentration of  n -cluster and ( 1−n )-cluster, )(nA  and )1( −nA  

are their respective surface areas, )1( −nβ  is the flux per unit time per unit 

area of single molecules onto ( 1−n )-droplet(i.e., molecules arriving to the 
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droplet-vapor interface from the vapor) and )(nα  is the flux of single 

molecule leaving the n–size droplet. 

From kinetic theory β  can be calculated (see appendix A, equation 

A.1.5), but α is not known in general, because its calculation depends on 

kinetics of molecules in the liquid phase and the interaction between the 

molecules of the liquid phase. To overcome this difficulty, equilibrium 

concentration is used. Where the equilibrium concentration can be obtained 

when the rate of formation of n -size droplets by single-molecules absorbed 

to ( 1−n )-droplets equals the rate of destruction of it by single-molecules 

emitted from n -droplets (i.e., 0)( =∆ nf ). 

Assume that the equilibrium distribution of droplets in the bulk 

metastable phase can be established as long as the characteristic time for this 

establishment is short with respect to the lifetime of the metastable phase 

[13]. Because of microscopic reversibility, we can write, 

)()()()1()1()1( nnAnDnnAnD αβ =−−−                                         (3.2) 

Where )1( −nD  and )(nD  are the equilibrium concentrations of 

( 1−n )-droplets and n -droplet, respectively. By assuming that α and β  do 

not depend on the number of molecules in the droplet (i.e., )1( −nβ =β  and 

)(nα =α ), we can solve equation 3.2 forα , 

     
)()(

)1()1(

nAnD

nAnD −−
= βα                                                                     (3.3) 
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Substitute equation 3.3 into 3.1, we obtain, 









−

−
−

−−=
)(

)(

)1(

)1(
)1()1()(

nD

nf

nD

nf
nDnAnJ β                                   (3.4)     

The first part in the right hand side of equation (3.4) represents the rate of 

formation of n -size droplet by single-molecule condensation onto ( 1−n )-

size droplet and the second part represents the rate of destruction of it by 

single-molecule evaporation. But there is another method to form n -size 

droplet by evaporating single-molecule from ( 1+n )-droplet and destruction 

of it can be obtained by single-molecule absorption (i.e., )1( +nJ ), see figure 

3.1. Then the total time-variation of concentration of n -size droplet is the 

difference between the two methods, so 

)1()(
),(

+−=
∂

∂
nJnJ

t

tnf
                                                       (3.5) 

 At equilibrium distribution (i.e., )(nf = )(nD ), the time-invariant 

population of droplets is established at )(nJ = )1( +nJ , therefore J  is 

independent of n . The above result means that a steady-state is established. 

Rewrite equation 3.4 with the sum taken from n=2 to n=q   to obtain 

equation 3.6. 

      ∑
+
+

−=








+
+

−=∑
==

q

n

q

n qD

qf

D

f

nD

nf

nD

nf
nDnAJ

11 )1(

)1(

)1(

)1(

)1(

)1(

)(

)(
)]()(/[ β     (3.6) 

Where q  is very large (undefined), )1(f  is the concentration of single-

molecule (monomers), and )1(D  is the concentration of monomers at 
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equilibrium. From the definition of nucleation, we can conclude that, if the 

( 1+q )-size droplet is larger than the critical size, then none equilibrium 

( 1+q )-size droplet will grow until phase transition occurs and if it is less 

than the critical size, it will shrink to a monomer.  

From that, the value of )1( +nf  vanishes and )1(f  nearly equals )1(D . 

So we can rewrite equation 3.6 as 

∑
=

q

nDnA
J

1

)]()(/1[

1

β
                                                                (3.7) 

Where equation 3.7 is the main equation used to derive the relation of 

nucleation rate. To derive the rate of nucleation, we must obtain the 

appropriate relation of the concentration at equilibrium )(nD  and replace the 

summation by an integral with suitable limits. 

3.2. CONCENTRATION OF DROPLETS AT EQUILIBRIUM 

Because the concentration of the clusters (dimers, trimers .etc) is much 

lower than the concentration of monomers (except when there are attractive 

forces between molecules). Clusters rarely collide, therefore no clusters form 

from union of two or more clusters. Assume that the system consists from 

equilibrium clusters is an ideal mixture (i.e., cluster considered as new 

species). These species are distributed following Maxwell-Boltzmann 

distribution [14], therefore 








 −
=

Tk

W
nD

B

exp)( φ                                                                              (3.8) 
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Where, φ  is the normalization factor and W  is the work of formation. 

The work of formation for 1-cluster (n=1) equals zero, so the normalization 

factor  φ  equals )1(D . Then equation 3.8 can be written as 








 −
=

Tk

W
DnD

B

exp)1()(                                                                 (3.9) 

Because the concentration of the monomers )1(D  is much more than the 

other concentrations, the value of )1(D  nearly equals to the total number 

density of the bulk metastable phase before the condensation, therefore 

tottot
DVND == /)1(                                                                      (3.10) 

Where, 
tot

N  is the total number of monomers and V  is the total volume 

of the system. Assume that there is a mutual equilibrium between the clusters 

of all possible sizes. Then, the reversible reaction is very suitable because the 

thermodynamic condition for equilibrium is fulfilled. This condition is written 

as,  

vn
nn µµµ ==

1                                                                               (3.11) 

Where 
n

µ  is the chemical potential of n-size clusters and 
1

µ  is the 

chemical potential of the vapor 
v

µ  (monomers or single-molecules). Suppose 

that the chemical potential of the cluster as a one species (i.e., single body) 

is
n

λ  and using the following thermodynamic relation,  









=−=∆

ve

v

Bvevvvv

P

P
TkPP ln)()( µµµ                                            (3.12) 
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The value of 
n

µ  can be written as (see appendix A, equation A.2.7) 









+=

tot

Bnn

D

nD
Tk

)(
lnλµ                                                                 (3.13) 

The entropy of the canonical ensemble [14] equals 
nB

Qk ln− , where 
n

Q  

is the partition function of the ensemble. Given as: 

∑ 






 −
=

n B

n
Tk

W
Q exp                                                                          (3.14) 

Using equations (3.9 and 3.10) the partition function can be written as 

tot

i
i

i

D

nD
Q

∑
=

)(
                                                                                 (3.15)  

Then the entropy equals to 

)/)(ln(
tot

i
i

DnDTS ∑−=′                                                            (3.16) 

This result illustrates that the logarithmic term in equation 3.13 allows for 

the entropy of the mixing in the absence of cluster-cluster interaction. 

The solution of equation 3.13 yields: 








 −
=

Tk

n
DnD

B

nv

tot

λµ
exp)(                                                            (3.17) 

This implies that: 

vn
nW µλ −=                                                                                  (3.18) 

But the value of W  (see appendix A, equation A.3.4) equals, 

µσ ∆+= nAW                                                                                 (3.19) 
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Where A is the surface area of the droplet. Then equations (3.18 and 

3.19) lead to, 

ln
nA µσλ +=                                                                                  (3.20) 

Thus the chemical potential of the droplet containing n molecules 

considered as a distinct molecular species differs from the chemical potential 

of n  molecules in liquid phase by the surface term of the work of formation. 

3.3. HOMOGENUOUS NUCLEATION RATE 

The homogeneous nucleation rate is obtained by substituting the 

equilibrium distribution equation 3.9 into equation 3.7, it is customary to 

replace the summation by an integral, to obtain, 







∫ 











 −
=

∗

∗

〉〉

〈〈

−
nn

nn
B

tot
dn

nATk

W
DJ

1

)(

1
expβ                                           (3.21) 

Where 
*n  represents the critical-size droplet appropriate to the maximum 

work of formation. Since the exponential has a peak at
*n , therefore the work 

of embryo formation can be expanded about the unstable equilibrium point 

*n , the expansion of W  is 

2/))(())(()()( 2**//**/* nnnWnnnWnWnW −+−+=                      (3.22) 

Because )( *nW   is an extreme value, the first derivative vanishes, then 

2/))(()()( 2*//* nnWnWnW δ+=                                                      (3.23) 

Change the variable of integral in equation 3.21 by nδ (i.e.,
∗− nn ), if 

n<< *n , the lower limit of integral of equation 3.21 is ∞−  and if n>> *n , 
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the upper limit of integral is ∞ . Then, the integral is written as 

∫ 













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
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∞−

)()(
2

)(
exp

)(
exp)( 2
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BB
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δδβ        (3.24) 

Knowingthat  

∫ =−
∞

∞− α
π

α dxx )exp( 2
                                                                  (3.25) 

Then, 





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
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
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π
β                               (3.26) 

For a spherical model. The work of formation of the droplet is given by  

µσπ ∆+= nrW 24                                                                             (3.27) 

Where the radius of the sphere r  can be calculated using the following 

relation, 

l
vnrV == 3

3

4
π                                                                                       (3.28)           

Use the above relation of the work and the value of β  from appendix A 

(equation A.1.5), the result of J  is 








 −
′

=
Tk

nW

Tk

v

Tkm

DP
J

BB
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B
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)(

exp
2

2 *2σ
π

                                  (3.29) 

From the ideality of the mixture, we get 

vvtot
vD /1== ρ   ,  TkTkDP

BvBtotv
ρ==                                      (3.30) 

By using the results in equation 3.30, we obtain 
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]/)(exp[/2/ *2 TknWmJ
Blv

−′= πσρρ                               (3.31) 

Or 








 −
=

∗

Tk

W
JJ

B

o
exp                                                                           (3.32) 

Where, 
∗W  equals )( ∗nW  and, 

0
J is given as 

mJ
lvo

′= πσρρ /2/2 2)/(/2 TkPvm
Bvl

′= πσ                  (3.33) 

The final form of the rate is given by 








 −′=
∗

Tk

W
TkPvmJ

B

Bvl
exp)/(/2 2πσ                                   (3.34) 
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CHAPTER IV 

4. VERSIONS OF CLASSICAL NUCLEATION RATE 

4.1. THEORY  

There are three versions of classical nucleation rate based on the form of 

the work of formation [8], thus there are three forms of formation work. 

These versions are the chemical potential form µ -form (equation 1.3), the 

saturation ratio form S  -form (equation 1.4) and the pressure form P -form 

(equation 1.5). In this thesis comparison will be made between the results 

obtained by using the S -form and P -form with the experimental results. To 

perform these comparisons, one should use an equation of state to calculate 

the difference between the pressure of the vapor and the internal pressure of 

the droplet. This equation of state (EOS) must give acceptable results of 

binodal at low temperature at which the nucleation process occurs. 

4.2. WORK OF FORMATION 

The nucleation process occurs because the system tends to have a 

minimum free energy. Consequently, the work of formation equals the 

difference between the Helmholtz free energy before and after the formation. 

To calculate this difference, consider a container of volume V  having N  

molecules of a vapor at a chemical potential 
v

µ  and a pressure 
v
P . The 

Helmholtz free energy before formation [8], is 
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VPNF
vvb

−= µ                                                                                 (4.1) 

The Helmholtz free energy after formation of a droplet of n  molecules 

after ignoring the very small changes in
v

µ  and 
v
P , [8], is written as: 

σµµ APVPVVnnNF
llvllva
+−−−+−= )()(                                   (4.2)        

Where, 
l

µ  is the chemical potential of the molecules inside the droplet, 

l
P  is the internal pressure, 

l
V  is the droplet volume, A  is the surface area of 

the droplet and, σ  is the surface tension. 

The surface term is added because the bulk (volumetric part of the 

droplet) and the surface of the droplet are considered to be different phases, so 

the molecules must have excess energy to move from the bulk to the surface. 

The difference in the free energy between the old system and the new system 

is 

σµµ AVPPPPnFFF
lvlvvllba
+−−−=−=∆ )())()((                      (4.3) 

The chemical potential part will vanish at equilibrium where droplet is at 

the critical-size, because the droplet has the same chemical potential of the 

supersaturated vapor according to the equilibrium assumption. From the 

above result, the maximum difference of free energy which equals to the 

maximum work of formation for spherical droplet model is given by [13]: 

σπ
π 23maxmax 4
3

4
)( ∗∗ +−−==∆ rrPPWF

vl
                                     (4.4) 

Where 
*r  is the radius of critical-size droplet. 
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Equation 4.3 represents the maximum energy barrier which must be 

overcome to form the droplet in a spatial region .Using appendix A (equation 

A.3.2), equation 4.4 can be approximated as 

σπ
µπ 2

3

4
3

4
r

v

r
F

l

+
∆

−=∆                                                                   (4.5) 

Where µ∆  is the difference in chemical potential between the initial 

metastable phase and the final stable phase and 
l
v  is the molecular volume of 

stable (liquid) phase. Figure 4.1 shows the free energy barrier as a function of 

the droplet radius. 

 

Figure 4.1. Free energy barrier as a function of droplet radius. 

  

Use the Laplace’s relation [15], which introduces the pressure across a 

curved interface (see appendix A, equation A.5.2), specifically, 
*/2 rPP

vl
σ=− .         

Because the droplet has a spherical surface (curved interface), the Laplace 

relation [15] is suitable. The work of formation is written as 

2

3

max

)(3

16

vl
PP

WW
−

== ∗ σπ
                                                                        (4.6) 
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From Laplace relation [15], we note that the surface tension σ  depends 

on the radius of the dropletr . If we assume that the surface tension of the 

curved surface of droplet is nearly equal to experimental surface tension of a 

flat interface (i.e., ∞=r  and,
∞

=σσ ). Then equation 4.6 becomes 

2

3

max

)(3

16

vl
PP

WW
−

== ∞∗ σπ
                                                                      (4.7) 

If the droplet is incompressible then 
l
v  is invariant with pressure, so 

)(
vll

P

P
l

ppvdPv
l

v

−=∫=∆µ                                                               (4.8) 

Substitute 4.8 in 4.7, we obtain the µ -form 

2

23

max

)(3

16

µ
σπ
∆

== ∞∗ l
v

WW                                                                    (4.9) 

If the gas is ideal, it is easy to derive the following relation (see appendix 

A, equation A.4.7). 

STkppvSTk
BvevlB
ln)(ln ≈−−=∆µ                                                (4.10) 

Substituting equation 4.10 in 4.9 gives the S -form 

2

23

max

)ln(3

16

STk

v
WW

B

l∞∗ ==
σπ

                                                             (4.11) 

Equations 4.7, 4.9, and 4.11 form the backbone of our numerical 

calculations for the rate equation appropriate to experimental available data to 

methanol and ethanol. 
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CHAPTER V 

 

5. RESULTS OF EQUATIONS OF STATE 

     
5.1. SAFT EOS 

 

Chapman et al [9-10] proposed an equation of state of associating fluids 

based on statistical associating fluid theory known as (SAFT). 

      For polar fluids, SAFT based on Lennard-Jones (LJ) potential [14] which 

treats the molecules as spherical segments of equal-size and equal –

interaction strength. Then the Helmholtz molar free energy of the system can 

be written as 

resid FFF +=′                                                                                 (5.1) 

idF  is the ideal Helmholtz molar free energy per mole, and 
resF  is the 

residual Helmholtz molar free energy per mole at the same temperature and 

density. The residual term is a sum of three terms due to contributions of 

different intermolecular forces. The first of which, 
segF , represents the 

segment-segment interaction. The second term, 
chainF , is due to the presence 

of covalent chain-forming bonds among the LJ  segments. The third term, 

assocF , is due to site-site specific interaction. The general expression of the 

total Helmholtz molar free energy per mole can be written as  

assocchainsegid FFFFF +++=′                                                    (5.2)



- 28 - 

5.1.1. SEGMENT TERM              

The segment Helmholtz molar free energy per mole was calculated [9] as  

)( disp

o

hs

o

seg FFmF +=                                                                        (5.3) 

Where m is the number of segments per molecule, 
hs

o
F  is the hard sphere 

term, and 
disp

o
F  is the dispersion term. 

The hard sphere term for one species is given as 

2

2

)1(

34

η
ηη

−
−

=
RT

F hs

o                                                                                 (5.4) 

Where R  is the universal gas constant and η  is a segment packing 

fraction defined as 

md
N
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π
η =                                                                          (5.5) 
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Where ρ  is the molar density, d  is the effective hard sphere 

diameter,σ ′  is the temperature-independent sphere diameter, 
AV

N  is the 

Avogadro’s number, and ε  is the  intermolecular energy (LJ ) energy. 

The dispersion term is given as 


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

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                                                                  (5.7)  

)285.101268.25424.45959.8( 32

1 RRRR

disp

o
F ρρρρ +−−−=            (5.8) 
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)904.15216.229724.99075.1( 32

2 RRRR

disp

o
F ρρρρ +−+−=              (5.9) 

Where ηπρ ]2/6[=
R

 is the reduced density and RTkT
BR

/=  is the 

reduced temperature.    

 5.1.2. CHAIN TERM 

The chain term [9-10] is given as 



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η
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                                                         (5.10) 

 5.1.3. ASSOCIATION TERM 

The association term [9-10] for a polar fluid is given as 

∑ +






 −=
A

A

A
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M

A
X

RT

F 1

2
ln                                                      (5.11) 

Where M  is the total number of sites on each molecule, 
AX  is the mole 

fraction of molecules not bonded at site A , and ∑
A

represents  a sum over all 

associating sites on the molecules.    

      The mole fraction of molecules not bonded at site A can be calculated as 

∑ ∆+= −

B

ABB

AV

A XNX 1]1[ ρ                                                           (5.12) 

Where the sum runs over all sites and 
AB∆  is the associating strength, 

given as  
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Where, 
ABK  is the associating volume and ABε   is the associating energy. 
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To find the mole fraction of methanol and ethanol molecules not bonded 

at a given site, we follow Radosz et al [10] approach using 2B-type . 

This approach gives the following mole fraction as 

1)](1[ −∆+∆+= AAAABB

AV

A XXNX ρ                                           (5.14) 

Where 
AA∆  equals zero and 

AB∆  is given by 5.12, then 

1]1[ −∆+= ABB

AV

A XNX ρ                                                               (5.15) 

Using the same approach, 
BX  is given by 

1]1[ −∆+= BAA

AV

B XNX ρ                                                                  (5.16) 

Substituting 5.16 in 5.15 gives 

∆

∆++−
=
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N

N
X

ρ
ρ

2

)41(1 2/1

                                                         (5.17) 

 Equation 5.11 gives for the association free energy the following 

1ln2 +−= AA

assoc

XX
RT

F
                                                              (5.18) 

The parameters that have been used for ethanol and methanol are given in 

table 5.1. 

Table 5.1. Parameters of SAFT EOS 

compound σ 
B

k/ε  
m 

B

AB k/ε  
ABk  

source 

methanol 3.203 163.25 1.6 2964 0.053 [1] 

ethanol 3.416 199.9 1.8 2614.7 0.0373 fitting 

 

 

These parameters were used to test the accuracy between experimental 

equilibrium values with theoretically computed numerically.   
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The pressure and chemical potential can be derived from the reduced 

Helmholtz free energy as: 

T

F
P 





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′∂
=                                                     (5.20) 

To calculate the equilibrium vapor-liquid pressure, two conditions must 

be applied for each isothermal line in VP −  or ρ−P  diagram (figure 1.1 

and 2.1): 

)()(
vl

PP ρρ =                                                                                (5.21) 

)()(
vl

ρµρµ =                                                                                (5.22) 

Figures 5.1was obtained by applying the above conditions (equation 

5.21and, 5.22) using SAFT EOS, which indicates excellent agreement 

between theory and experiment especially at low temperatures as shown in 

the insito of figure 5.1. 

Small deviation from experimental values [16] was observed on binodal 

at high temperature (T >400), this motivated us to say that SAFT EOS is an 

excellent EOS to explain the experimental results at low temperature where 

nucleation usually occurs. 
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Figure 5.1. Binodal points of methanol Using SAFT EOS. 

 

 Figure 5.2 was obtained for ethanol by applying the same conditions as 

methanol using SAFT EOS, which indicates excellent agreement between 

theory and experiment [16] at all temperatures. 

 

 
 

Figure 5.2. Binodal points of ethanol Using SAFT EOS. 
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5.2. PC-SAFT EOS 

SAFT EOS was modified by Gross and Sadowski [11], they added a 

small perturbing term due to dispersion in the chain formation. 

The added dispersion term can be written as 

RT

F

RT

F

RT

F disp

21 +=                                                                            (5.23) 
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Parameters appear in equations (5.27-5.30) are given in table 5.2. 

 

Table 5.2. Universal constants [11], 
iii

aaa
210

,,  and 
iii

bbb
210

,,  

i
 

i
a

0
 

i
a

1
 

i
a

2
 

i
b

0
 

i
b

1
 

i
b

2
 

0 0.79198281 -0.62311554 -0. 06777556 0.79198281 -0. 62311554 -0. 06777556 

1 1. 07148651 0.48573437 0. 02837411 2.14297303 0. 97146874 0. 05674823 

2 0. 91474661 1.12485267 0. 09612281 2.74423982 3. 37455809 0. 28836841 

3 -7. 81060651 -.09485016 0. 06815027 -31. 2424260 -8. 37940062 0. 27260110 

4 25.7855977 9.45049823 0. 05980187 128. 927988 47. 2524911 0. 29900933 

5 -6. 9822877 -7.1027262 0. 28660979 -341. 893726 -102. 616357 1. 71965874 

6 41. 9308941 7.77610281 -0.74701698 293. 516259 54. 4327197 -5. 22911885 

 

Parameters shown in table 5.3 were used in the numerical calculations of 

thermodynamic properties of methanol and ethanol using PC-SAFT EOS. 

 

Table 5.3. parameters of PC-SAFT EOS. 

compound σ 
B

k/ε  
M 

B

AB k/ε  
ABk  

source 

methanol 3.230 188.90 1.5255 2899.5 0.035176 fitting 

ethanol 3.0438 198.24 2.7 2753.4 0.0323 fitting 

 

Figures 5.3 illustrate the binodal points of methanol obtained, 

numerically, using conditions stated in equations 5.21 and 5.22 using PC-

SAFT EOS [11]. It is observed that the binodal equilibrium points are not 

sensitive to the modified SAFT EOS. 

As in SAFT EOS, the conditions (equations 5.21 and 5.22) were applied 

for methanol using PC-SAFT EOS to obtain figure 5.3, which indicates 
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excellent agreement between theory and experiment [16] especially at low 

temperatures as shown in the insito of figure 5.3. Small deviation was 

observed at high temperatures (T >410 K).    

 
Figure 5.3. Binodal points of methanol Using PC-SAFT EOS. 

 

Figure 5.4 indicates that, there is an excellent agreement between 

experiment [16] and theory at all temperatures. Consequently, PC-SAFT EOS 

is an excellent EOS to explain the experimental results at law temperatures.   

 

Figure 5.4. Binodal points of ethanol Using PC-SAFT EOS. 
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CHAPTER VI 

 

6. RESULTS OF HOMOGENEOUS NUCLEATION RATE 

     
6.1. RESULTS OF METHANOL 

 The excellent fit obtained from SAFT [9-10] or PC-SAFT [11] EOSs for 

the equilibrium binodal motivated us to extend the calculation to include the 

dependence of the nucleation rate on supersaturation ratio and temperature. 

Although the binodal equilibrium points were insensitive to the perturbation 

due to chain, the nucleation rate was found to be sensitive to the form of EOS.  

Figure 6.1 depicts the results for methanol using SAFT EOS. It is clear 

that SAFT EOS improves the S-dependence while the T-dependence was 

improved at high Temperature.  

 

                       Figure 6.1. Nucleation rates of methanol using SAFT EOS. 
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As in figure 6.1, figure 6.2 depicts the results for methanol using PC-

SAFT EOS. It is clear that PC-SAFT EOS improves the S-dependence while 

the T-dependence was improved at high Temperature.   

 
                       Figure 6.2. Nucleation rates of methanol using PC-SAFT EOS  

  

These results were expected because the standard form requires the gas to 

be an ideal, where methanol and ethanol are not ideal gases. 

Note that, the fitted values of nucleation rate used in SAFT EOS was 

improved by one order of magnitude when compared to PC-SAFT EOS. 

6.2. RESULTS OF ETHANOL 

Because the SAFT and PC-SAFT EOSs are suitable for ethanol as 

discussed in chapter five, we used these EOSs to calculate the nucleation rate 

of ethanol applyingP -form and S -form methods. 

Figure 6.3 depicts the results for ethanol using SAFT EOS. It is clear that, 

the improvement of SAFT EOS on the S-dependence is small while the T-

dependence was improved at high Temperature.       
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                     Figure 6.3. Nucleation rates of ethanol using SAFT EOS.    

 

Figure 6.4 depicts the results for ethanol using PC-SAFT EOS. We note 

that, there is a very small differ between SAFT EOS (figure 6.3) and PC-

SAFT EOS. The clear improvement is on T-dependence, whereas the 

improvement on S-dependence is small. 

 

Figure 6.4. Nucleation rates of ethanol using PC-SAFT EOS. 

 

All the experimental values of nucleation rate for ethanol and methanol 

are taken from [17].  



- 39 - 

6.3. DISCUSSIONS AND CONCLUSIONS 

Since the gases of methanol and ethanol are not ideal, it is expected that 

the P-form of CNT will give better calculated results of nucleation than the S-

form, where in the last form the gas is assumed to be an ideal. 

From the results of EOSs in chapter five, we note that SAFT and PC-

SAFT EOSs improve the theoretical binodals for methanol and ethanol at low 

temperature where the deviation from the experimental values approach zero. 

Our results of nucleation rates show that SAFT EOS gives better values 

for the nucleation rates by one order of magnitude when compare with PC-

SAFT EOS for methanol, that was clear in fitting value of nucleation rates for 

SAFT EOS was 
710  and PC-SAFT EOS was 

810 . 

6.4. RECOMMENDATIONS 

These exact EOSs are not used yet to calculate the nucleation rate for 

many gases of industrial importance applications as water and, water-ethanol. 

In our theoretical calculations of nucleation rates using the classical 

versions, we assumed that the surface tension is that of the flat interface, but 

we noted in our numerical calculations that the calculated results are very 

sensitive to the surface tension. 

Then further work is needed.  
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APPENDICES 

APPENDIX A 

IMPORTANT RELATIONS 

A.1. ABSORPTION FLUX 

To calculate the absorption flux per unit time per unit volumeβ , 

kinetically. Suppose a single molecule with a distance d  from a spherical 

droplet and its average velocity c , see figure A.1. 

 

               Figure A.1. Schematic depiction of the absorption of a single 

            molecule by a droplet in metastable phase. 

 

From the definition of β  (i.e., the flux of a single molecule per unit area 

per unit time [6]), we can represent it by the following relation, 

At

1
=β                                                                                         (A.1.1) 

Or 

Ad

c

Atd

d
==β                                                                            (A.1.2) 

Where A  is the surface area of the droplet and t  is the time for reaching 

 the molecule to the droplet. 

From thermal De broglie assumption [6] which represents the motion of 

d  

c  
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molecules of fluids as a wave motion, we can rewrite the value of c  as 

follow. 

λν=c                                                                                          (A.1.3) 

Where λ  is thermal De brogli wave length [6] and ν  is the frequency 

(i.e., number of collisions per unit time), then 

TkmAd

hv

B
′

=
π

β
2

                                                                    (A.1.4) 

Where h  is planck’s constant and m′  is the molecular mass.  

But hv  equals the work which is needed to move  the molecule by a 

distance d   ( AdPhv
v

= ), substitute the relation of work in A.1.4, the 

absorption flux of a single molecule [10] can be written as 

Tkm

P

B

v

′
=

π
β

2
                                                                        (A.1.5) 

 

A.2. CHEMICAL POTENTIAL OF DROPLET IN IDEAL MIXTURE 

 

To derive the chemical potential of a droplet in ideal mixture, we can start 

from the following thermodynamic relation [8]. 

ve

v

BBvevvv

P

P
TkSTkpp lnln)()( ==− µµ                            (A.2.1) 

Where S  is the supersaturation ratio. Before the condensation, the droplet 

of n -size was a number of vapor molecules which equals n  (see figure 

A.2.a), so its chemical potential equals the summation of the chemical 



- 44 - 

potentials for n  vapor molecule basis on the reversible interaction principle. 

then its chemical potential equals 

nvevev
pnp µµµ == )()(

1
                                                        (A.2.2) 

After the condensation occur the droplet is considered as a single species 

of the ideal mixture (see figure A.2.b), then represent its chemical potential by 

(
n

λ ). 

nvv
p λµ =)(                                                                                (A.2.3) 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

Figure A.2. Schematic depiction of the droplet (a) before 

                  the formation (b) after the formation. 

 

 Use the following equation of state which represents the ideal mixture. 

∑∑ ==
n

B

n

B
n TknDTk

V

N
P )(                                                 (A.2.4) 

Where n
N  is the number of n -size species, V  is the total volume of the 

system, 
B

k  is the Boltzmann’s constant, and )(nD  is the concentration of the 

n -size species (i.e., number density of each n -size species). 

(a) (b)                                                                                 

 

 

 

 

 

 

 

 

    ( )
ve
PP =                                               ( )

v
PP =                        



- 45 - 

At equilibrium pressure the condensation does not occur, which means 

that all the species are monomers (i.e., single-molecule), so the equilibrium 

pressure can be given as 

TkDTkDP
BtotBve

== )1(                                                           (A.2.5) 

Substitute the equations A.2.2, A.2.3, A.2.4 and A.2.5 in A.2.1, we get 

)(
ln

nD

D
Tk tot

Bnn
+= µλ                                                              (A.2.6) 

Or 

tot

Bnn

D

nD
Tk

)(
ln+= λµ                                                                (A.2.7) 

A.3. THE WORK OF FORMATION          

Start from equation 4.3, the difference in the Helmholtz free energy can 

be given as 

( ) σµµ AVPPPPnFFF
lvlvvllba
+−−−=−=∆ )()()(                           (4.3) 

Where F∆  equals the work of formation, use the following 

thermodynamic identity 

l

T

l v
p

=







∂
∂µ

                                                                                  (A.3.1) 

Where 
l
v  is the specific volume of liquid. If the droplet is incompressible 

the value of 
l
v  does not depend on the pressure, so 

∫ −=∆=−=







∂
∂l

v

p

P
vllvlll

T

l ppvppdp
p

)()()( µµµ
µ

                        (A.3.2)  
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But 
l
v  equals nV

l
/ , then 

)())()((
vllvlll

ppVppn −=− µµ                                              (A.3.3)  

Equations A.3.3 and 4.3 lead to        

σµσµµ AnAPPnW
vvvl

+∆=+−= ))()((                                 (A.3.4) 

A.4. THE RELATION BETWEEN THE SUPERSATURATION   

RATIO AND THE CHEMICAL POTENTIAL DIFFERENCE  

 

Use the following thermodynamic identity at constant temperature for an 

ideal gas  

dpvdPvsdTd
vv

=+−=µ                                                      (A.4.1) 

  Where 

PTkv
Bv

/=                                                                         (A.4.2) 

Substitute the above result in A.4.1, and solve the integral between
ve
P  and 

v
P , then 

STk
p

p
Tkpp

B

ve

v

Bvevvv
lnln)()( =








=−µµ                                       (A.4.3) 

      But  

)()(
vlll

PP µµµ −=∆                                                                     (A.4.4) 

 Then use the relation A.3.1 to get 

)()()(
vevlvelvl
ppvpp −+=µµ                                                      (A.4.5) 

The equations A.4.4 and A.4.5 lead to, 

)()()(
vevlvelll
ppvpp −+−=∆ µµµ                                                (A.4.6) 
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At unstable equilibrium (critical size) )()(
vvll

pp µµ =  (i.e., gibbs 

reference assumption) and at equilibrium of the bulk two-phases 

)()(
vevvel

pp µµ =  and the pressure difference )(
vev

PP −  is negligible, then 

the difference in the chemical potential can be given as 

STkpp
Bvevvv
ln)()( =−=∆ µµµ                                                    (A.4.7) 

A.5. THE LAPLACE EQUATION 

Starting from equation 3.4, the first derivative of 
maxF∆ with respect to 

the radius of the droplet equals zero, where 

σπ
π 2*3*max 4
3

4
)( rrppF

vl
+−−=∆                                           (3.4) 

Then, derive the equation 3.4 to give, 

084)( *2*max

*
=+−−=∆ σππ rrppF

dr

d
vl

                            (A.5.1) 

Solve the above equation to get the Laplace equation 

r
pp

vl

σ2
)( =−                                                                           (A.5.2) 
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APPEDIX B 
NUMERICAL PROGRAMS OF SAFT AND PC-SAFT 

 
 

B.1 List of symbols 
 
R           Universal constant of gases (Mpa.cc/k.mol) 
N           Avogadros's number 
S           LJ interaction energy (kelvin) 
m           Segment numer or chain length  
L           Association energy (kelvin) 
w           Association volume (dimensionless) 
v           Temp-independent segment diameter (cm) 
Kl          Boltzmann's constant (pa.m**3/K)           
MM          Molar mass (kg/mol) 
b           pi=Л 
d           Temperature-dependence segment diameter 
row         Molar density 
eta       Segment packing fraction 
g           6*eta/[√2*b*row] 
c           eta/row 
T           Temperature 
Guess       Guessing value for Gibbs reference density 
Guess1      Guessing value for liquid density 
Guess2      Guessing value for vapor density 
Guess3      Guessing value for supersaturated vapor density 
rowg        supersaturated vapor density 
Pg,Pv       Actual pressure 
rowl        Density of Gibbs reference state 
mewg        Chemical potential of supersaturated vapor 
Jo          Pre-exponential of nucleation rate 
Jp          Nucleation rate by P-form 
Js          Nucleation rate by S-form 
Pl       Pressure of Gibbs reference state 
gama        surface tension 
W1          Work of formation for P-form 
W2          Reduced work of formation for P-form 
W3          work of formation for S-form 
dp          First derivative of pressure by row 
dmew        First derivative for mew by row 
K           square matrix includes dp and dmew 
i           Number of iteration 
error       Error equals 10¯¹º 
Kl          Boltzmann's constant 
satu        Saturation ratio 
row(1),equl Equilibrium liquid density 
row(2),equg Equilibrium vapor density 
 

B.2 Densities of equilibrium vapor-liquid pressure 
do 
row(1)=guess1 
row(2)=guess2 
k(1,1)=dp(row(1),t) 
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k(1,2)=-dp(row(2),t) 
k(2,1)=dmew(row(1),t) 
k(2,2)=-dmew(row(2),t) 
f(1)=p(row(2),t)-p(row(1),t) 
f(2)=mew(row(2),t)-mew(row(1),t) 
z=k(2,1)/k(1,1) 
k(2,1)=0.0d0 
f(2)=f(2)-(z*f(1)) 
k(2,2)=k(2,2)-(z*k(1,2)) 
u(2)=f(2)/k(2,2) 
u(1)=(f(1)-k(1,2)*u(2))/k(1,1) 
row=row+u 
error1=0.0d0 
 
do i=1,2 
error1=error1+f(i)**2 
end do 
error1=dsqrt(error1) 
 
if (error1<error) exit 
guess1=row(1) 
guess2=row(2) 
end do 
 

B.3 Density of supersaturated vapor 
   
Pg=satu*p(equg,T) 
guess3=1.20d0*equg 
fun1=p(guess3,t)-Pg 
dfun1=dp(guess3,t) 
do while(dabs(fun1/dfun1)>error) 
fun1=p(guess3,t)-Pg 
dfun1=dp(guess3,t) 
root1=guess3-fun1/dfun1 
guess3=rowg 
 

B.4 Density of Gibbs reference state      
  
mewg=mew(rowg,t) 
guess=1.2d0*equl 
fun=mew(guess,t)-mewg 
dfun=dmew(guess,t) 
do while(dabs(fun/dfun)>error) 
fun=mew(guess,t)-mewg 
dfun=dmew(guess,t) 
root=guess-fun/dfun 
guess=rowl 
end do 

 

B.5 Nucleation Rate by P-form 
  
gama=(24.23d0-0.09254d0*(T-273.15d0))*1.0d-3 !(N/m)=(pa.m) 
Vl=(1.0d0/(rowl*N)) 
W1=((16.0d0/3.0d0)*b*(gama**3)/((Pl-Pv))**2) !(n.m)(work of formation) 
W2=(W1/(Kl*T)) 
Jo=(dsqrt((2.0d0*gama)/(b*(MM/N)))*Vl*(Pv/(Kl*T))**2)*1.0d-12 
Jp=(Jo*dexp(-W2)) 
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B.6 Nucleation rate by S-form 
gama=(24.23d0-0.09254d0*(T-273.15d0))*1.0d-3 !(N/m)=(pa.m) 
W3=((16.0d0/3.0d0)*b*(Vl**2)*(gama**3)/& 
&((Kl*T*dlog(satu))**2))*1.0d-12 !(n.m) 
W4=(W3/(Kl*T)) !Work of formation 
Jo=(dsqrt((2.0d0*gama)/(b*(MM/N)))*Vl*(Pv/(Kl*T))**2)*1.0d-12 
Js=Jo*dexp(-W3/(Kl*T)) !Nucleation rate 
 

B.7 SAFT EOS and its related parameters  

 
B.7.1 Temperature-dependent segment diameter 

 
d=v*((1.0d0+0.2977*(T/S))/(1.0d0+0.33163d0*(T/S)& 
&+(0.0010477d0+0.025337d0*(m-1.0d0)/m)*(T/S)**2)) 
 

B.7.2 C parameter (simplification parameter) 

 
c=(b*N*(d**3)*m)/6.0d0 
  

B.7.3 Segment packing fraction 

 
eta=c*row 
 

B.7.4 Association strength 
 
H=row/2.0d0*d**3*((2.0d0-eta(row))/(1.0d0-eta(row))**3)*w& 
&*(dexp(L/T)-1.0d0) 
 

B.7.5 Mole fraction of molecules not bonded at site A 
  
X=(-1.0d0+dsqrt(1.0d0+4.0d0*H(row,t)*N))/(2.0d0*H(row,t)*N) 
  

B.7.6 First derivative of associating strength 
  
dH=d**3*((2.0d0*eta(row)+2.0d0-(eta(row))**2)& 
&/(2.0d0*(1-eta(row))**4))*w*(dexp(L/T)-1) 
 

B.7.7 second derivative of associating strength 
  
ddH=c*(d)**3*((5.0d0+2.0d0*eta(row)-(eta(row))**2.0d0)& 
&/(1-eta(row))**5.0d0)*w*(dexp(L/T)-1) 
  

B.7.8 First derivative of mole fraction of molecules not 

bonded at site A 

 
dX=(((4.0d0*H(row,t)*N**2/dsqrt(1.0d0+4*N*H(row,t)))& 
&-2.0d0*N*(-1.0d0+dsqrt(1.0d0+4.0d0*H(row,t)*N))))*dH(row,t)& 
&/(4.0d0*N**2*H(row,t)**2) 
 

B.7.9 second derivative of mole fraction of molecules not 

bonded at site A 
 
ddX=((-32.0d0*N**5*H(row,t)**3*(1.0d0+4.0d0*N*H(row,t))**(-1.5)& 
&-32*N**4*H(row,t)**2& 
&/dsqrt(1.0d0+4.0d0*N*H(row,t))-16.0d0*N**3*H(row,t)& 
&+16.0d0*N**3*H(row,t)*dsqrt(1.0d0+4.0d0*N*H(row,t)))*& 
&(dH(row,t)**2/(16.0d0*N**4*H(row,t)**4)))+dX(row,t)*ddH(row,t)& 
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&/dH(row,t) 
 

B.7.10 Ideal term of Helmholtz free energy 

 
A1=R*T*dlog(row) 
 

B.7.11 Hard sphere term of Helmholtz free energy 
  
A2=(R*T*m)*((4.0d0*eta(row)-3.0d0*(eta(row))**2)& 
&/(1.0d0-eta(row))**2) 
 

B.7.12 SAFT Dispersion term of Helmholtz free energy 
A3=R*T*(((S/T)*m*(-8.5959d0*g*row-4.5424d0*g**2*row**2-& 
&2.1268d0*g**3*row**3+10.285d0*g**4*row**4)+& 
&(S/T)**2*m*(-1.9075d0*g*row+9.9724d0*g**2*row**2-& 
&22.216d0*g**3*row**3+15.904d0*g**4*row**4))) 
 

B.7.13 Hard chain term of Helmholtz free energy 
 
A4=R*T*(((1.0d0-m)*dlog((1.0d0-0.5d0*eta(row))& 
&/(1.0d0-eta(row))**3))) 
 

B.7.14 Association term of Helmholtz free energy 
 
A5=R*T*((2.0d0*dlog(X(row,t))-X(row,t)+1.0d0)) 
 

B.7.15 Total term of Helmholtz free energy 
 
A=A1(row,t)+A2(row,t)+A3(row,t)+A4(row,t)+A5(row,t) 
!Total term of reduced free Helmholtz free energy 
 

B.7.16 First derivative of ideal term of Helmholtz free 

energy 

 
dA1=R*T/row 
 

B.7.17 First derivative of hard sphere term of Helmholtz free 

energy 
 
dA2=(R*T*m*c)*((4.0d0-2.0d0*eta(row))/(1.0d0-eta(row))**3) 
 

B.7.18 First derivative of SAFT Dispersion term of Helmholtz 

free energy 
 
dA3=R*T*(((S/T)*m*(-8.5959d0*g-2.0d0*4.5424d0*g**2*row& 
&-3.0d0*2.1268d0*g**3*row**2+4.0d0*10.285d0*g**4*row**3)+& 
&(S/T)**2*m*(-1.9075d0*g+2.0d0*9.9724d0*g**2*row-& 
&3*22.216d0*g**3*row**2+4*15.904d0*g**4*row**3))) 
 

B.7.19 First derivative of hard chain term of Helmholtz free 

energy 
 
dA4=R*T*(1.0d0-m)*c*((5.0d0-2.0d0*eta(row))/& 
&(2.0d0-3.0d0*eta(row)+(eta(row))**2)) 
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B.7.20 First derivative of associating term of Helmholtz free 

energy 
 
dA5=R*T*(((2.0d0/X(row,t)-1.0d0)*dX(row,t))) 
 

B.7.21 First derivative of total term of Helmholtz free 

energy 
 
dA=dA1(row,t)+dA2(row,t)+dA3(row,t)+dA4(row,t)+dA5(row,t) 
 

B.7.22 First derivative of ideal term of Helmholtz free 

energy 
 
ddA1=-R*T/row**2 
 

B.7.23 second derivative of hard sphere term of Helmholtz 

free energy 
 
ddA2=R*T*m*c**2*((10.0d0-4.0d0*eta(row))/(1.0d0-eta(row))**4) 
 

B.7.24 second derivative of SAFT dispersion term of Helmholtz 

free energy 
 
ddA3=R*T*(((S/T)*m*(-2.0d0*4.5424d0*g**2& 
&-6.0d0*2.1268d0*g**3*row+12.0d0*10.285d0*g**4*row**2)+& 
&(S/T)**2*m*(2.0d0*9.9724d0*g**2-& 
&6.0d0*22.216d0*g**3*row+12.0d0*15.904d0*g**4*row**2))) 
 

B.7.25 second derivative of hard chain term of Helmholtz free 

energy 
 
ddA4=R*T*((1.0d0-m)*c**2*((11.0d0-10.0d0*eta(row)+2.0d0*& 
&eta(row)**2)/(2.0d0-3.0d0*eta(row)+(eta(row))**2)**2)) 
 

B.7.26 second derivative of associating term of Helmholtz 

free energy 
 
ddA5=R*T*(((2.0d0/X(row,t)-1.0d0)*ddX(row,t))-& 
&(2.0d0/X(row,t)**2)*(dX(row,t))**2) 
 

B.7.27 second derivative of total term of Helmholtz free 

energy 
 
ddA=ddA1(row,t)+ddA2(row,t)+ddA3(row,t)+ddA4(row,t)+ddA5(row,t) 

 

B.8 PC-SAFT dispersion term and its parameters 

 
B.8.1 alpha parameter (simplification parameter) 

 
alpha=-2.0*b*m**2*(S/T)*v**3*N 
 

B.8.2 Beta parameter (simplification parameter) 

 
beta=-b*m**3*((S/T)**2)*v**3*N 
 

B.8.3 Temperature-dependent segment diameter 
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d=v*(1.0d0-0.12d0*dexp(-3.0d0*S/T)) 
 

B.8.4 C1 parameter 

 
c1=(1.0d0+m*(8.0d0*eta(row)-2.0d0*eta(row)**2)& 
&/(1.0d0-eta(row))**4+(1.0d0-m)*(20.0d0*eta(row)& 
&-27.0d0*eta(row)**2+12.0d0*eta(row)**3-2.0d0*eta(row)**4)/& 
&((1.0d0-eta(row))*(2.0d0-eta(row)))**2) 
  
 

 B.8.5 first derivative of C1 parameter 
  
dc1=m*c*((8.0d0+20.0d0*eta(row)-& 
&4.0d0*eta(row)**2)/(1.0d0-eta(row))**5)& 
&+(1.0d0-m)*c*((80.0d0-216.0d0*eta(row)+& 
&208.0d0*eta(row)**2-& 
&80.0d0*eta(row)**3+6.0d0*eta(row)**4+2.0d0*eta(row)**5)& 
&/(4.0d0-12.0d0*eta(row)+13.0d0*eta(row)**2& 
-6.0d0*eta(row)**3+eta(row)**4)**2) 
  

B.8.6 second derivative of C1 parameter 
  
ddc1=m*c**2*(((420.0d0+72.0d0*eta(row)-12.0d0*eta(row)**2)/& 
&(1.0d0-eta(row))**6))+(1.0d0-m)*c**2*((((4.0d0-12.0d0*& 
&eta(row)+13.0d0*eta(row)**2-6.0d0*eta(row)**3+eta(row)**4)& 
&**2*(-216.0d0+416.0d0*eta(row)-240.0d0*eta(row)**2& 
&+24.0d0*eta(row)**3+10.0d0*eta(row)**4)-2.0d0*(80.0d0-& 
&216.0d0*eta(row)+208.0d0*eta(row)**2-& 
&80.0d0*eta(row)**3+6.0d0*eta(row)**4+2.0d0& 
&*eta(row)**5)*(4.0d0-12.0d0*eta(row)& 
&+13.0d0*eta(row)**2& 
&-6.0d0*eta(row)**3+& 
&eta(row)**4)*(-12.0d0+26.0d0*eta(row)-& 
&18.0d0*eta(row)**2+4.0d0*eta(row)**3)))& 
&/(4.0d0-12.0d0*eta(row)+13.0d0*eta(row)**2& 
&-6.0d0*eta(row)**3+eta(row)**4)**4) 

 

B.8.7 I1 parameter 

 
I1=a00+a11*eta(row)+a22*eta(row)**2+a33*eta(row)**3+a44*eta(row)**4& 
&+a55*eta(row)**5+a66*eta(row)**6 
 

B.8.8 First derivative of I1 parametere 
 
dI1=c*(a11+2.0d0*a22*eta(row)+3.0d0*a33*eta(row)**2& 
&+4.0d0*a44*eta(row)**3+5.0d0*a55*eta(row)**4+6.0d0*a66*eta(row)**5) 
 

B.8.9 Second derivative of I1 parametere 
 
ddI1=c**2*(2.0d0*a22+6.0d0*a33*eta(row)+12.0d0*a44*eta(row)**2& 
&+20.0d0*a55*eta(row)**3+30.0d0*a66*eta(row)**4) 

 

B.8.10 I2 parametere 

 
I2=b00+b11*eta(row)+b22*eta(row)**2+b33*eta(row)**3+b44*eta(row)**4& 
&+b55*eta(row)**5+b66*eta(row)**6 
 

 



- 54 - 

B.8.11 First derivative of I2 parameter 

 
dI2=c*(b11+2.0d0*b22*eta(row)+3.0d0*b33*eta(row)**2& 
&+4.0d0*b44*eta(row)**3& 
&+5.0d0*b55*eta(row)**4+6.0d0*b66*eta(row)**5) 
 

B.8.12 Second derivative of I2 parameter 
 
ddI2=c**2*(2.0d0*b22+6.0d0*b33*eta(row)+12.0d0*b44*eta(row)**2& 
&+20.0d0*b55*eta(row)**3+30.0d0*b66*eta(row)**4) 
 

B.8.13 Dispersion term 
  
A3=R*T*(alpha*row*I1(row)-beta*row*I2(row)/C1(row)) 

 

B.8.14 First derivative of dispersion term 
 
dA3=R*T*(alpha*I1(row)+alpha*row*dI1(row)+beta*I2(row)/C1(row)+& 
&beta*row*dI2(row)/C1(row)-beta*row*I2(row)*dC1(row)& 
&/C1(row)**2) 
 

B.8.15 Second derivative of dispersion term 
 
ddA3=R*T*(2.0d0*alpha*dI1(row)+alpha*row*ddI1(row)& 
&+2.0d0*beta*dI2(row)/C1(row)-2.0d0*beta*I2(row)*dC1(row)& 
&/C1(row)**2-2.0d0*beta*row*dI2(row)*dC1(row)& 
&/C1(row)**2+beta*row*ddI2(row)/C1(row)& 
&+2.0d0*beta*row*I2(row)*dC1(row)**2/C1(row)**3-& 
&beta*row*I2(row)*ddC1(row)/C1(row)**2) 

  

B.9 Thermodynamic properties and its first 

derivatives 
    

B.9.1 Pressure 
  
p=row**2*dA(row,t) 

 

B.9.2 First derivative of pressure 
 
dp=row**2*ddA(row,t)+2.0d0*row*dA(row,t) 
 

B.9.3 Chemical potential 
  
mew=row*dA(row,t)+A(row,t) 
 

B.9.4 First derivative of chemical potential 

 
dmew=dA(row,t)+ddA(row,t)*row+dA(row,t) 
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   الحالة يمعدلات التحول للايثانول و الميثانول باستخدام معادلت

      (PC-SAFT)و  (SAFT)                                                              

 

 

فواز حراحشه ::إعداد  

عبداالله عبيدات. د: إشراف                                                                        

  حسن الغانم. د: مشرفاً مشاركاً

  

:الملخص  

 من أجل معرفة مدى التحسن في معدلات التحول المرتقبة من الحالة الغازية إلى الحالة

إلىًنباج  (SAFT) و (PC-SAFT (السائلة سيتم استخدام معادلتي الحالة الموسومة ب  

. (Nucleation) للنظرية التقليدية في تكوين الأنوية P-Formجنب مع صيغة جيبس العامة  

(PC-SAFT)      بينت النتائج النظرية لمعدلات التكوين المستخلصة من معادلتي الحالة

مع . وجود تطابق جيد عند مقارنتها بالنتائج العملية للميثانول و الايثانول   (SAFT)و 

وجد أن التطابق. ملاحظة تحسين معدلات التكوين على درجات الحرارة وقيم الاشباع للضغط  

.في حالة الميثانولاً بين الكميات النظرية و العملية كان جيد  

 

 

 


