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ABSTRACT

NUCLEATION RATES OF ETHANOL AND METHANOL
USING SAFT AND PC-SAFT EQUATIONS OF STATE

By
Fawaz Y. Hrahsheh
Chairman: Dr. Abdalla Obeidat

Co-Adyvisor: Dr. Hasan ElI-Ghanem

The two equations of state (EOS) called SAFT and PC-SAFT have been
used with the most general Gibbsian form (P-form) of classical nucleation
theory (CNT) are used to calculate the nucleation rate. It is found that using
SAFT EOS and PC-SAFT EOS leads to good improvement in the calculation
of nucleation rate of Methanol and Ethanol.

The SAFT and PC-SAFT EOSs improve the T-dependence and the S-
dependence of the calculation of nucleation rate for both Methanol and
Ethanol using the P-form.

Data obtained for Methanol gives better agreement when compared with

experimental results.

IX



CHAPTER

1. INTRODUCTION

The basic definition of nucleation is that being a kind of phase transition
from the vapor to the liquid phase, which means that the transition of the
system from a state to another state as a result of changes in its thermody-
namic properties. The nucleation process is isothermal phase transition similar
to the condensation [1], which is usually associated with a critical size at
which the probability of cluster formation is a maximum.

To understand the nucleation process which will be discussed in chapter
two, some thermodynamic properties must be introduced such as thermody-
namic properties related to equation of state (EOS). As an example, the ideal

gas equation of state is given by
PV = Nk,T =nRT (1.1)
Where P is the pressure, J' is the volume of the system, N is the
number of molecules, k, is the Boltzmann’s constant, # is the number of

moles, R is the universal gas constant, and 7" is the absolute temperature.
The main use of the equation of state is that, knowing any three thermody-
namic properties, enable one to find the fourth property. The efficiency of
any equation of state depends on how close it can predict values to experim-

entally measured properties at equilibrium.

_1-



Because the nucleation process is an isothermal process, any change in
the pressure will change the volume and the number of molecule of the phase.
To image this process, assume that we have a container with a volume V
occupied by a gas with a number of molecules N at a pressure P and a
temperature 7. If we increase the pressure on the system at the same
temperature, the volume will decrease and the collisions among the molecules
will increase, so, the molecules will start to condensate. This condensation
will form clusters (i.e., microscopic droplets), which represent the embryos of
the new phase (liquid phase).

As it is known, the foreign particles (impurities), often, aid the
condensation process (i.e., the impurities assist the nucleation process). The
nucleation process, which occurs without any impurities, is called
homogeneous nucleation [2] process, and that occurs with the impurities is
called heterogeneous nucleation [3] process.

Study of nucleation is widely used in cloud physics, material science, and
crystal growth.

The first thermodynamic description of the nucleation process is due to
Gibbs [4], who proved that the nucleation process depends on the work of
formation. The formation consists of two terms: a bulk (volumetric) term and
a surface term.

Practically, the nucleation rate which is defined as, the rate of formation

of critical-size embryos per unit time per unit volume is the important



parameter (quantity) in our calculation, because it gives the rate of formation
of the new phase. In 1926 Volmer and Weber [5] derived the first expression
of the nucleation rate, by assuming that the nucleation should be proportional
to the flux of molecules absorbed by the critical- size droplets. The theory of
Volmer and Weber was derived kinetically by Becker and Doring [6], known
in the literature as classical nucleation theory (CNT). The general expression
of the nucleation rate is given by

_W*
J o€ ex 1.2
oC p( T ] (1.2)

B

Where I "is the maximum work of formation of critical-size droplet.
Gibbs [4] was the first one who proved that the maximum work of formation

can be given as

W*:167z o 2 (1.3)
3 (B-P)

Which is called P -form. Where O is the surface tension of the critical
droplet, B is the internal pressure of the droplet, andPV is the actual pressure
(the pressure after compression).

Since the surface tension can’t be measured for small droplet, it is
assumed to be equal to the measured surface tension for flat interface o .

The above equation is usually written as

. lex o’
= : (1.4)
3 (A-F)




Which is known as the P -form.
If the droplet is incompressible (see equation A.3.2), equation 1.4 can be

written as

. l6r vo!

= 5 (1.5)
3 (Aw)
Which is called f£-form. Where
App= g (F) =t (P,) (1.6)

Where At is the difference in the chemical potential per molecule of the
liquid phase and vapor phase, respectively (see equation A.4.4), V, is the

specific volume (volume per molecule) of the droplet, and P, is the
equilibrium vapor-liquid pressure.

Assuming that the gas is ideal, the last equation can be written as

. léxr vio!
= - (1.7)
3 (k,TInS)

Where S is called the supersaturation ratio and defined asP /P, .

Equation 1.7 is known as the standard form of nucleation or simply S -form.
The application of the §-form is straight forward since the equation

requires a measured quantity, while using the P -form requires the knowledge

of the internal pressure of the droplet, which can’t be measured for a small

droplet. Although, one can take advantage of Gibbs formula by using an

appropriate EOS for 0=0 .



Application of the P-form requires the assumption that the chemical
potential at constant temperature is the same for the liquid-vapor phases.
According to this assumption, Gibbs [4] introduced the concept of the
reference state at which the chemical potential is the constant of phase

transformation.
#(p,)=up,) (1.8)
This reference state is characterized by P and p . as shown in the

following figure

. .P_)
Pv=pressure of metastable region § b

F'rEf =pressure at which

ﬂ.ﬁ ¥ 5

P, \/ Fet P

Figure 1.1.The pressure—density isotherm for a pure fluid
using Van der-Waals’s EOS.

Mathematically, we use the equation of state to find the vapor number

density O at the actual pressureR , point a in the figure. According to Gibbs

approach there is a point like b (p,

»P,) which has the same u as a.

This 22 when substituted in the EOS gives o, from which, P, is known.

-5.-



Obeidat et al [7] are the first to use the P -form numerically. They
calculated the nucleation rate of ethanol and methanol using cubic perturbed
hard body CPHB [8] equation of state and they proved that, the P -form
improves the results of S-form, but, the results of methanol and ethanol
deviate from the experimental results. As shown in figure 1.2, P-form
improve the results of §-form by one order of magnitude while the 7'-

dependence and S -dependence did not improved.

COT=23K o W

Figure 1.2. Experimental nucleation rates of ethanol compared to calcu-
lated rates using the S -form and the P -form of CNT with the CPHB EOS.

Since, methanol and ethanol have a wide range of applications in physics
and chemistry, scientists have investigated the nucleation rate of these
substances. But no solid explanation has been made using classical nucleation

rates, so more work is needed regarding this aspect.



Recall that methanol and ethanol are not ideal gases and the CPHB EOS
is not an accurate equation at low temperature, for these reasons, we will use a
more accurate equations of state at low temperature which are called
statistical associating fluid theory SAFT EOS [9-10] and perturbed chain-
statistical associating fluid theory PC-SAFT EOS [11].

The layout of this thesis will be as follows; chapter two deals with
general theoretical background of all thermodynamic properties mainly
equation of state and nucleation rate “J ”.

Chapter three deals with kinetics that enable us to calculate the rates.

Chapter four explains in details the derivation of the work of formation in
classical nucleation theory (CNT).

Chapter five deals with the numerical results obtained using two equation
of state (SAFT [9-10] and PC-SAFT [11]) with parameters appropriate to
methanol and ethanol.

Results of nucleation rates using SAFT and PC-SAFT will be discussed

in chapter six.



CHAPTER 11
2. THERMODYNAMICS OF NUCLEATION

2.1. THERMODYNAMIC SURVEY

If changes occur in the thermodynamic properties of a stable
thermodynamic system, the system will transfer to a new more stable phase
(minimum free energy). Where Gibbs free energy is given by

G=Nu (2.1)

The Helmholtz free energy is given by

F=G-PV =Nu—-PV (2.2)

Where G is the Gibbs free energy, N is the number of molecules,  is
the chemical potential, F’ is the Helmholtz free energy, P is the pressure,

and V' is the total volume.

Figure 2.1 illustrates the pressure-volume diagram using Van der-Waal’s

equation of state EOS [12], given by
a
(P+—)(v—b)=RT (2.3)
v

Where a and b are characteristic parameters for the given substance.



critical point

pressure

V.,E Volume —

Figure 2.1. Pressure-volume phases for a pure substance.

From the figure 2.1[8], for each isothermal line, there is an equilibrium

vapor-liquid pressure P (for example, the isothermal line at temperature?’)
has an equilibrium vapor-liquid pressure P at points @ and f . The dashed

line between @ and f is the experimental line which represents the

coexisting range of liquid and vapor at the equilibrium vapor-liquid pressure.
The heavy-line dome which passes through all the equilibrium vapor-

liquid pressure points is called the binodal line and the peak of this dome 1s

found at the critical point, which is the point at which the vapor and liquid are

indistinguishable. For each theoretical isotherm, there are a maximum

pressure of vapor (as b for 7 ) and a minimum pressure of liquid (as d for

T'). The dotted-line dome which passes through all the points of maximum

-9.



pressure of vapor and minimum pressure of liquid for several
temperatures is called the spinodal line and the two dome intersect at the
critical point “C ™.

The vapor which has a pressure higher than P and the liquid which has a

pressure lower than P will be in unstable state for some time and then each

of them will return to its own stable region or transfer to the stable region of
the other phase, from that, the region between the spinodal line and the

binodal is called metastable region ((dp/0V"), <0), where the region between
a and b for T is the metastable region for the vapor phase and the region

between f and d is the metastable region for liquid phase .
The region inside the spinodal dome is called unphysical region or
unstable region, because the volume of the fluid increases with increasing the

pressure ((gp/oV), >0), this unstable region is for both vapor and liquid

phases.
The vapor is said to be undersaturated, saturated or supersaturated if the
actual pressure is less, equal or higher than the equilibrium vapor-liquid

pressure respectively.

2.2. THERMODYNAMIC DESCRIPTION OF NUCLEATION

Since the free energy of the surface of the droplet is larger than that of the
bulk of the droplet, the droplet starts to shrink. On the other hand if the
molecule in the bulk of the droplet have enough excess free energy to transfer

-10 -



from the bulk to the surface, the droplet starts to grow. This excess free
energy can be obtained from an external work. The work which is needed to
increase the surface of the droplet by unit area is known as the surface
tension. Consequently, the surface of the droplet opposes the growth of the
droplet.

Because the external work has a role in the formation of the droplet, we
must use the Helmholtz free energy (see equation 1.2) to derive the
expression of the total work needed to form the droplet.

Gibbs [4] is the first to show that the work of formation (i.e., free energy
barrier) of the droplet equals the difference between the Helmholtz free
energies before and after the formation, and he showed that, the work of
formation consists of two terms: The bulk (volumetric) term and the surface
term, where, the Gibbs’s formula of the work of formation is given as (see
appendix A),

W=AF=-V(P-P)+ Ao (2.4)

Where W is the work of formation, F is the Helmholtz free energy, V'

is the volume of the droplet, P and P are the internal pressure of the droplet

and the actual pressure, respectively, A4 is the surface area of the droplet, and
o 1s the surface tension.
Figure 2.2 [8] illustrates the reversible work (free energy barrier) of

formation of the droplet with its number of molecules.

-11 -



Surface Term

AF™ =¥ (n")

Free Energy Barrier

Valumetric term

Figure 2.2. Work of formation of a droplet.

As we see in figure 2.2, the maximum reversible work of formation is
found at point " and the growth of the droplet after 7#2” will be spontaneous.

From that, the size of the droplet at 72° is called the critical-size droplet,

because droplets with this size have the probability to transfer to the new

phase (liquid) and the other droplets with sizes less than #  will shrink
(decay) to the old phase (gas), and the maximum reversible work which is
needed to form this critical size droplet is the minimum work needed for
phase transition.

The formation of the critical-size droplets (embryos) which have the
probability of growth spontaneously is called the nucleation process, and the

number of critical-size droplets generated per unit volume per unit time is

called the nucleation rate “J ”.

-12 -



CHAPTER III

3. KINETICS OF NUCLEATION RATE

3.1. BECKER AND D6RING THEORY

In 1935 Becker and Doring[6] introduced kinetic equations which can be
used to describe the nucleation process of superheated vapor in metastable
region. In this case we are dealing with two-component system (liquid and
gas).

The kinetic equation can be applied to the two-component system where
the concentration of the gas is much more than that of the liquid. The
distribution of the molecules of the old phase component is described by
assuming that they condensate locally in clusters or droplets of several sizes.
We use a variable 1 for the sizes of the droplets to define the number of
particles (molecules or atom) in the droplet. A cluster containing 72 molecules
is called 71 -cluster.

Let the concentration of the 71-cluster be represented by the notation

f(n). Clusters are assumed to be distributed uniformly and randomly, so
f(n) do not depend on the space variables.
To obtain equations of the time description of f(n), Becker and Doring

[6] assumed that the clusters change size by absorbing single molecule (1-

-13 -



size) or by emitting single molecule (reversible process). As shown in

figure 3.1.

O+ O=@
@+ @O=®
ORJOZ20
®+ OO
O+ @sE

Figure 3.1. The formation of 71 -size droplet by single molecule
absorption into (71 — 1)-size droplet or single molecule emission
from (7 + 1)-size droplet.

From the above assumption, droplets can only grow or shrink by single

events. Then J(n) is the difference between the rate of formation of 71 -size

droplets by single-molecule absorption into (7 — 1)-molecule droplet and the
rate of destruction of 71-size droplets by single-molecule emission, can be

written as
J(m) = f(n=DA(n-1)p(n-1)—f(m)An)c(n) (3.1
Where J(n) has dimension of (1/(volume.second)), f(n) and f(n—1)
are the concentration of 71-cluster and (7 —1)-cluster, 4(n) and A(n—1)
are their respective surface areas, (1 —1) is the flux per unit time per unit

area of single molecules onto (7 — 1)-droplet(i.e., molecules arriving to the

- 14 -



droplet-vapor interface from the vapor) and a(n) is the flux of single
molecule leaving the 71 —size droplet.

From kinetic theory ,B can be calculated (see appendix A, equation
A.1.5), but a is not known in general, because its calculation depends on
kinetics of molecules in the liquid phase and the interaction between the
molecules of the liquid phase. To overcome this difficulty, equilibrium
concentration is used. Where the equilibrium concentration can be obtained
when the rate of formation of 71 -size droplets by single-molecules absorbed
to (n —1)-droplets equals the rate of destruction of it by single-molecules
emitted from 72 -droplets (i.e., Af (n) =0).

Assume that the equilibrium distribution of droplets in the bulk
metastable phase can be established as long as the characteristic time for this
establishment is short with respect to the lifetime of the metastable phase
[13]. Because of microscopic reversibility, we can write,

D(n—1)A(n—-1)pB(n—-1)=D(n)A(n)a(n) (3.2)

Where D(n —1) and D(n) are the equilibrium concentrations of
(n —1)-droplets and 7 -droplet, respectively. By assuming that o and ﬂ do
not depend on the number of molecules in the droplet (i.e., S(n—1)=/ and

a(n)=ar), we can solve equation 3.2 forx,

D -1)A(n-1)
= Do Am G-

- 15 -



Substitute equation 3.3 into 3.1, we obtain,

J(n) = BA(n —1)D(n — 1){ 1]; EZ - B - 1]; EZ;} (3.4)

The first part in the right hand side of equation (3.4) represents the rate of
formation of 71-size droplet by single-molecule condensation onto (72 —1)-
size droplet and the second part represents the rate of destruction of it by
single-molecule evaporation. But there is another method to form 71 -size
droplet by evaporating single-molecule from (7 + 1)-droplet and destruction
of it can be obtained by single-molecule absorption (i.e.,.J (n + 1)), see figure
3.1. Then the total time-variation of concentration of 72-size droplet is the

difference between the two methods, so

%zJ(n)—J(n+l) (3.5)

At equilibrium distribution (i.e., f(n)=D(n)), the time-invariant
population of droplets is established at J(n)=J(n+1), therefore J is

independent of 72. The above result means that a steady-state is established.

Rewrite equation 3.4 with the sum taken from 7=2 to #=¢ to obtain

equation 3.6.

(3.6)

n=l1

: s sean] s fg
A A(”)D(”)]_Z{mm D(n+1>} D) D(g+1)

Where ¢ i1s very large (undefined), f'(1) is the concentration of single-

molecule (monomers), and D(1) is the concentration of monomers at

-16 -



equilibrium. From the definition of nucleation, we can conclude that, if the
(g +1)-size droplet is larger than the critical size, then none equilibrium
(g +1)-size droplet will grow until phase transition occurs and if it is less
than the critical size, it will shrink to a monomer.

From that, the value of f(n+1) vanishes and (1) nearly equals D(1).

So we can rewrite equation 3.6 as

J= ! 3.7)

> [1/ pA(n)D(n)]

Where equation 3.7 is the main equation used to derive the relation of

nucleation rate. To derive the rate of nucleation, we must obtain the
appropriate relation of the concentration at equilibrium D(7) and replace the

summation by an integral with suitable limits.
3.2. CONCENTRATION OF DROPLETS AT EQUILIBRIUM

Because the concentration of the clusters (dimers, trimers .etc) is much
lower than the concentration of monomers (except when there are attractive
forces between molecules). Clusters rarely collide, therefore no clusters form
from union of two or more clusters. Assume that the system consists from
equilibrium clusters is an ideal mixture (i.e., cluster considered as new
species). These species are distributed following Maxwell-Boltzmann

distribution [14], therefore

-W
D(n)= ¢ex{ﬁ) (3.8)

B
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Where, @ is the normalization factor and W is the work of formation.
The work of formation for 1-cluster (72=1) equals zero, so the normalization
factor @ equals D(1). Then equation 3.8 can be written as

D(n)=D() exp(%) (3.9)

B

Because the concentration of the monomers D(1) is much more than the
other concentrations, the value of D(1) nearly equals to the total number
density of the bulk metastable phase before the condensation, therefore

D1)=N_/V=D,k (3.10)
Where, N is the total number of monomers and V' is the total volume

of the system. Assume that there is a mutual equilibrium between the clusters
of all possible sizes. Then, the reversible reaction is very suitable because the
thermodynamic condition for equilibrium is fulfilled. This condition is written

as,
U =Ny =np, (3.11)
Where (¢ is the chemical potential of n-size clusters and 4 is the

chemical potential of the vapor £/ (monomers or single-molecules). Suppose
that the chemical potential of the cluster as a one species (i.e., single body)

1s ﬂn and using the following thermodynamic relation,

Ap,=p (P)—u(P,)=kT ln(gJ (3.12)

ve

- 18 -



The value of 4 can be written as (see appendix A, equation A.2.7)

w=71 +kBT1n(D (”)j

fot

(3.13)

The entropy of the canonical ensemble [14] equals — &, In Q , where 0

is the partition function of the ensemble. Given as:

-W
0, = Z exp(kB—T] (3.14)

Using equations (3.9 and 3.10) the partition function can be written as

2.D(n)
0 = Ty (3.15)

tot

Then the entropy equals to

§'=-TIn(XD(n,)/D,,) (3.16)

This result illustrates that the logarithmic term in equation 3.13 allows for
the entropy of the mixing in the absence of cluster-cluster interaction.
The solution of equation 3.13 yields:
nu —A
D(n)=D,, exp ol (3.17)
k,T

This implies that:

W=A—-nu (3.18)
But the value of W (see appendix A, equation A.3.4) equals,
W =cA+nAu (3.19)

-19 -



Where A is the surface area of the droplet. Then equations (3.18 and

3.19) lead to,

A =cA+nu, (3.20)

Thus the chemical potential of the droplet containing n molecules
considered as a distinct molecular species differs from the chemical potential
of n molecules in liquid phase by the surface term of the work of formation.
3.3. HOMOGENUOUS NUCLEATION RATE

The homogeneous nucleation rate is obtained by substituting the
equilibrium distribution equation 3.9 into equation 3.7, it is customary to
replace the summation by an integral, to obtain,

J ﬂD n)]‘n* _W 1 d -
= eX n 3.21
“ P k,T ) A(n) (3-21)

Where 71 represents the critical-size droplet appropriate to the maximum

work of formation. Since the exponential has a peak atz , therefore the work

of embryo formation can be expanded about the unstable equilibrium point
n', the expansion of W is
Wn)=Wn )+W (n Y n—n)+W'(n Yn-n)"/2 (3.22)
Because W (n") is an extreme value, the first derivative vanishes, then
W(n)=W(n)+W' (n)(ny /2 (3.23)
Change the variable of integral in equation 3.21 by On(i.e.,n—n"), if
n<<n', the lower limit of integral of equation 3.21 is —00 and if n>>n’,
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the upper limit of integral is 0. Then, the integral is written as

J = ,BDth(n*)exp(— Vz(’;j)ﬁepoWﬁ (n*)j(&)z}d (on)  (3.24)

. 2k, T
Knowingthat
Texp(—axz )dx = \/E (3.25)
~ o
Then,
o =W (n) —W(n)

J = PA —='D —_— 3.26

PA(n ) . kBT( mexp( KT (3.26)

For a spherical model. The work of formation of the droplet is given by

W=4m’o+nAu (3.27)

Where the radius of the sphere 7 can be calculated using the following

relation,
4
V=3 Y =nv (3.28)

Use the above relation of the work and the value of ,B from appendix A

(equation A.1.5), the result of J is

2PD,, oV -W(n)
J = ’ exp| ——= (3.29)
\27n m'k, T\ k,T k, T
From the ideality of the mixture, we get
Dtot :pv zl/vv 2 I)v :DtothT:pkaT (3‘30)
By using the results in equation 3.30, we obtain
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J=p/pAN2c/x mexp[-W(n)/ k,T]

Or

J=J exp W
k,T

Where, W™ equals W (n") and, Jis given as

J =p /lpN2o/mm =~20/7xm v(P/kT)

The final form of the rate is given by

J=~N20/7m" v(P/kT) exp(%}
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CHAPTER IV

4. VERSIONS OF CLASSICAL NUCLEATION RATE

4.1. THEORY
There are three versions of classical nucleation rate based on the form of
the work of formation [8], thus there are three forms of formation work.

These versions are the chemical potential form x4 -form (equation 1.3), the

saturation ratio form S -form (equation 1.4) and the pressure form P -form
(equation 1.5). In this thesis comparison will be made between the results
obtained by using the S -form and P -form with the experimental results. To
perform these comparisons, one should use an equation of state to calculate
the difference between the pressure of the vapor and the internal pressure of
the droplet. This equation of state (EOS) must give acceptable results of
binodal at low temperature at which the nucleation process occurs.
4.2. WORK OF FORMATION

The nucleation process occurs because the system tends to have a
minimum free energy. Consequently, the work of formation equals the
difference between the Helmholtz free energy before and after the formation.

To calculate this difference, consider a container of volume V' having N

molecules of a vapor at a chemical potential £ and a pressure P . The

Helmholtz free energy before formation [8], is
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F, =Nu,-PV (4.1)
The Helmholtz free energy after formation of a droplet of 7 molecules

after ignoring the very small changes in ¢, and P , [8], is written as:
E =(N-ny, +my,~(V=V))P VP + Ao @2)
Where, £, is the chemical potential of the molecules inside the droplet,

P is the internal pressure, V, is the droplet volume, A is the surface area of

the droplet and, O is the surface tension.

The surface term is added because the bulk (volumetric part of the
droplet) and the surface of the droplet are considered to be different phases, so
the molecules must have excess energy to move from the bulk to the surface.
The difference in the free energy between the old system and the new system
is

AF=F, ~F, =n(u()~ 4 (P))~(B PV, + Ao @3)

The chemical potential part will vanish at equilibrium where droplet is at
the critical-size, because the droplet has the same chemical potential of the
supersaturated vapor according to the equilibrium assumption. From the
above result, the maximum difference of free energy which equals to the

maximum work of formation for spherical droplet model is given by [13]:
max max 472’- *3 *2
AF :W :—(PI—PV)?I" +47Z7" O (44)
Where 7 is the radius of critical-size droplet.
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Equation 4.3 represents the maximum energy barrier which must be
overcome to form the droplet in a spatial region .Using appendix A (equation
A.3.2), equation 4.4 can be approximated as

Y AL e (4.5)

v,

AF =—

Where Al is the difference in chemical potential between the initial

metastable phase and the final stable phase and V, is the molecular volume of

stable (liquid) phase. Figure 4.1 shows the free energy barrier as a function of

the droplet radius.

Surface Term

Free Energy Barrier

an,
re r
Yolumetric term

Figure 4.1. Free energy barrier as a function of droplet radius.

Use the Laplace’s relation [15], which introduces the pressure across a
curved interface (see appendix A, equation A.5.2), specifically, P-P=207/r.

Because the droplet has a spherical surface (curved interface), the Laplace

relation [15] 1s suitable. The work of formation is written as

_lor o
3 (B-Py

ax

(4.6)
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From Laplace relation [15], we note that the surface tension O depends
on the radius of the droplet7 . If we assume that the surface tension of the

curved surface of droplet is nearly equal to experimental surface tension of a

flat interface (i.e., ¥ = 00 and,0 = O ). Then equation 4.6 becomes

I o
3 (P-P)

ax

(4.7)
If the droplet is incompressible then V, is invariant with pressure, so

Aﬂ=£%dp=%0z—pﬂ (4.8)

Substitute 4.8 in 4.7, we obtain the f{/-form

Wmax — W* — 16—72’- o-ojt’:‘}IZ2
3 (Aw)

(4.9)

If the gas is ideal, it is easy to derive the following relation (see appendix

A, equation A.4.7).
Au=k,TInS—v (p,—p )=k, TInS (4.10)
Substituting equation 4.10 in 4.9 gives the S -form

s _yr 167 OV, : 4.11)
3 (kTInS)

Equations 4.7, 4.9, and 4.11 form the backbone of our numerical
calculations for the rate equation appropriate to experimental available data to

methanol and ethanol.
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CHAPTER V

5. RESULTS OF EQUATIONS OF STATE

5.1. SAFT EOS

Chapman et al [9-10] proposed an equation of state of associating fluids
based on statistical associating fluid theory known as (SAFT).

For polar fluids, SAFT based on Lennard-Jones (LJ) potential [14] which
treats the molecules as spherical segments of equal-size and equal —
interaction strength. Then the Helmholtz molar free energy of the system can
be written as

F'=F“+F"™ (5.1
F" is the ideal Helmholtz molar free energy per mole, and F' is the
residual Helmholtz molar free energy per mole at the same temperature and

density. The residual term is a sum of three terms due to contributions of
different intermolecular forces. The first of which, F“, represents the

. . chail .
segment-segment interaction. The second term, ", is due to the presence

of covalent chain-forming bonds among the LJ segments. The third term,

F“ | is due to site-site specific interaction. The general expression of the

total Helmholtz molar free energy per mole can be written as

F’:Fid +Fseg+Fchain +Fassoc (52)
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5.1.1. SEGMENT TERM

The segment Helmholtz molar free energy per mole was calculated [9] as
F*=m(F" +F") (5.3)
Where m is the number of segments per molecule, F; " is the hard sphere

di . . .
term, and /" is the dispersion term.

The hard sphere term for one species is given as

o

RT (1-n)

Fhs _ 2
_4n-3n (5.4)

Where R is the universal gas constant and 77 is a segment packing

fraction defined as

N,

1402977 5T
, - (5.6)
d=oc 5
1403316351 4 (0.0010477 +0.025337 m_lj(kBT j
& m E

Where p is the molar density, d is the effective hard sphere
diameter,o”’ is the temperature-independent sphere diameter, N, is the

Avogadro’s number, and & is the intermolecular energy (LJ) energy.

The dispersion term is given as

o eR( ., F™
For = 58| oy Do (5.7)
k T

R

F™ = p (-8.5959—4.5424p —2.1268p’ +10.285p)) (5.8)
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F" = p (-1.9075+9.9724p, —22.216p; +15.904p,) (5.9)
Where p =[6/~/27]n is the reduced density and T, =k,T/R is the

reduced temperature.
5.1.2. CHAIN TERM

The chain term [9-10] is given as

dl =(1-m)ln (2=n) (5.10)
RT 2(1-n)’
5.1.3. ASSOCIATION TERM

The association term [9-10] for a polar fluid is given as

Fassac AA 1
= InX*—— |+— 5.11
RT ;( 2) M G-

Where M is the total number of sites on each molecule, X * is the mole

fraction of molecules not bonded at site 4, and ) represents a sum over all
A

associating sites on the molecules.

The mole fraction of molecules not bonded at site 4 can be calculated as

X' =[1+N,¥ pX*A"]" (5.12)

Where the sum runs over all sites and A" is the associating strength,

given as

A” =d’ 270 K" exp £ (5.13)
2(1-n)’ k,T

Where, K * is the associating volume and & is the associating energy.
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To find the mole fraction of methanol and ethanol molecules not bonded
at a given site, we follow Radosz et al [10] approach using 2B-type .

This approach gives the following mole fraction as
X'=[1+N,p(X°A” + X'A")]" (5.14)
Where A™ equals zero and A" is given by 5.12, then
X'=[1+N,pX"A"]" (5.15)
Using the same approach, X is given by

X’ =[+N,pX'AT" (5.16)
Substituting 5.16 in 5.15 gives

_—1+(1+4pN, A)"

X (5.17)
2pN A
Equation 5.11 gives for the association free energy the following
F assoc P p
——=2InX"-X"+1 (5.18)
RT

The parameters that have been used for ethanol and methanol are given in

table 5.1.

Table 5.1. Parameters of SAFT EOS

compound c m 4B 4B source
elk, "k, | k

methanol 3.203 163.25 1.6 2964 0.053 [1]

ethanol 3.416 199.9 1.8 2614.7 0.0373 fitting

These parameters were used to test the accuracy between experimental

equilibrium values with theoretically computed numerically.
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The pressure and chemical potential can be derived from the reduced

Helmbholtz free energy as:
P(p)=p{aF'(’”j (5.19)
op ),
oF'’ ,
y(p)=p( R )] +F'(p) (5.20)
p T

To calculate the equilibrium vapor-liquid pressure, two conditions must

be applied for each isothermal line inP —V or P — p diagram (figure 1.1

and 2.1):
P(p,)=P(p,) (5.21)
u(p,) = u(p,) (5.22)

Figures 5.1was obtained by applying the above conditions (equation
5.21and, 5.22) using SAFT EOS, which indicates excellent agreement
between theory and experiment especially at low temperatures as shown in
the insito of figure 5.1.

Small deviation from experimental values [16] was observed on binodal
at high temperature (T >400), this motivated us to say that SAFT EOS is an
excellent EOS to explain the experimental results at low temperature where

nucleation usually occurs.
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Binodal points of methanol from
SAFT & EXP valuse
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Temperatur #)

200

160 - . : : . .
0.00 0.01 0.02 0.03
density (molfcc)
Figure 5.1. Binodal points of methanol Using SAFT EOS.
Figure 5.2 was obtained for ethanol by applying the same conditions as

methanol using SAFT EOS, which indicates excellent agreement between

theory and experiment [16] at all temperatures.

550 Binodal Points of Ethanol Using

SAFT EOS

500 -

450 -
X 400 — SAFT
o g o EXP
2 3%0
®
L. -
)
Q 200
E
o
= 250

200 -

180 4y . : . | | | ' |

0.000 0.005 0.010 0.015 0.020

Density (mol/CC)

Figure 5.2. Binodal points of ethanol Using SAFT EOS.
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5.2. PC-SAFT EOS
SAFT EOS was modified by Gross and Sadowski [11], they added a
small perturbing term due to dispersion in the chain formation.

The added dispersion term can be written as

F* F F
=L 4 (5.23)
RT RT RT
Where
F £
—— =20l m’| — |o”’ 5.24
e 520
And
F = —7 ]—2m3 a 203 (5.25)
Rt P C \k,T '
Where
C =14 m =2 20— 270+ 120 21 (5.26)
(1-7) [A=m) 2 —n)]
I = Zé:ai(m)n" (5.27)
1, =%b(m)n’ (5.28)
Where
-1 —1m-2
a(m)=a, + 7 a, + n-n a, (5.29)
m m m
-1 —1m-2
b(my=b, +—b + 2072y (5.30)
m m m
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Parameters appear in equations (5.27-5.30) are given in table 5.2.

Table 5.2. Universal constants [11], @,.,a, ,d, and bonbuabz,-

! a, a, a,; bOi bli b2i

0 | 0.79198281 -0.62311554 | -0. 06777556 0.79198281 -0. 62311554 -0. 06777556
1 | 1. 07148651 0.48573437 0. 02837411 2.14297303 0. 97146874 0. 05674823

2 | 0.91474661 1.12485267 0. 09612281 2.74423982 3. 37455809 0. 28836841

3 | -7.81060651 | -.09485016 0. 06815027 -31. 2424260 -8. 37940062 0.27260110

4 | 25.7855977 9.45049823 0. 05980187 128. 927988 47. 2524911 0.29900933

5 | -6.9822877 -7.1027262 0. 28660979 -341. 893726 -102. 616357 1. 71965874

6 | 41.9308941 7.77610281 -0.74701698 293.516259 54. 4327197 -5.22911885

Parameters shown in table 5.3 were used in the numerical calculations of

thermodynamic properties of methanol and ethanol using PC-SAFT EOS.

Table 5.3. parameters of PC-SAFT EOS.

compound c M 4B AB source
elk, ek, | k
methanol 3.230 188.90 1.5255 2899.5 0.035176 fitting
ethanol 3.0438 198.24 2.7 27534 0.0323 fitting
Figures 5.3 illustrate the binodal points of methanol obtained,

numerically, using conditions stated in equations 5.21 and 5.22 using PC-
SAFT EOS [11]. It is observed that the binodal equilibrium points are not
sensitive to the modified SAFT EOS.

As in SAFT EOS, the conditions (equations 5.21 and 5.22) were applied

for methanol using PC-SAFT EOS to obtain figure 5.3, which indicates
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excellent agreement between theory and experiment [16] especially at low
temperatures as shown in the insito of figure 5.3. Small deviation was

observed at high temperatures (T >410 K).

Binodal points af methanal from

550 PC-SAFT & EXP

500 2

450
= 400 —— PC-SAFT
£ o Exp
= 350
g
= 300
o

250 4

200

150 - - T d T T 1

0.00 0.01 0.02 0.03

Density (molicc)

Figure 5.3. Binodal points of methanol Using PC-SAFT EOS.
Figure 5.4 indicates that, there is an excellent agreement between
experiment [16] and theory at all temperatures. Consequently, PC-SAFT EOS

is an excellent EOS to explain the experimental results at law temperatures.

550 Binodal points of ethanol using
PC-SAFT EOS
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~ 400
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3
W™ 350
[
a
£ 300
[
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250 -

200 -

T T N T ' T ' 1
0.000 0.005 0.010 0.015 0.020

Density (mol/cc)

Figure 5.4. Binodal points of ethanol Using PC-SAFT EOS.
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CHAPTER VI

6. RESULTS OF HOMOGENEOUS NUCLEATION RATE

6.1. RESULTS OF METHANOL

The excellent fit obtained from SAFT [9-10] or PC-SAFT [11] EOSs for
the equilibrium binodal motivated us to extend the calculation to include the
dependence of the nucleation rate on supersaturation ratio and temperature.
Although the binodal equilibrium points were insensitive to the perturbation
due to chain, the nucleation rate was found to be sensitive to the form of EOS.

Figure 6.1 depicts the results for methanol using SAFT EOS. 1It is clear
that SAFT EOS improves the S-dependence while the T-dependence was

improved at high Temperature.

Nucleation Rate Of Methanol Using
SAFT EOS

1E10 4
T=272K T=257 k o

1E8 4

1E8

)

1E7 o

1000000 o

J(1/s.cm

100000 4

10000

1000 o
24 28 28 30 32 34 36 38

Saturation ratio

Figure 6.1. Nucleation rates of methanol using SAFT EOS.
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As in figure 6.1, figure 6.2 depicts the results for methanol using PC-

SAFT EOS. 1t is clear that PC-SAFT EOS improves the S-dependence while

the T-dependence was improved at high Temperature.

%)

J(1/s.cm

1E10 4

1E9 <

1E8 4

1E7 4

1000000

100000 4

10000

1000

Nucleation Rate Of Methanol Using
PC-SAFT EOS

T=272 K T=257 K o

Saturation ratio

Figure 6.2. Nucleation rates of methanol using PC-SAFT EOS

These results were expected because the standard form requires the gas to

be an ideal, where methanol and ethanol are not ideal gases.

Note that, the fitted values of nucleation rate used in SAFT EOS was

improved by one order of magnitude when compared to PC-SAFT EOS.

6.2. RESULTS OF ETHANOL

Because the SAFT and PC-SAFT EOSs are suitable for ethanol as

discussed in chapter five, we used these EOSs to calculate the nucleation rate

of ethanol applying P -form and .S -form methods.

Figure 6.3 depicts the results for ethanol using SAFT EOS. It is clear that,

the improvement of SAFT EOS on the S-dependence is small while the T-

dependence was improved at high Temperature.
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Nucleation RATE Of Ethanol
1E711 SAFT EOS
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1000 , ' ; : .
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Saturation Ratio
Figure 6.3. Nucleation rates of ethanol using SAFT EOS.
Figure 6.4 depicts the results for ethanol using PC-SAFT EOS. We note
that, there is a very small differ between SAFT EOS (figure 6.3) and PC-
SAFT EOS. The clear improvement is on T-dependence, whereas the

improvement on S-dependence is small.

1E12 Nucleation Rate Of Ethanol using
PC-SAFT EOS
1E11
3 T=293k
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Figure 6.4. Nucleation rates of ethanol using PC-SAFT EOS.
All the experimental values of nucleation rate for ethanol and methanol
are taken from [17].
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6.3. DISCUSSIONS AND CONCLUSIONS

Since the gases of methanol and ethanol are not ideal, it is expected that
the P-form of CNT will give better calculated results of nucleation than the S-
form, where in the last form the gas is assumed to be an ideal.

From the results of EOSs in chapter five, we note that SAFT and PC-
SAFT EOSs improve the theoretical binodals for methanol and ethanol at low
temperature where the deviation from the experimental values approach zero.

Our results of nucleation rates show that SAFT EOS gives better values
for the nucleation rates by one order of magnitude when compare with PC-

SAFT EOS for methanol, that was clear in fitting value of nucleation rates for

SAFT EOS was 10" and PC-SAFT EOS was 10°.
6.4. RECOMMENDATIONS
These exact EOSs are not used yet to calculate the nucleation rate for
many gases of industrial importance applications as water and, water-ethanol.
In our theoretical calculations of nucleation rates using the classical
versions, we assumed that the surface tension is that of the flat interface, but
we noted in our numerical calculations that the calculated results are very
sensitive to the surface tension.

Then further work 1s needed.
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APPENDICES

APPENDIX A
IMPORTANT RELATIONS
A.1. ABSORPTION FLUX
To calculate the absorption flux per unit time per unit volume /3,

kinetically. Suppose a single molecule with a distance d from a spherical

droplet and its average velocity C, see figure A.1.

=

Figure A.1. Schematic depiction of the absorption of a single
molecule by a droplet in metastable phase.

From the definition of £ (i.e., the flux of a single molecule per unit area

per unit time [6]), we can represent it by the following relation,

1
- A.l.1
s yy ( )
Or
d c
- - A.l1.2
P Atd  Ad ( )

Where A is the surface area of the droplet and  is the time for reaching
the molecule to the droplet.
From thermal De broglie assumption [6] which represents the motion of
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molecules of fluids as a wave motion, we can rewrite the value of C as
follow.
c=Av (A.1.3)
Where A is thermal De brogli wave length [6] and V is the frequency
(i.e., number of collisions per unit time), then

hv

Ad\2mom'k T

Where / is planck’s constant and 7' is the molecular mass.

B = (A.1.4)

But /v equals the work which is needed to move the molecule by a
distance d (hv=P Ad), substitute the relation of work in A.1.4, the

absorption flux of a single molecule [10] can be written as

P = - (A.1.5)

A.2. CHEMICAL POTENTIAL OF DROPLET IN IDEAL MIXTURE
To derive the chemical potential of a droplet in ideal mixture, we can start
from the following thermodynamic relation [8].

P
#p)=u(p)=kTinS=kTln—= (A2.1)

ve

Where S is the supersaturation ratio. Before the condensation, the droplet
of 7-size was a number of vapor molecules which equals 7 (see figure

A.2.a), so its chemical potential equals the summation of the chemical
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potentials for 77 vapor molecule basis on the reversible interaction principle.

then its chemical potential equals

u(p,)=nu(p,)=H, (A22)

After the condensation occur the droplet is considered as a single species

of the ideal mixture (see figure A.2.b), then represent its chemical potential by

(4).

w(p)=4, (A.2.3)
(a) o O o (b)
o © O;O'cobo’: 0|Cp O 8 Oo@o
! ! o)
o © oE OOOOOEO o
o) Yoo o} o A~©O
o) o) O~ 0 0O
00, O o 4 o
O o 01|09 O O
o) o) O O
OO0~ O o olo 0 o ©
(P:Pve) O O O O (P:Pv) O

Figure A.2. Schematic depiction of the droplet (a) before
the formation (b) after the formation.

Use the following equation of state which represents the ideal mixture.

N
p=> V" ksT =Y D(n)k,T (A.2.4)

Where IV . is the number of 71 -size species, V' is the total volume of the

system, k, is the Boltzmann’s constant, and D(7n) is the concentration of the

n -size species (i.e., number density of each 71 -size species).
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At equilibrium pressure the condensation does not occur, which means
that all the species are monomers (i.e., single-molecule), so the equilibrium
pressure can be given as

P =Dk, T =D k,T (A.2.5)

Substitute the equations A.2.2, A.2.3, A.2.4 and A.2.5 in A.2.1, we get

D

A =u +k,Tlnh—= (A.2.6)
D(n)

Or
D(n)

u =A +k,T'ln (A.2.7)

tot

A.3. THE WORK OF FORMATION
Start from equation 4.3, the difference in the Helmholtz free energy can

be given as
AF=F —F, =n (4(P)~u(P))-(R-P),+ Ao (4.3)
Where AF equals the work of formation, use the following

thermodynamic identity

ou
tind i - A3.1
(ap j g (43D

Where v is the specific volume of liquid. If the droplet is incompressible

the value of v does not depend on the pressure, so
Py 8M
1[ @ dp=u(p)—1(p,)=Mu=v,(p,—p,) (A3.2)
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But v equals V, / n, then

n(u,(p)— 1 (p)=V.(p,—p,) (A.3.3)

Equations A.3.3 and 4.3 lead to
W=n(u,(P)—-u,(P))+Ac=nAu+Ac (A.3.4)

A4. THE RELATION BETWEEN THE SUPERSATURATION
RATIO AND THE CHEMICAL POTENTIAL DIFFERENCE

Use the following thermodynamic identity at constant temperature for an

ideal gas
dyp=—sdT +v dP=vdp (A4.1)
Where
v =k,T/P (A.4.2)

Substitute the above result in A.4.1, and solve the integral between P_and

P, then
H1(p,)—u(p,)=kT 1{ b ] =k,TIn§ (A.4.3)
But
A:u = H, (Pl) —H, (R) (A4.4)

Then use the relation A.3.1 to get

w(p)=up)+v(p,-p,.) (A.4.5)

The equations A.4.4 and A.4.5 lead to,

Au=p(p)-u(p,)+v.(p,—p.) (A.4.6)
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At unstable equilibrium (critical size) #,(p,) =, (p,) (ie., gibbs
reference assumption) and at equilibrium of the bulk two-phases
w,(p.)=u (p,) and the pressure difference (P — P, ) is negligible, then

the difference in the chemical potential can be given as

Au=p(p) - (p,)=kTnS (A4.7)
A.5. THE LAPLACE EQUATION

Starting from equation 3.4, the first derivative of AF ™ with respect to

the radius of the droplet equals zero, where
4r . .
AF™ :—(p,—pv)?r3+47zr o (3.4)

Then, derive the equation 3.4 to give,

%AF“‘“ =—(p,—p)4m” +8wc=0 (A-5.1)
r

Solve the above equation to get the Laplace equation

20

(p,—p,)= — (A.5.2)
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APPEDIX B
NUMERICAL PROGRAMS OF SAFT AND PC-SAFT

B.1 List of symbols

R Universal constant of gases (Mpa.cc/k.mol)
N Avogadros's number

S LJ interaction energy (kelvin)

m Segment numer or chain length

L Association energy (kelvin)

w Association volume (dimensionless)

v Temp-independent segment diameter (cm)

K1 Boltzmann's constant (pa.m**3/K)

MM Molar mass (kg/mol)

b pi=JI

d Temperature-dependence segment diameter
row Molar density

eta Segment packing fraction

g 6*eta/ [V2*b*row]

c eta/row

T Temperature

Guess Guessing value for Gibbs reference density
Guessl Guessing value for liquid density

Guess?2 Guessing value for vapor density

Guess3 Guessing value for supersaturated vapor density
rowg supersaturated vapor density

Pg, Pv Actual pressure

rowl Density of Gibbs reference state

mewg Chemical potential of supersaturated vapor
Jo Pre-exponential of nucleation rate

Jp Nucleation rate by P-form

Js Nucleation rate by S-form

Pl Pressure of Gibbs reference state

gama surface tension

wl Work of formation for P-form

W2 Reduced work of formation for P-form

W3 work of formation for S-form

dp First derivative of pressure by row

dmew First derivative for mew by row

K square matrix includes dp and dmew

i Number of iteration

error Error equals 107*°

K1l Boltzmann's constant

satu Saturation ratio

row (l),equl Equilibrium ligquid density
row (2) ,equg Equilibrium vapor density

B.2 Densities of equilibrium vapor-liquid pressure
do

row (1l)=guessl

row (2)=guess2

k(1,1)=dp (row(1l),t)
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=-dp (row(2),t
=dmew (row (

) )
) 1
) =—dmew (row (
D _

t

' 2 )
i1 t)
2 t)

= row(1l),t)

mew (row (1), t)

1 '
2 ),
2 2),
1 (row(2),t)-p(r
2)=mew (row(2) ,t) -
k(2,1)/k(1,1)
2,1)=0.0d0
2)=£(2)-(z*f£ (1))
2,2)

2

2)=k(2,2)-(z*k(1,2))

k(
k(
k(
£(
£(
7=
k(
£(
k(2,
u(2) 2)/k(2,2)
u(l)=(£(1)-k(1,2)*u(2))/k(1,1)
row=row+u

errorl=0.0d0

do i=1,2
errorl=errorl+f (i) **2
end do

errorl=dsqgrt (errorl)

if (errorl<error) exit
guessl=row (1)
guess2=row (2)

end do

B.3 Density of supersaturated vapor

Pg=satu*p (equg, T)
guess3=1.20d0*equg

funl=p (guess3, t) -Pg

dfunl=dp (guess3, t)

do while (dabs (funl/dfunl)>error)
funl=p (guess3, t)-Pg

dfunl=dp (guess3, t)
rootl=guess3-funl/dfunl
guess3=rowg

B.4 Density of Gibbs reference state

mewg=mew (rowg, t)
guess=1.2d0*equl

fun=mew (guess, t) -mewg
dfun=dmew (guess, t)

do while (dabs (fun/dfun)>error)
fun=mew (guess, t) -mewg
dfun=dmew (guess, t)
root=guess-fun/dfun
guess=rowl

end do

B.5 Nucleation Rate by P-form

gama=(24.23d0-0.09254d0* (T-273.15d0))*1.0d-3 ' (N/m)=(pa.m)
=(1.0d0/ (rowl*N))
(16.0d0/3.0d0) *b* (gama**3) / ((P1-Pv))**2) ! (n.m) (work of formation)

Jo=(dsqgrt ((2.0d0*gama) / (b* (MM/N) ) ) *V1* (Pv/ (K1*T))**2)*1.0d-12

(
(
W2=(W1/ (K1*T))
(
Jp= (Jo*dexp (-W2))
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B.6 Nucleation rate by S-form
gama=(24.23d0-0.09254d0* (T-273.15d0) ) *1.0d-3 ! (N/m)=(pa.m)
W3=((16.0d0/3.0d0) *b* (V1**2) * (gama**3) /&

& ((K1*T*dlog (satu))**2))*1.0d-12 ! (n.m)

W4=(W3/ (K1*T)) !Work of formation
Jo=(dsqgrt ((2.0d0*gama) / (b* (MM/N) ) ) *V1* (Pv/ (K1*T))**2)*1.0d-12
Js=Jo*dexp (-W3/ (K1*T)) !Nucleation rate

B.7 SAFT EOS and its related parameters

B.7.1 Temperature-dependent segment diameter

d=v* ((1.0d0+0.2977*(T/S))/(1.0d0+0.33163d0* (T/S) &
&+(0.0010477d0+40.025337d0* (m-1.0d0) /m) * (T/S) **2))

B.7.2 C parameter (simplification parameter)

c=(b*N* (d**3) *m) /6.0d0

B.7.3 Segment packing fraction
eta=c*row

B.7.4 Association strength

H=row/2.0d0*d**3* ((2.0d0-eta(row) )/ (1.0d0-eta (row)) **3) *w&
&* (dexp (L/T)-1.0d0)

B.7.5 Mole fraction of molecules not bonded at site A
X=(-1.0d0+dsqgrt (1.0d0+4.0d0*H (row,t)*N))/ (2.0d0*H (row, t) *N)
B.7.6 First derivative of associating strength

dH=d**3* ((2.0d0*eta (row)+2.0d0- (eta(row)) **2) &
&/ (2.0d0* (1-eta (row) ) **4)) *w* (dexp (L/T)-1)

B.7.7 second derivative of associating strength

ddH=c* (d) **3* ( (5.0d0+2.0d0*eta (row) - (eta (row)) **2.0d0) &
&/ (l-eta(row)) **5.0d0) *w* (dexp (L/T) -1)

B.7.8 First derivative of mole fraction of molecules
bonded at site A

dX=(((4.0d0*H (row, t) *N**2/dsqgrt (1.0d0+4*N*H (row,t))) &
&=2.0d0*N* (-1.0d0+dsgrt (1.0d0+4.0d0*H (row,t)*N)))) *dH (row, t) &
&/ (4.0d0*N**2*H (row, t) **2)

B.7.9 second derivative of mole fraction of molecules
bonded at site A

ddX=((-32.0d0*N**5*H (row, t) **3* (1.0d0+4.0d0*N*H (row, t))** (-1.5) &
&=32*N**4*H (row, t) **2&

&/dsqrt (1.0d0+4.0d0*N*H (row,t))-16.0d0*N**3*H (row, t) &
&+16.0d0*N**3*H (row, t) *dsqrt (1.0d0+4.0d0*N*H (row,t))) *&

& (dH (row, t) **2/ (16.0d0*N**4*H (row, t) **4)) ) +dX (row, t) *ddH (row, t) &
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&/dH (row, t)

B.7.10 Ideal term of Helmholtz free energy
Al=R*T*dlog (row)

B.7.11 Hard sphere term of Helmholtz free energy

A2=(R*T*m) * ((4.0d0*eta (row)-3.0d0* (eta(row) ) **2) &
&/ (1.0d0-eta (row) ) **2)

B.7.12 SAFT Dispersion term of Helmholtz free energy
A3=R*T* (((S/T) *m* (-8.5959d0*g*row-4.5424d0*g**2*row**2-&
£2.1268d0*g**3*row**3+10.285d0*g**4*row**4) +5

& (S/T)**2*m* (-1.9075d0*g*row+9.9724d0*g**2*row**2-§&
&22.216d0*g**3*row**3+15.904d0*g**4*row**4) ) )

B.7.13 Hard chain term of Helmholtz free energy

A4=R*T* (((1.0d0-m) *dlog((1.0d0-0.5d0*eta (row) ) &
&/ (1.0d0-eta (row))**3)))

B.7.14 Association term of Helmholtz free energy
AS5=R*T* ((2.0d0*dlog (X (row,t))-X(row,t)+1.0d0))
B.7.15 Total term of Helmholtz free energy

A=Al (row, t) +A2 (row, t) +A3 (row, t) +A4 (row, t) +A5 (row, t)
!Total term of reduced free Helmholtz free energy

B.7.16 First derivative of ideal term of Helmholtz free
energy

dA1=R*T/row

B.7.17 First derivative of hard sphere term of Helmholtz free
energy

dA2=(R*T*m*c) * ((4.0d0-2.0d0*eta (row) )/ (1.0d0-eta (row) ) **3)

B.7.18 First derivative of SAFT Dispersion term of Helmholtz
free energy

dA3=R*T* (((S/T)*m* (-8.5959d0*g-2.0d0*4.5424d0*g**2*row&
&=3.0d0*2.1268d0*g**3*row**2+4.0d0*10.285d0*g**4*row**3) +&
& (S/T)**2*m* (-1.9075d0*g+2.0d0*9.9724d0*g**2*row-¢&
&3%22.216d0*g**3*row**2+4*15.904d0*g**4*row**3)))

B.7.19 First derivative of hard chain term of Helmholtz free
energy

dA4=R*T* (1.0d0-m) *c* ((5.0d0-2.0d0*eta (row)) /&
&(2.0d0-3.0d0*eta (row) + (eta (row) ) **2))
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B.7.20 First derivative of associating term of Helmholtz free
energy

dAS5=R*T* (((2.0d0/X(row,t)-1.0d0)*dX (row,t)))

B.7.21 First derivative of total term of Helmholtz free
energy

dA=dAl (row, t) +dA2 (row, t) +dA3 (row, t) +dA4 (row, t) +dAS (row, t)

B.7.22 First derivative of ideal term of Helmholtz free
energy

ddA1=-R*T/row**2

B.7.23 second derivative of hard sphere term of Helmholtz
free energy

ddA2=R*T*m*c**2* ( (10.0d0-4.0d0*eta (row))/ (1.0d0-eta (row)) **4)

B.7.24 second derivative of SAFT dispersion term of Helmholtz
free energy

ddA3=R*T* (((S/T) *m* (-2.0d0%4.5424d0*g**2¢
&-6.0d0*2.1268d0*g**3*row+12.0d0*10.285d0*g**4*row**2) +&

& (S/T)**2*m* (2.0d0%9.9724d0*g**2~-&
&6.0d0*22.216d0*g**3*row+12.0d0*15.904d0*g**4*row**2)))

B.7.25 second derivative of hard chain term of Helmholtz free
energy

ddA4=R*T* ((1.0d0-m) *c**2* ((11.0d0-10.0d0*eta (row)+2.0d0*&
&eta(row) **2)/(2.0d0-3.0d0*eta (row) + (eta (row) ) **2) **2))

B.7.26 second derivative of associating term of Helmholtz
free energy

ddAS5=R*T* (((2.0d0/X (row,t)-1.0d0)*ddX (row, t))-&
&(2.0d0/X (row, t) **2) * (dX (row, t)) **2)

B.7.27 second derivative of total term of Helmholtz free
energy

ddA=ddAl (row, t)+ddA2 (row, t)+ddA3 (row, t) +ddA4 (row, t) +ddAS5 (row, t)
B.8 PC-SAFT dispersion term and its parameters

B.8.1 alpha parameter (simplification parameter)
alpha=-2.0*b*m**2* (S/T) *v**3*N

B.8.2 Beta parameter (simplification parameter)
beta=-b*m**3* ((S/T) **2) *y**3*N

B.8.3 Temperature-dependent segment diameter
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d=v*(1.0d0-0.12d0*dexp (-3.0d0*S/T))
B.8.4 Ci1 parameter

cl=(1.0d0+m*
&/ (1.0d0-eta
&=27.0d0*eta
&((1.0d0-eta

8.0d0*eta (row)-2.0d0*eta (row) **2) &

row) ) **4+4+ (1.0d0-m) * (20.0d0*eta (row) &

row) **2412.0d0*eta (row) **3-2.0d0*eta (row) **4) /&
row) ) *(2.0d0-eta (row))) **2)

—_~ o~~~

B.8.5 first derivative of Ci parameter

dcl=m*c* ((8.0d0+20.0d0*eta (row) -&

&4.0d0*eta (row) **2) /(1.0d0-eta (row)) **5) &

&+ (1.0d0-m) *c* ((80.0d0-216.0d0*eta (row) +&
&208.0d0*eta (row) **2-&

&80.0d0*eta (row) **3+6.0d0*eta (row) **4+2.0d0*eta (row) **5) &
&/ (4.0d0-12.0d0*eta (row)+13.0d0*eta (row) **2&
-6.0d0*eta (row) **3+eta (row) **4) **2)

B.8.6 second derivative of Ci parameter

ddcl=m*c**2* (((420.0d0+72.0d0*eta (row)-12.0d0*eta (row) **2) /&
&(1.0d0-eta(row))**6) )+ (1.0d0-m) *c**2* ((((4.0d0-12.0d0*&
&eta (row) +13.0d0*eta (row) **2-6.0d0*eta (row) **3+eta (row) **4) &
§**2*%(-216.0d0+416.0d0*eta (row)-240.0d0*eta (row) **2¢&
&+24.0d0*eta (row) **3+10.0d0*eta (row) **4)-2.0d0* (80.0d0-¢&
&216.0d0*eta (row)+208.0d0*eta (row) **2-&

&80.0d0*eta (row) **3+6.0d0*eta (row) **4+2.0d0&

&*eta (row) **5) *(4.0d0-12.0d0*eta (row) &
&+13.0d0*eta (row) **2¢&
&—6.0d0*eta (row) **3+4&

s&eta (row) **4)* (-12.0d0+26.0d0*eta (row) —&
&18.0d0*eta (row) **2+4.0d0*eta (row) **3))) &
&/ (4.0d0-12.0d0*eta (row)+13.0d0*eta (row) **2&
&—6.0d0*eta (row) **3+eta (row) **4) **4)

B.8.7 I1 parameter

I1=a00+all*eta (row)+a22*eta (row) **2+a33*eta (row) **3+add*eta (row) **4¢&
&+ab5*eta (row) **5+a66*eta (row) **6

B.8.8 First derivative of Il parametere

dIl=c* (all+2.0d0*a22*eta (row)+3.0d0*a33*eta (row) **2¢&
&+4.0d0*add*eta (row) **3+5.0d0*a55*%eta (row) **4+6.0d0*a66*eta (row) **5)

B.8.9 Second derivative of Il parametere

ddIl=c**2* (2.0d0*a22+6.0d0*a33*eta (row)+12.0d0*add*eta (row) **2&
&+20.0d0*a55*eta (row) **3+30.0d0*a66*eta (row) **4)

B.8.10 I2 parametere

I2=b00+bll*eta (row)+b22*eta (row) **2+b33*eta (row) **3+bd4d*eta (row) **4¢&
&+b55*eta (row) **5+b6o*eta (row) **6
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B.8.11 First derivative of I2 parameter

dI2=c* (b11+2.0d0*b22*eta (row)+3.0d0*b33*eta (row) **2&
&+4.0d0*bd4d*eta (row) **3&
&+5.0d0*b55*eta (row) **44+6.0d0*b66*eta (row) **5)
B.8.12 Second derivative of I2 parameter

ddI2=c**2* (2.0d0*b22+6.0d0*b33*eta (row)+12.0d0*bd4d*eta (row) **2&
&+20.0d0*b55*eta (row) **3+30.0d0*b66*eta (row) **4)

B.8.13 Dispersion term

A3=R*T* (alpha*row*Il (row)-beta*row*I2 (row)/Cl (row))

B.8.14 First derivative of dispersion term

dA3=R*T* (alpha*Il (row)+alpha*row*dIl (row)+beta*I2 (row)/Cl (row)+&

&beta*row*dI2 (row) /Cl (row) -beta*row*I2 (row) *dCl (row) &
&/Cl (row) **2)

B.8.15 Second derivative of dispersion term
ddA3=R*T* (2.0d0*alpha*dIl (row)talpha*row*ddIl (row) &
&+2.0d0*beta*dI2 (row) /Cl (row)-2.0d0*beta*I2 (row) *dC1 (row) &
&/Cl (row) **2-2.0d0*beta*row*dI2 (row) *dC1l (row) &

&/Cl (row) **2+beta*row*ddI2 (row) /Cl (row) &

&+2.0d0*beta*row*I2 (row) *dC1l (row) **2/C1 (row) **3-¢&
sbeta*row*I2 (row) *ddC1 (row) /Cl (row) **2)

B.9 Thermodynamic properties and its
derivatives

B.9.1 Pressure

p=row**2*dA (row, t)

B.9.2 First derivative of pressure
dp=row**2*ddA (row, t) +2.0d0*row*dA (row, t)

B.9.3 Chemical potential
mew=row*dA (row, t) +A (row, t)

B.9.4 First derivative of chemical potential

dmew=dA (row, t) +ddA (row, t) *row+dA (row, t)
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