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ABSTRACT 

Reservoir simulation, as practiced in the oil industry, is well 

established and is the standard tool for solving reservoir 

engineering problems. The conventional major steps involved in 

the development of a reservoir simulator can be characterized as 

formulation, discretization, well representation, linearization, 

solution, and validation. Recently the engineering approach has 

been introduced that would allow one bypass linearization during 

the development of model equations. To avoid the hidden 

misconceptions in formulation, engineering approach with a new 

form of motion equation based on the application of memory 

concept is used to develop a mathematical model for the fluid 

flow in porous media. The proposed model involves 

discretization, followed by formulation to obtain the flow 

equations in the integral form. The model equations are written for 

a given gridblock in space at a given time level. The equations 

reflect the flow equations in an algebraic form. The most 

important feature of this model is the consideration of fluid and 

rock properties as a time dependent variable without linearization. 

This model can be used in reservoir simulation and well testing. 

1. INTRODUCTION 

The modeling of fluid movement through porous media is the 

most important but very intricate and difficult research task in 

petroleum engineering due to the complex fluid rheological 

behavior and geological structure. Rheology is usually defined as 

the branch of physics that studies the deformation and flow of 

matter [1]. In simpler terms, a rheological measurement indicates 

how “fluid-like” or “solid-like” a material is. However, in 

rheology interest is usually focused on those materials that possess 

both elastic and viscous properties. The geological structure of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reservoir formation is dependent on the deposition or 

sedimentation of earth with time. This structure of reservoir 

formation is the key to model the behavior of fluid movement 

within the pore network where grid size, grid block are very 

important issues. Therefore, the rheology of fluid and the structure 

of the formation are the most influential motivating criteria in 

developing the true fluid flow models for porous media 

application. More generally, understanding the flow of 

rheologically complex fluids through porous media is important in 

many other engineering applications. The knowledge of the 

behavior of polymer solutions in rocks can be applied in ground 

water hydrology, soil mechanics, industrial pollutant infiltration 

and chemical flooding processes. Therefore, fluid rheology is an 

important issue for any reservoir management.  

 

The big challenge is that almost all the properties of any 

fluid/material are time dependent. However, another problem with 

"time" is the scale of time. The time dimension itself is a complex 

presentation in reservoir simulation. This concept will be used 

during the development of reservoir simulation models. Therefore, 

in this advanced technological and information age, it is not 

unrealistic to expect accurate computational efficiency after 

including such an important dimension as time. As a matter of 

fact, this history is the indication of time dependency which can 

be defined as the pathway travelled by both fluid and formation 

with time. The concept of using variable rock and fluid properties 

with time can be modeled using the notion of “memory”. In this 

article, the definition of “memory” is stated as “the properties of 

rock and fluid that help to account for changes in rock properties 

(such as permeability, porosity) and fluid properties (such as 

pressure dependent fluid properties, viscosity) with time and 

space” [1]. Even though the memory concept is old knowledge, 

with frequent citations in holy book [2], modern researchers are 

only beginning to model this concept. Some researchers revealed 

the effects of pathway and dependency on history of the fluid to 

define   the  memory   concept [3 - 5].  Chen et al. [6]  argued  that  
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mobilization and subsequent flow in a porous medium of a fluid 

with a yield stress can be explained well when the notion of 

memory is introduced. 

 

It is well known that the petroleum industry drives the energy 

sector, which in turn drives the modern civilization. While 

significant research has been conducted in this area, focused on 

improving oil recovery with different techniques, theoretical 

prediction methods for recovery schemes – a matter of utmost 

importance with cost implications in the millions of dollars on 

wrong uses for a single oil field – still suffer from certain 

shortcomings in their mathematical modeling [7]. The 

shortcomings that this dissertation wants to address include: 1) 

insufficient description of rock/fluid interaction, particularly under 

thermal constraints; 2) linearization of rheological data; and 3) 

linearization of governing equations. Based on an insight in the 

information age, it has become possible to include such 

phenomena that are considered to be intangible and beyond the 

scope of computational mathematics [8]. It is very important to 

look further into fluid rheology and fluid memory. To overcome 

those shortcomings, the most recent approach, called, 

“Engineering Approach” is becoming extremely popular within 

the researchers, academician and for new simulator development 

[7]. This article introduces a new rigorous fluid flow model 

bypassing inherent linearization of formulation using the 

“Engineering Approach”. This model will be useful for reservoir 

simulation, well testing and reservoir performance predictions. 

 

2. THEORETICAL MODEL DEVELOPMENT  

Fluid properties that are needed to model single-phase fluid flow 

include those that appear in the flow equations, namely, density 
 𝜌 , formation volume factor  𝐵 , viscosity,  𝜇 . Fluid density is 

needed for the estimation of fluid gravity  𝛾  using 

     

𝛾 =  𝛾𝑐  𝜌 𝑔                                                                                   (1)   

 

A conservative equation describes the rate of fluid movement into 

or out the reservoir volume element. The modified Darcy’s law in 

1D can be written as 

  

𝑢𝑥 =  − 𝛽𝑐  𝜂  
𝜕𝛼

𝜕𝑡 𝛼  
𝜕Φ

𝜕𝑥
                                                                 (2) 

 

where, 

 

𝜕𝛼

𝜕𝑡𝛼  
𝜕Φ

𝜕𝑥
 =  1 Γ 1 − 𝛼     𝑡 − 𝜉 −𝛼

𝑡

0

𝜕

𝜕𝜉
 
𝜕Φ

𝜕𝑥
 𝜕𝜉,

𝑤𝑖𝑡𝑕 0 ≤ 𝛼 < 1 

               

 =  
  𝑡−𝜉 −𝛼  

𝜕2Φ

𝜕𝜉𝜕𝑥
 

𝑡

0
𝜕𝜉

Γ 1−𝛼 
 

 

The potential is related to pressure through the following 

relationship  

  

Φ − Φref =  𝑝 − 𝑝𝑟𝑒𝑓  −  𝛾 𝑍 − 𝑍𝑟𝑒𝑓    

 

 

Therefore, 

 
𝜕Φ

𝜕𝑥
=

𝜕𝑝

𝜕𝑥
− 𝛾

𝜕𝑍

𝜕𝑥
                                                                      (3) 

 

 

2.1 Derivation of the 1D Flow Equation in Cartesian 

Coordinates 

 

Figure 1 shows block i and its neighboring blocks i - 1 and i + 1 in 

the x-direction. At any instant in time, fluid enters block i, coming 

from block i - 1 across its 𝑥𝑖− 1 2  face at a mass rate of  𝑤𝑥  𝑥𝑖− 1 2 
 

and leave to block i + 1 across its 𝑥𝑖+ 1 2  face at a mass rate of 
 𝑤𝑥  𝑥𝑖 + 1 2 

. The fluid also enters block i through a well at a mass 

rate of 𝑞𝑚 𝑖
. The mass of fluid contained in a unit volume of rock 

in block i is 𝑚𝑣𝑖
. Therefore, the material balance equation for 

block i written over a time step ∆𝑡 =  𝑡𝑛+1 − 𝑡𝑛   can be written 

as 

 
 𝑚𝑖 𝑥𝑖−1 2  −  𝑚𝑜 𝑥𝑖 +1 2  + 𝑚𝑠𝑖 =  𝑚𝑎𝑖

                                          (4) 

 

 
 

Figure 1. Block i as a reservoir volume element in 1D flow 

(redrawn from [7]). 

 

Terms like      𝑤𝑥  𝑥𝑖− 1 2 
 ,  𝑤𝑥  𝑥𝑖 + 1 2 

 ,  and 𝑞𝑚 𝑖
 are functions of time 

only because space is not a variable for an already discretized 

reservoir.   Abou-Kassem et al. [7] have explained this very well. 

Therefore, 

 

 𝑚𝑖 𝑥𝑖−1 2  =    𝑤𝑥  𝑥𝑖− 1 2 
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛                                                     (5) 

  

 𝑚𝑜 𝑥𝑖+1 2  =    𝑤𝑥  𝑥𝑖+ 1 2 
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛                                                     (6) 

  

𝑚𝑠𝑖 =   𝑞𝑚 𝑖
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛                                                                       (7) 

 

Using Eqs. (5) through (6), Eq. (4) can be rewritten as 

 

  𝑤𝑥  𝑥𝑖− 1 2 
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛 −   𝑤𝑥  𝑥𝑖+ 1 2 
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛 +  𝑞𝑚 𝑖
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛 =  𝑚𝑎𝑖
   (8)                                            

                                                                        

The mass accumulation is defined as 

  

𝑚𝑎𝑖
= ∆𝑡 𝑉𝑏  𝑚𝑣 𝑖 = 𝑉𝑏𝑖

 𝑚𝑣𝑖

𝑛+1 − 𝑚𝑣𝑖

𝑛                                       (9) 

 

Now mass rate and mass flux are related through  
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𝑤𝑥 = 𝑚𝑥  𝐴𝑥                                                                                (10) 

 

Mass flux (𝑚𝑥 ) can be expressed in terms of fluid density and 

volumetric velocity, 

 

𝑚𝑥  =  𝛼𝑐  𝜌 𝑢𝑥                                                                            (11) 

 

Mass of fluid per unit volume or rock (𝑚𝑣) can be expressed in 

terms of fluid density and porosity, 

 

𝑚𝑣 =  𝜙 𝜌                                                                                   (12) 

 

Mass of injected or produced fluid (𝑞𝑚 ) can be expressed in terms 

of well volumetric rate (𝑞) and fluid density, 

 

𝑞𝑚 =  𝛼𝑐  𝜌 𝑞                                                                              (13)   

                                                                                                       

Substituting Eqs. (9) and (10) into Eq. (8) yields 

 

   𝑚𝑥  𝐴𝑥  𝑥𝑖− 1 2 
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛

–    𝑚𝑥  𝐴𝑥  𝑥𝑖+ 1 2 
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛

 

 

+  𝑞𝑚 𝑖
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛 =  𝑉𝑏𝑖
 𝑚𝑣𝑖

𝑛+1 − 𝑚𝑣𝑖

𝑛                                           (14) 

 

Substituting Eqs. (11) through (13) into Eq. (14) yields 

 

   𝛼𝑐  𝜌 𝑢𝑥  𝐴𝑥  𝑥𝑖− 1 2 
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛

–    𝛼𝑐  𝜌 𝑢𝑥  𝐴𝑥  𝑥𝑖+ 1 2 
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛

 

+   𝛼𝑐  𝜌 𝑞 𝑖 𝑑𝑡 
𝑡𝑛+1

𝑡𝑛 =  𝑉𝑏𝑖
  𝜙 𝜌 𝑖

𝑛+1 −  𝜙 𝜌 𝑖
𝑛                      (15) 

 

An equation of state describes the density of fluid as a function of 

pressure and temperature. For single-phase fluid, 

 

𝐵 =  
𝜌𝑠𝑐

𝜌
                                                                                       (16)   

 

Substitution of Eq. (16) into Eq. (15), dividing by 𝛼𝑐  𝜌𝑠𝑐  yields 

 

   
 𝑢𝑥  𝐴𝑥

𝐵
  

𝑥𝑖− 1 2 

𝑑𝑡 
𝑡𝑛+1

𝑡𝑛 –    
 𝑢𝑥  𝐴𝑥

𝐵
  

𝑥𝑖+ 1 2 

𝑑𝑡 
𝑡𝑛+1

𝑡𝑛           

+   
𝑞

𝐵
 
𝑖 
𝑑𝑡 

𝑡𝑛+1

𝑡𝑛 =
𝑉𝑏𝑖

𝛼𝑐
  

𝜙 

𝐵
 
𝑖

𝑛+1
−  

𝜙 

𝐵
 
𝑖

𝑛
                                   

 

Substituting  𝑞𝑠𝑐 =  𝑞 𝐵  in the above equation yields 

 

   
 𝑢𝑥  𝐴𝑥

𝐵
  

𝑥𝑖− 1 2 

𝑑𝑡 
𝑡𝑛+1

𝑡𝑛 –    
 𝑢𝑥  𝐴𝑥

𝐵
  

𝑥𝑖+ 1 2 

𝑑𝑡 
𝑡𝑛+1

𝑡𝑛   

+  𝑞𝑠𝑐𝑖  𝑑𝑡 
𝑡𝑛+1

𝑡𝑛 =
𝑉𝑏𝑖

𝛼𝑐
  

𝜙 

𝐵
 
𝑖

𝑛+1
−  

𝜙 

𝐵
 
𝑖

𝑛
                                    (17) 

 

Fluid volumetric velocity (flow rate per unit cross-sectional area) 

from block i – 1 to block i   (𝑢𝑥  𝑥𝑖− 1 2 
) at any time instant t is 

given by the algebraic analog of Eq. (2) 

 

 𝑢𝑥  𝑥𝑖− 1 2 
=   

𝛽𝑐

Γ 1−𝛼 
  𝜂𝑥  𝑥𝑖− 1 2 

   𝑡 − 𝜉 −𝛼
  
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖−1

−  
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖
 

Δ𝑥𝑖− 1 2 

𝑡

0
 𝜕𝜉                           

                                                                                                    (18) 

 

 

Likewise, fluid flow per unit cross-sectional area from block i to 

block i + 1  is  

 

 𝑢𝑥  𝑥𝑖+ 1 2 
=   

𝛽𝑐

Γ 1−𝛼 
  𝜂𝑥  𝑥𝑖+ 1 2 

   𝑡 − 𝜉 −𝛼
  
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖
−  

𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖+1

 

Δ𝑥𝑖+ 1 2 

𝑡

0
 𝜕𝜉                      

                                                                                                    (19) 

Substitution of Eqs. (18) and (19) into Eq. (17) yields 

 

   
𝛽𝑐

Γ 1 − 𝛼 
  𝜂𝑥  𝑥𝑖− 1 2 

 
 
 
 

  𝑡
𝑡

0

𝑡𝑛+1

𝑡𝑛

− 𝜉 −𝛼

  
𝜕2Φ
𝜕𝜉𝜕𝑥

 
𝑖−1

−  
𝜕2Φ
𝜕𝜉𝜕𝑥

 
𝑖
 

Δ𝑥𝑖− 1 2 
 𝜕𝜉

 
 

 𝐴𝑥

𝐵
 

 
 
 
 

𝑥𝑖− 1 2 

𝑑𝑡  

  

–   𝛽𝑐

Γ 1 − 𝛼 
  𝜂𝑥  𝑥𝑖+ 1 2 

 
 
 
 

  𝑡
𝑡

0

𝑡𝑛+1

𝑡𝑛

− 𝜉 −𝛼

  
𝜕2Φ
𝜕𝜉𝜕𝑥

 
𝑖
−  

𝜕2Φ
𝜕𝜉𝜕𝑥

 
𝑖+1

 

Δ𝑥𝑖+ 1 2 
 𝜕𝜉

 
 

 𝐴𝑥

𝐵
 

 
 
 
 

𝑥𝑖+ 1 2 

𝑑𝑡      

+  𝑞𝑠𝑐𝑖  𝑑𝑡  
𝑡𝑛+1

𝑡𝑛

=
𝑉𝑏𝑖

𝛼𝑐
  

𝜙 

𝐵
 
𝑖

𝑛+1

−  
𝜙 

𝐵
 
𝑖

𝑛

  

  
 

Or, 

 

  
 𝐴𝑥  𝛽𝑐  𝜂𝑥

B Δ𝑥 Γ 1−𝛼 
  

𝑥𝑖− 1 2 

   𝑡 − 𝜉 −𝛼   
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖−1

−  
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖
 

𝑡

0
 𝜕𝜉 𝑑𝑡 

𝑡𝑛+1

𝑡𝑛   

 

+   
 𝐴𝑥  𝛽𝑐  𝜂𝑥

B Δ𝑥 Γ 1 − 𝛼 
  

𝑥𝑖+ 1 2 

   𝑡 − 𝜉 −𝛼   
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖+1

𝑡

0

𝑡𝑛+1

𝑡𝑛

−  
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖

  𝜕𝜉 𝑑𝑡      +  𝑞𝑠𝑐𝑖  𝑑𝑡  
𝑡𝑛+1

𝑡𝑛

=
𝑉𝑏𝑖

𝛼𝑐
  

𝜙 

𝐵
 
𝑖

𝑛+1

−  
𝜙 

𝐵
 
𝑖

𝑛

  

 

 

 𝑇𝑥𝑖−1 2 
   𝑡 − 𝜉 −𝛼   

𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖−1

−  
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖
 

𝑡

0
 𝜕𝜉 𝑑𝑡  

𝑡𝑛+1

𝑡𝑛 +

  𝑇𝑥𝑖+1 2 
   𝑡 − 𝜉 −𝛼   

𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖+1

−  
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖
 

𝑡

0
 𝜕𝜉 𝑑𝑡 

𝑡𝑛+1

𝑡𝑛      +

 𝑞𝑠𝑐𝑖  𝑑𝑡  
𝑡𝑛+1

𝑡𝑛 =
𝑉𝑏𝑖

𝛼𝑐
  

𝜙 

𝐵
 
𝑖

𝑛+1
−  

𝜙 

𝐵
 
𝑖

𝑛
                                       (20) 

 

Where, 

𝑇𝑥𝑖 ∓1 2 
=  

 𝐴𝑥  𝛽𝑐  𝜂𝑥

B Δ𝑥 Γ 1 − 𝛼 
  

𝑥𝑖 ∓ 1 2 

 

 

The accumulation term in Eq. (20) can be expressed in terms of 

the change in the pressure of block i as shown in Eq. (21) 
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 𝑇𝑥𝑖−1 2 
   𝑡 − 𝜉 −𝛼   

𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖−1

−  
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖
 

𝑡

0
 𝜕𝜉 𝑑𝑡  

𝑡𝑛+1

𝑡𝑛   

+  𝑇𝑥𝑖+1 2 
   𝑡 − 𝜉 −𝛼   

𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖+1

−  
𝜕2Φ

𝜕𝜉𝜕𝑥
 
𝑖
 

𝑡

0
 𝜕𝜉 𝑑𝑡 

𝑡𝑛+1

𝑡𝑛       

+  𝑞𝑠𝑐𝑖  𝑑𝑡  
𝑡𝑛+1

𝑡𝑛 =
𝑉𝑏𝑖

𝛼𝑐
 
𝜙 

𝐵
 
𝑖
 𝑝𝑖

𝑛+1 − 𝑝𝑖
𝑛                                   (21) 

 

 

Or, 

 

 𝑇𝑥𝑖−1 2 
   𝑡 − 𝜉 −𝛼   

𝜕

𝜕𝜉
 
𝜕Φ

𝜕𝑥
  

𝑖−1
−  

𝜕

𝜕𝜉
 
𝜕Φ

𝜕𝑥
  

𝑖
 

𝑡

0
 𝜕𝜉 𝑑𝑡  

𝑡𝑛+1

𝑡𝑛   

+  𝑇𝑥𝑖+1 2 
   𝑡 − 𝜉 −𝛼   

𝜕

𝜕𝜉
 
𝜕Φ

𝜕𝑥
  

𝑖+1

𝑡

0

𝑡𝑛+1

𝑡𝑛

−  
𝜕

𝜕𝜉
 
𝜕Φ

𝜕𝑥
  

𝑖

  𝜕𝜉 𝑑𝑡      +  𝑞𝑠𝑐𝑖  𝑑𝑡  
𝑡𝑛+1

𝑡𝑛

=
𝑉𝑏𝑖

𝛼𝑐
 
𝜙 

𝐵
 
𝑖
 𝑝𝑖

𝑛+1 − 𝑝𝑖
𝑛  

         
 

Substitution of Eq. (3) yields  

 

 𝑇𝑥𝑖−1 2 
   𝑡 − 𝜉 −𝛼  

𝜕

𝜕𝜉
  

𝜕𝑝

𝜕𝑥
 
𝑖−1

− 𝛾𝑖−1 2  
𝜕𝑍

𝜕𝑥
 
𝑖−1

 
𝑡

0

𝑡𝑛+1

𝑡𝑛

− 
𝜕

𝜕𝜉
  

𝜕𝑝

𝜕𝑥
 
𝑖
− 𝛾𝑖−1 2  

𝜕𝑍

𝜕𝑥
 
𝑖
   𝜕𝜉 𝑑𝑡  

+  𝑇𝑥𝑖+1 2 
   𝑡 − 𝜉 −𝛼

𝑡

0

 
𝜕

𝜕𝜉
  

𝜕𝑝

𝜕𝑥
 
𝑖+1

− 𝛾𝑖+1 2  
𝜕𝑍

𝜕𝑥
 
𝑖
 

𝑡𝑛+1

𝑡𝑛

−
𝜕

𝜕𝜉
  

𝜕𝑝

𝜕𝑥
 
𝑖+1

− 𝛾𝑖+1 2  
𝜕𝑍

𝜕𝑥
 
𝑖
   𝜕𝜉 𝑑𝑡 

+  𝑞𝑠𝑐𝑖  𝑑𝑡  
𝑡𝑛+1

𝑡𝑛

       

=
𝑉𝑏𝑖

𝛼𝑐
 
𝜙 

𝐵
 
𝑖
 𝑝𝑖

𝑛+1 − 𝑝𝑖
𝑛  

            
 

Or, 

 

 𝑇𝑥𝑖−1 2 
   𝑡 − 𝜉 −𝛼  

𝜕

𝜕𝜉
  

𝜕𝑝

𝜕𝑥
 
𝑖−1

−  
𝜕𝑝

𝜕𝑥
 
𝑖
 

𝑡

0

𝑡𝑛+1

𝑡𝑛

−
𝜕

𝜕𝜉
 𝛾𝑖−1 2    

𝜕𝑍

𝜕𝑥
 
𝑖−1

−  
𝜕𝑍

𝜕𝑥
 
𝑖
   𝜕𝜉 𝑑𝑡  

 

+  𝑇𝑥𝑖+1 2 
   𝑡 − 𝜉 −𝛼  

𝜕

𝜕𝜉
  

𝜕𝑝

𝜕𝑥
 
𝑖+1

−  
𝜕𝑝

𝜕𝑥
 
𝑖
 

𝑡

0

𝑡𝑛+1

𝑡𝑛

−
𝜕

𝜕𝜉
 𝛾𝑖+1 2    

𝜕𝑍

𝜕𝑥
 
𝑖+1

−  
𝜕𝑍

𝜕𝑥
 
𝑖
   𝜕𝜉 𝑑𝑡 

+  𝑞𝑠𝑐𝑖  𝑑𝑡  
𝑡𝑛+1

𝑡𝑛

  

 

=
𝑉𝑏𝑖

𝛼𝑐
 
𝜙 

𝐵
 
𝑖
 𝑝𝑖

𝑛+1 − 𝑝𝑖
𝑛  

                                                                                        (22)                                                                          

 

 

 

Equation (22) represents the general form of diffusivity equation 

with memory using the Engineering Approach. Equation (22) is a 

non-linear diffusivity equation considering fluid memory for an 

axial flow of any single phase fluid in porous media. Equation 

(22) is strictly non-linear because all the parts are non-linear 

because it is derived bypassing the Taylor approximation and in 

its algebraic form. In addition, it consists of a derivative of a 

pressure derivative with memory part, pressure derivative with 

time, 𝜂, compressibility and porosity multiplication which also 

makes the terms nonlinear.                                                                                 

                                                                                                       

3. CONCLUSIONS 

A diffusivity equation with rock/fluid memory has been developed 

by invoking time-dependence to permeability and viscosity using 

Engineering approach. The resulting highly non-linear theoretical 

model has an option of triggering the memory variable, depending 

on the applicability. The findings of this research establish the 

contribution of memory in reservoir fluid flow through porous 

media. This representation accounts for the chaotic behavior of 

several non-Newtonian fluids and time dependent rock properties 

are due to the memory of fluid rheological and formation rock. 

Therefore, it may be concluded that although other causes such as 

heterogeneity, anisotropy and inelasticity of the matrix, may be 

invoked to interpret certain phenomena, the memory mechanism 

could help in interpreting part of the phenomenology. If the 

memory function is invoked, the resulting equation is complete. 

This formulation allows one to investigate fluid flow in porous 

media without resorting to a priori approximations and subsequent 

linearization.   
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5. NOMENCLATURE  

𝐴𝑥   = Cross sectional area of rock perpendicular to the 

flow of flowing fluid, m2  

𝐵    = formation volume factor, 𝑚3 𝑠𝑡𝑑 𝑚3  

𝑔              = gravitational acceleration,𝑚 𝑠2  

𝑚𝑣    = mass of fluid contained in a unit volume or rock, kg 

𝑚𝑣𝑖

𝑛    = mass of fluid contained in a unit volume or rock at 

block i at time step n, kg 

𝑚𝑣𝑖

𝑛+1   = mass of fluid contained in a unit volume or rock at 

block i at time step n+1, kg 
 𝑚𝑖 𝑥𝑖−1 2   = mass of fluid entering the reservoir volume element at 

boundary, 𝑥𝑖−1 2 , kg 
 𝑚𝑜 𝑥𝑖 +1 2  = mass of fluid leaving the reservoir volume at 

boundary, 𝑥𝑖+1 2 , kg 

𝑚𝑠𝑖   = the mass of fluid entering or leaving the reservoir 

volume, i element externally through wells 

𝑚𝑥   = mass flux at point x, kg 
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𝑚𝑎𝑖
  = the mass of excess fluid stored in or depleted from the 

reservoir volume element over a time interval 

𝑝  = pressure at any time, t, pa 

𝑝𝑟𝑒𝑓   = pressure at a reference point at any time, t, pa 

𝑞   = fluid flow rate, 𝑠𝑡𝑑 𝑚3 𝑑  

𝑞𝑠𝑐    = fluid flow rate at standard condition, 𝑠𝑡𝑑 𝑚3 𝑑  

𝑞𝑚 𝑖
  = mass rate enters through the well at block i, 𝑘𝑔 𝑠  

𝑡𝑛   = time at step n, day 

𝑡𝑛+1  = time at step n+1, day 

𝑤𝑥    = mass rate of fluid, 𝑘𝑔 𝑠  

  𝑤𝑥  𝑥𝑖− 1 2 
 = mass rate of fluid at 𝑥𝑖− 1 2  , 𝑘𝑔 𝑠  

  𝑤𝑥  𝑥𝑖 + 1 2 
 = mass rate of fluid at 𝑥𝑖+ 1 2  , 𝑘𝑔 𝑠  

𝑢𝑥   = velocity normal to the flow direction x, 𝑚 𝑠  

𝑉𝑏     = block bulk volume, 𝑚3 

𝑉𝑏𝑖
  = block bulk volume at block i, 𝑚3 

𝑍  = elevation from datum, with positive values downward, 

m 

𝑍𝑟𝑒𝑓   = the datum reference point, m 

𝜌               = density, 𝑘𝑔 𝑚3  

𝛾               = fluid gravity, 𝑘𝑔 𝑚3  

𝛾𝑐               = gravity conversion factor  

𝜂  = ratio of the pseudopermeability of the medium with 

memory to fluid viscosity, 𝑚3𝑠1+𝛼 𝑘𝑔   

𝜉  = a dummy variable for time i.e. real part in the plane of 

the integral, s 

α  = fractional order of differentiation, dimensionless 

 

𝛽𝑐   = the transmissibility conversion factor 

Φ  = potential, 𝑝𝑎 

Φref   = potential at a reference point, 𝑝𝑎 

𝜌𝑠𝑐   = fluid density at standard condition, 𝑘𝑔  𝑚3  
∆𝑡  = time step, day 

𝛼𝑐    = volume conversion factor,  
 𝜂𝑥  𝑥𝑖− 1 2 

 = between block i – 1and i that are separated by a 

distance Δ𝑥𝑖− 1 2  

 𝜕
2Φ

𝜕𝜉𝜕𝑥
 
𝑖−1

  = potentials derivative with respect to time of block i – 1 

 𝜕
2Φ

𝜕𝜉𝜕𝑥
 
𝑖
  = potentials derivative with respect to time of block i  

6. REFERENCES 

[1] Hossain, M.E., “An Experimental and Numerical 

Investigation of Memory-Based Complex Rheology and 

Rock/Fluid Interactions”, PhD dissertation, Dalhousie 

University, Halifax, Nova Scotia, Canada, 2008, p. 773. 

[2] The Holy Al-Qur‟an, 17:44; 57:1; 62:1; 64:1. 

[3] Arenzon, J.J., Levin, Y., and Sellitto, M., “Slow Dynamics 

Under Gravity: A Nonlinear diffusion model”, Physica A, 

Vol. 325, 2003, p. 371 – 395. 

[4] Shin, M., Kim, D.S., and Lee, J.W., “Deposition of Inertia-

Dominated Particles Inside a Turbulent Boundary Layer” 

International Journal of Multiphase Flow, Vol. 29, 2003, p. 

893–926.  

[5] Zhang, H.M., “Driver Memory, Traffic Viscosity and a 

Viscous Vehicular Traffic Flow Model”, Transportation 

Research Part B, Vol. 37, 2003, p. 27–41. 

 

 

[6] Chen, M., Rossen, W., and Yortsos, Y.C., “The Flow and 

Displacement in Porous Media of Fluids with Yield Stress”, 

Chemical Engineering Science, Vol. 60, 2005, p. 4183 – 

4202. 

[7] Abou-Kassem, J.H., Farouq Ali, S.M., and Islam, M.R., 

“Petroleum Reservoir Simulation: A Basic Approach”, Gulf 

Publishing Company, Houston, TX, USA, 2006, p. 445.  
[8] Islam, M.R., “Computing for the Information Age, Keynote 

speech”, Proceeding of 36th Int. Conf. Comp. Ind. Eng., 

June 20-23, 2006, Taipei, Taiwan.  

 

  


