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Summary 

The complex rheological behavior of formation fluids 

and their structures depend on their history of formation 

and propagation. In petroleum engineering, this history 

tells the qualitative and quantitative measures of fossil 

fuels in a petroleum trap. The properties of fluid and 

formation are thoroughly investigated, as evidenced by 

the shear volume of publications on the topic. However, 

still there remains a formidable challenge on how to 

model the variation of these properties under complex in 

situ thermal and mechanical stress. These fluid 

properties as well as rock properties are assumed to be 

invariant with time in most of the available simulators. 

The variation of permeability is important when there 

are mineralizations in the pore network, which is subject 

to significant change during fluid extraction and 

depressurization. The main aim of this study is to model 

the variable permeability and viscosity over time. The 

concept of memory is applied to model these variations 

with time in the fluid flow through the porous medium.  



  
 
 

 
 

A new rigorous model for the fluid flow inside the 

porous formation is introduced using the continuity 

equation and a new form of momentum balance equation 

based on the application of the memory concept. The 

proposed model is rigorous in the sense that the fluid and 

formation properties are considered as space and time 

dependent. This model can be used in any crude oil flow 

through porous media.  This model can also be 

applicable to any non-Newtonian fluid flow during an 

enhanced oil recovery (EOR) process. It is also useful 

where variable rock compressibility exists and is 

affected by the pressure decline during the production 

life of a reservoir. 

 

Introduction 

Rock and fluid properties play an important role during 

fluid flow in porous media. Majority of rock and fluid 

properties are functions of pressure and temperature. 

Formation rock is the fluid transport media where fluid 

properties change during any pressure disturbance or 

thermal action in the formation. As a result, the rock 

properties such as permeability, porosity, pore volume, 

and, sometimes, formation wettability are greatly 

influenced by fluid properties. The available literature 

shows that existing fluid flow models are based on the 

above mentioned pressure and temperature related 

properties for both rock and fluid. However, there are 

some other naturally occurred actions such as mineral 

precipitation, chemical reaction between fluid and rock 

media, existence of solid particles in fluid may have 

some influence in the behavior of fluid flow in porous 

media. All the parameters mainly affect the flow path in 

the formation. Based on the situation and pathway 

traveled, the pore space may squeeze or enlarge which 

varies in space and time. The above actions that take 

place in the pore network may change permeability and 

porosity.  

In the existing simulators, the rock and fluid properties 

are considered to be variable only with space. However, 

it is very important to consider permeability and 

viscosity as a function of time for applications involving 

geothermal actions or mineral precipitation and chemical 

reactions. The effect of changes on rock properties may 

range from negligible to substantial, depending on 

characteristics of the formation and property of fluid 

itself. The normal fluid motion equations such as 

Darcy’s law do not allow one to consider the variation of 

fluid and rock properties in a proper way. Darcy’s law 

has its own limitations of consideration of homogeneous 

media and constant fluid and rock properties. Therefore, 

it seems that the best way is to modify the Darcy’s law 

in such a way that it may create some options of using 

the variable rock and fluid properties during the 

development of theoretical fluid flow models. 

The concept of using variable rock and fluid properties 

can be modeled using the notion of memory. Eventually, 

we can define the properties of rock and fluid that help 

to describe the phenomena of changing permeability and 

viscosity with time and space as memory. Therefore, 

rock property such as permeability change with time 



  
 
 

 
 

may be modeled using a notion of fluid memory 

concept. This is true for fluid property and viscosity as 

well. During the thermal EOR process, or if there exist a 

hot water bank in the reservoir formation, geothermal 

actions take place. Even, during polymer flooding with 

shear-thinning fluid (Hossain et al., 2007a), changing 

permeability and viscosity with time concept can be 

applied.  

Hossain and Islam (2006) presented an extensive review 

of fluid memory on the available literature and models. 

They showed that different researchers tried to identify 

and define the fluid memory with different fluid 

properties such as stress, density, free energies and 

others. Some researchers also mentioned the effects of 

pathway and dependence on history of the fluid to define 

the memory (Arenzon et al. 2003; Shin et al. 2003; 

Zhang 2003). Memory is a function of time and space 

and forward time events depend on previous time events 

(Zhang 2003).  

Shin et al. (2003) studied the non-equilibrium 

mechanism in the transport of inertia-dominated 

particles. They explained the problem of particle 

deposition inside a turbulent boundary layer. They 

pointed out that a turbulent boundary layer is seriously 

affected by a non-equilibrium memory effect due to the 

inertia of particles and mean shearing of the carrier 

flows. While maintaining a partial memory of their 

earlier motion, part of the mean and fluctuating 

velocities at previous times are activated. This is called 

the non-equilibrium memory effect. The memory effect 

is sensitively dependent on the intermediate diffusion 

time scale and this has to be chosen depending on the 

characteristic time scale of the mechanism of interest. 

This model is for homogeneous surrounding media and 

is not sufficient to describe the full impact of fluid 

memory on flow behavior and in media. 

Within a porous medium, mobilization and subsequent 

flow of a fluid with a yield stress can be explained well 

when the notion of memory is introduced (Chen et al. 

2005). Here the modeled fluid behavior is a Bingham 

plastic using single-capillary expressions for the 

mobilization and flow within a pore-throat. To 

incorporate dynamic effects due to the viscous friction of 

mobilization, researchers introduced the concept of 

invasion percolation with memory (IPM). This concept 

explains the macroscopic threshold (minimum pressure 

gradient) which directly follows from the geometry of 

the path, along which mobilization first occurs. The 

minimum threshold path (MTP) is connected through 

nearest neighboring paths between two given boundaries 

(or points), along which the sum of thresholds is the 

minimum possible. Fundamental to this concept is the 

notion that specific, local thresholds must be exceeded 

across a given pore throat. Within this threshold, the 

fluid is to be mobilized, and these thresholds are 

distributed in the network. IPM addressed static 

properties of various problems with yield stress. These 

are the onset of the mobilization of a single-phase 

Bingham fluid in a porous medium, or foam formation 

and propagation in porous media in the absence of flow 



  
 
 

 
 

effects. However, it did not account for dynamic 

(viscous flow) effects of fluid by which mobilization 

occurs. In their calculations, Chen et al. (2005) 

discovered that the flow in an open path did not affect 

the distribution of pressure, so the identification of 

higher-energy paths was strictly a static (quasi-

thermodynamic) process. In the case of Bingham fluids, 

this would correspond to a vanishing plastic viscosity. 

They explained how IPM works, however they did not 

construct a model which represents the notion of fluid 

memory.   

Gatti and Vuk (2006) studied the motion of a linear 

viscoelastic fluid in a two-dimensional domain with 

periodic boundary conditions for the asymptotic 

behavior. They consider an isotropic homogeneous 

incompressible fluid of Jeffrey’s type where the 

Reynolds number is equal to one. They also assumed 

that density is independent of time. In addition they 

assumed that pressure and velocity are independent of 

time. These assumptions follow the conventional 

models.   

 

Theoretical development of model 

Consider a porous media of ABCDEFGH as represented 

by Fig. 1. A differential element of the reservoir, 

A’B’C’D’E’F’G’H’ is defined for a single phase fluid 

flow. The mathematical model which governs the 

process of a reservoir is formulated based on some basic 

equations. To understand the flow of fluids in porous 

media we must be able to postulate these equations that 

govern the behavior of these fluids. Conservation of 

mass, rate equation and equation of state are some of 

them. 

 

Conservation of mass. The element of reservoir shown 

in Fig. 1(b) is taken into account to apply mass 

conservation. The fluid is entering through the face 

A’D’E’H’ and going out through the face B’C’F’G’ in 

the x-direction. The differential equation for the 

conservation of mass is governed by (Bird et al. 2002) 

 

  డሺఘ ௨ೣሻ
డ௫

൅ డ൫ఘ ௨೤൯
డ௬

൅ డሺఘ ௨೥ሻ
డ௭

ൌ െ డሺఘ థሻ
డ௧

…………….. (1)
 

 

Rate equation. Temperature variation plays a great role 

in the behavior of fluid flow through some porous media 

such as formation zone with hot water bank, geothermal 

area, and during thermal operations or polymer flooding. 

Fluids may precipitate minerals in the pores of the 

porous medium during the heavy oil with asphaltene 

flow. Some fluids (e.g. crude oil with other minerals) 

carry solid particles that may impede some of the pores. 

The precipitation and obstruction may reduce the pore 

size and thus decrease the permeability with time. Some 

fluid may have chemically reacting behavior with the 

medium which may enlarge the pore size. These 

phenomena can lead to local mineralization and 

permeability changes in space and time. However, if 

permeability reduces with time, the effect of fluid 

pressure at the boundary on the flow of fluid through the 

medium is delayed. The rock property changes with time 



  
 
 

 
 

give important information about the pressure response 

at the boundary of the reservoir. The delaying response 

of pressure with time due to permeability change over 

time in the fluid flow may be modeled using the concept 

of the memory.  

Caputo (1999) modified Darcy’s law by introducing the 

memory represented by a derivative of fractional order 

of differentiation ሺߙሻ and ratio of the 

pseudopermeability of the medium with memory to fluid 

viscosity ሺߟሻ.  These two parameters simulate the effect 

of a variation of permeability and viscosity over time. If 

the fluid flows in x-direction, the mass flow rate 

eq at ;  u ion may be written as

௫ݍ  ൌ  െ ߩ ߟ௢  ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ,…………………………(2) 

 

where, 

  

డഀ

డ௧ഀ ሼ݌ሺݔ, ሻሽݐ ൌ

 ሾ1 Γሺ1 െ  ሻ⁄ ሿ ሺ ሻି ఈߦ  ቂ డ
డక

α ׬  ݐ െ ሻቃݐ   ,ݔሺ݌ ௧ߦ݀  ଴

 with  0 ൑ ߙ  ൏   1. 

    

It is clear that the memory introduced in Eq. (2) to 

describe the flow of the fluid implies the use of two 

parameters, namely ߙ and  ߟ. These two parameters are 

used instead of the permeability and viscosity in 

conventional Darcy’s law. Equation (2) can be written 

for fluid velocity which is related to pressure gradient as; 

 

௫ݑ  ൌ  െ ߟ ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ……………………………… (3) 

 

Substituting Eq. (3) in to continuity equation, Eq. (1), for 

1D yields; 

  

 డ
డ௫

ቄെߟ ߩ ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃቅ ൌ െ డሺఘ థሻ
డ௧

 

 

In the right-hand side of equation, porosity is a function 

of pressure and time. So the equation can be expanded to 

eliminate the porosity and density as: 

  

 డ
డ௫

ቄെߟ ߩ ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃቅ ൌ ߶ డఘ
డ௧

൅ ߩ డథ
డ௧

………………..(4) 

 

Equation of state. The equation of state is needed to 

express the density in terms of pressure. Most oil field 

liquid systems are considered to be slightly 

compressible. In this case, equation of state is: 

 

ߩ  ൌ  ௢ ݁௖೑ ሺ௣ ି௣೚ ሻ………………………………….(5)ߩ 

 

Now to derive the general governing equation with 

memory, it can be shown that porosity is related to the 

pressure and formation compressibility because the 

pressure difference between overburden and internal 

pore pressure is referred to as the effective overburden 

pressure. During pressure depletion operations, the 

internal pore pressure decreases which leads to increase 

of the effective overburden pressure. This increase 

causes two effects such as the reduction of bulk volume 

of the reservoir rock and expansion of sand grains within 



  
 
 

 
 

the pore spaces (Ahmed 2001).  These two volume 

changes tend to reduce the pore space and, therefore, the 

porosity of the rock. For most petroleum reservoirs, the 

rock and bulk compressibility are considered small in 

comparison with the pore compressibility. The formation 

compressibility is the term commonly used to describe 

the total compressibility of the formation ሺܿ௦ሻ which can 

be set equal to pore compressibility. The formation 

compressibility is defined as the fractional change in 

pore volume of the rock with a unit change in pressure at 

an isothermal condition and given by the following 

relationship: 

 

 ܿ௦ ൌ െ ଵ
௏೛

ቀడ௏೛

డ௣
ቁ

்
 

 

where ݌ is the pore pressure, ݒ௣ is the pore volume. The 

above equation can be expressed in terms of the porosity 

߶ by noting that ߶ increases with the increase in the pore 

pressure; 

 

 ܿ௦ ൌ ଵ
థ

డథ
డ௣

 , which becomes as, ߶ ൌ  ݁௖ೞ ሺ௣ ି௣೚ ሻ.   

 

As ߶ ൌ ݂ሺ݌ሻ and ݌ ൌ ݂ሺݐሻ, applying the chain rule of 

differentiation to ߲߶ ⁄݌߲ ; 

  

 డథ
డ௧

ൌ డథ
௣డ

డ௣
డ௧

 

so,  ܿ௦ ൌ ଵ
థ

ቀడథ
డ௧

డ௣
డ௧

ൗ ቁ 

  

 ߶ ܿ௦
డ௣
డ௧

ൌ డథ
డ௧

………………………………………...(6) 

  

Substituting Eq. (6) into Eq. (4) yields; 

 

 డ
డ௫

ቀߟ ߩ ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃቁ ൌ  ߶ డఘ
డ௧

൅ ௦ܿ ߩ ߶
డ௣
డ௧

                                               

  

 డ
డ௫

ቀߟ ߩ ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃቁ ൌ  ߶ ቄడఘ
డ௧

൅ ௦ܿ ߩ 
డ௣
డ௧

ቅ…………..(7)                       

 

Equation (7) is the basic partial differential equation 

with memory for any axial flow of a single phase fluid in 

a porous medium. By using the chain rule for 

differentiation in the LHS of Eq. (7) yields; 

 

 

డఎ
డ௫

ߩ ቂ డഀ

ഀడ௧
ቀడ௣

డ௫
ቁቃ ൅ ߟ ቂ డഀ

ഀడ௧
ቀడ௣

డ௫
ቁቃ డఘ

డ௫
൅ ߟ ߩ డ

డ௫
ቀቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃቁ 

 ൌ  ߶ ቄడఘ
డ௧

൅ ௦ܿ ߩ 
డ௣
డ௧

ቅ………………………………..(8) 

  

Substituting Eq. (5) into Eq. (8) yields; 

 

 

డఎ
డ௫

ቂߩ௢ ݁௖೑ ൫௣ –௣೚ ൯ቃ ቂ డഀ

డ ഀ௧
ቀడ௣

డ௫
ቁቃ 

 ൅ ߟ 
డቂఘ೚ ௘೎೑ ሺ೛ ష೛೚ ሻቃ

డ௫
ቂ డഀ

ഀడ௧
ቀడ௣

డ௫
ቁቃ 

 ൅ ߩൣ ߟ௢ ݁௖೑ ሺ௣ ି௣೚ ሻ൧ డ
డ௫

ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ 

 ൌ  ߶ ቊ
డቂఘ೚ ௘೎೑ ሺ೛ ష೛೚ ሻቃ

డ௧
൅ ܿ௦ൣߩ௢ ݁௖೑ ሺ௣ ି௣೚ ሻ൧ డ௣

డ௧
ቋ 

 

If we assume that the compressibility of fluid is constant 

over the pressure range of  ݌ and ݌଴, the above equation 

can be differentiated with respect to x. 

 



  
 
 

 
 

 

డఎ
డ௫

ቂߩ  ݁௖೑ ൫௣ –௣೚ ൯ቃ ቂ డഀ

డ௧ഀ௢ ቀడ௣
డ௫

ቁቃ 

 ൅ ߩ ߟ௢ܿ  ݁௖೑ ሺ௣ ି௣೚ ሻ డ௣
డ௙ ௫

 ቂ డഀ

డ ഀ௧
ቀడ௣

డ௫
ቁቃ 

 ൅ ߩ ߟ  ݁௖೑ ሺ௣ ି௣೚ ሻ డ
డ௫௢ ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ 

 ൌ  ߶ ቂߩ௢ ௙ܿ ݁௖೑ ሺ௣ ି௣೚ ሻ డ௣
డ௧

൅ ܿ௦ ߩ௢ ݁௖೑ ሺ௣ ି௣೚ ሻ  డ௣
డ௧

ቃ 

 

 

డఎ
డ௫

ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ ൅ ௙ܿ ߟ 
డ௣
డ௫

 ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ ൅ డ ߟ 
డ௫

ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ 

 ൌ  ߶ ൫ ௙ܿ ൅ ܿ௦൯ డ௣
డ௧

 

 

 
ଵ
ఎ

డఎ
డ௫

ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ ൅ ௙ܿ
డ௣
డ௫

 ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ 

 ൅ డ
డ௫

ቂ డഀ

డ௧ഀ ቀడ௣
డ௫

ቁቃ ൌ థ ௖೟
ఎ

 డ௣
డ௧

…………………………...(9) 

                                                          

Using the definition of Eq. (2) to replace the fractional 

derivative in Eq. (9), we can substitute that into Eq. (9); 

 

  డഀ

డ௧ഀ ቀ
డ௫
డ௣ቁ ൌ ሾ1 Γ⁄ ሺ1 െ  αሻሿ ׬ ሺݐ െ ሻି ఈߦ  ቂ డ

డక
ቀడ௣

డ௫
ቁቃ ௧ߦ݀

଴  

with  0 ൑ ߙ  ൏   1. 

 

As ߙ is related to time and space, the above equation can 

be written as; 

 

߲ఈ

ఈݐ߲ ൬
݌߲
൰ݔ߲ ൌ

׬ ሺݐ െ ሻି ఈߦ  ൬ ߲ଶ݌
൰ݔ߲ ߦ߲ ௧ߦ݀

଴

Γሺ1 െ  αሻ   

 

Substituting the above equation in Eq. (9) yields; 

 

 
ଵ
ఎ

డఎ
డ௫

൥
׬ ሺݐെ ߦሻെ ߙ൬ ݌2߲

ݔ߲ ߦ߲
൰݀ߦ

ݐ
0

Γሺ1െ αሻ ൩ ൅ ௙ܿ
డ௣
డ௫

 ൥
׬ ሺݐെ ߦሻെ ߙ൬ ݌2߲

ݔ߲ ߦ߲
൰݀ߦ

ݐ
0

Γሺ1െ αሻ ൩ 

 ൅ డ
డ௫

൥
׬ ሺ௧ି కሻష ഀ൬ ങమ೛

ങ഍ ങೣ൰ௗక೟
బ

୻ሺଵି ஑ሻ
൩ ൌ థ ௖೟

ఎ
 డ௣

డ௧
 ……………….(10) 

 

Equation (10) represents the general form of diffusivity 

equation with memory. Equation (10) is a non-linear 

diffusivity equation considering fluid memory for an 

axial flow of any single phase fluid in porous media. 

Equation (10) is strictly non-linear because both the first 

part (due to dependence of ߟ on pressure) and the second 

part are non-linear. In addition, the third part consists of 

a derivative of a pressure derivative with memory part. 

The fourth part consists of pressure derivative with 

time, ߟ compressibility and porosity multiplication 

which also makes this term nonlinear. If the effect of 

memory is neglected (i.e. ߙ ൌ 0), this equation reduces 

to the conventional form of diffusivity equation (Hossain 

et al. 2008). 

 

Definition of the composite variable, ࣁ  

The most important parameter of Eq. (10) is the 

variable ߟ, which depends on formation and fluid 

properties. Thus it is very essential to define the type of 

crude oil and the type of formation because different 

crude oils have different viscosity and properties. This is 

true also for reservoir formation. Different reservoirs 

have different types of rocks, heterogeneity and 

complexity. Therefore, the use of the proposed 

diffusivity equation with memory (Eq. (10)) is more 

sensitive to its parameters definition. To solve this 

equation as an example case, Almehaideb (2003) 



  
 
 

 
 

viscosity models and Iሶscan et al. (2006) permeability 

correlation are used. To solve the diffusivity equation 

with memory, other correlations such as Beal’s (1946), 

Chew and Conally’s (1959), Beggs and Robinson 

(1975), Vazquez and Beggs (1980), Khan et al. (1987) 

and Petrosky and Farshad (1995) can be easily used in 

computing viscosity. The viscosity models developed by 

Almehaideb (2003) are based on regional data, such as 

Standing’s for California crudes, Petrosky and Farshad’s 

for Gulf of Mexico crudes, and Glaso’s for North Sea 

crudes. He cited that the use of these regional 

correlations is more appropriate for crudes from the 

same basins for which the correlation is derived. He also 

used other correlations, such as the Vasquez and Beggs 

correlation, which are based on data from a very large 

number of samples coming from multiple regions. 

The properties of the crudes used in this computation 

had the following ranges of measured properties 

(Almehaideb 2003): 

 

.6 30.9 ൏ ൏ ܫܲܣ 48

൏190 ൏ ܶ  ܨ 306

൏501 ൏ ௕݌  ܽ݅ݏ݌ 4822 

1.142 ܾݐݏ/݈ܾܾ  2 ൏ ௢ܤ  ൏ 3.56

௦ ൏128 ൏ ܴ  3871 

0.746 ൏ ௚ߛ  ൏ 1.116 

 

Oil viscosity above the bubble point: 

 

௔௕ߤ  ൌ  ௢௕଼݁.ସଶଶൈଵ଴షఱ ሺ௣ ି ௣್ሻ……………………...(11)ߤ

 

w re, 

௢௕ߤ ൌ 9927 ൈ 1 ି଴.ହଽ଻଺ଶ଻ܶି଴.ଽସଵ଺ଶସ 

he

6.5 0ହܴ௦

     ൈ ି଴.ହହହଶ଴଼ ିଵ.ସ଼଻ସସଽ       ߛ௚ ܫܲܣ

݌ ൌ  െ620.592 ൅ 6.23087 ோೞ ఊ೚
ఊ೒ ஻೚

భ.యఴఱఱవ௕ ൅ 2.89868 ܶ   

௢ܤ  ௢௕݁ି஼೚ሺ௣ ି ௣್ሻ   

௢௕ܤ ൌ  1.122018 ൅ 1.410 ൈ 10ି଺ ோೞ்

ൌ ܤ

ఊ೚
మ   

ܿ௢ ൌ ሺെ70603.2 ൅ 98.404 ܴ௦ ൅  378.266 ܶ  

           െ6102.03 ߛ௚ ൅ ሻܫܲܣ 755.345 ሺ݌ ൅ 3755.53ሻ⁄   

 

The above equations are based on oil field units such as 

oil formation volume factor ሺܤ௢ሻ, rb/stb; oil 

compressibility ሺܥ௢ሻ, psi-1; oil formation volume factor 

at bubble pointሺܤ௢௕ሻ, rb/stb; oil viscosity at the bubble 

pointሺߤ௢௕ሻ , cp; oil viscosity above the bubble 

pointሺߤ௔௕ሻ, cp; solution gas oil ratio ሺܴ௦ሻ, ݂ܿݏ ⁄ܾݐݏ ;  

temperature of crude oil ሺܶሻ, oF; specific gravity of gas 

൫ߛ௚൯, ݈ܾ௠ ⁄ଷݐ݂ ; specific gravity of oilሺߛ௢ሻ, ݈ܾ௠ ⁄ଷݐ݂ ; and 

  .oil gravity (API), 0API ܫܲܣ

 

Iሶscan et al. (2006) permeability correlation is based on  

the data which are correlated by a power-law decaying 

equation. The equation was originally proposed by 

Civan (2000) for pore-throat plugging. The equation was 

extended and verified by Iሶscan and Civan (2005) for 

plugging criteria in formation damage. Finally, Iሶscan et 

al. (2006) modified their equation by changing the 

parameters and coefficients. Therefore, the independent 



  
 
 

 
 

correlation obtained directly applicable for stress–

permeability relationships is given as: 

  

 ݇ ൌ ሻି஻݌ሺ ܣ  ൅                                                     (12)..………………………………ܥ 

 

where, 

 

A, B, C = Empirical coefficient. 

 

Iሶscan et al. (2006) presented both the stress–strain 

relationships with the permeability of the reservoir rock 

samples obtained from experimental data on rock 

samples. The rocks were assumed homogeneous and 

isotropic when they are not under mechanical stress.  

They also analyzed stress–strain applications, porosity, 

and permeability measurements and permeability 

variation with effective overburden stress with four 

limestone samples from southeast Turkey, i.e. limestone-

1, limestone-2, limestone-3, limestone-4, respectively. 

Based on their findings, the empirical correlation (Eq. 

(12)) for limestone-3 is given as: 

 

 ݇ ൌ 0.003 ሺ݌ሻି଴.ଷଵ ൅ 0.0105……………………(13)                                    

 

where,  

p = pressure, psi 

k = permeability, Darcy 

 

The definition of  ߟ can be expanded in the form of 

permeability, viscosity and time as: 

 

ߟ  ൌ ௠య௦భశഀ

௞௚
ൌ   ቂ ௠మ

௞௚ ௠ ௦⁄
ቃ ሺݏఈሻ ൌ  ௞

ఓೌ್
ሺݐሻఈ 

 

Substituting Eqs. (11) and (13) into the above relation 

where  ߤ௔௕ unit is replaced from oil field unit to  SI unit.  

 

ߟ  ൌ  ௞
ఓೌ್

ሺݐሻఈ ൌ  ଴.଴଴ଷ ሺ௣ሻషబ.యభା ଴.଴ଵ଴ହ

ఓ೚್௘ఴ.రమమൈభబషఱ ൫೛ ష ೛್൯  ሺݐሻఈ ……….(14)                       

 

Numerical Solution 

Numerical simulation using finite differences has been 

selected to model the diffusivity equation with memory 

(Eq. (10)). The steps to model the equation are outlined 

in the solution procedure section. A reservoir of length 

(L = 5000.0 m), width (ݓ ൌ 300 ݉) and height, 

ܪ) ൌ 20 ݉) has been considered. The initial 

porosityሺ߶௢ሻ and permeability ሺ݇௢ሻ of the reservoir are 

30% and 15 ൈ 10ି ଵହ ݉ଶ, respectively. The reservoir is 

completely sealed and produces at a constant rate, for 

which the initial pressure is ݌௢ ൌ  The .ܽ݌ 48,263,299

fluid is assumed to be API 31 gravity crude oil with the 

initial properties such as oil compressibility;  ܿ௢ ൌ

1.7404421 ൈ 10ି ଽ  1 ⁄ܽ݌ ௢ߤ  , ൌ .ܽ݌ 0.12  at 200°F   ݏ

(other fluid properties are presented in solution 

procedure section). Formation rock 

compressibility,   ܿ௦ ൌ 5.80147 ൈ 10ି ଵ଴  1 ⁄ܽ݌  , initial 

production rate, ݍ௜ ൌ 2.024144 ൈ 10ି ସ  ݉ଷ ⁄ݏ   have 

been considered. It is also deemed as fractional order of 

differentiation, ߙ ൌ 0.2 ~ 0.8, Δݔ ൌ 20 ݉, Δݐ ൌ 7200  

ݐ and ,ݏ ൌ 10 months. In solving this diffusivity 



  
 
 

 
 

equation with memory, trapezoidal method is used. All 

computation is carried out by Matlab 6.5.  

 

The direct use of Eqs. (11), (13) and (14) into Eq. (10) 

has some restriction because of unit conversion. 

Therefore, it is necessary first to transform the units. In 

the computation with Eq. (11), 

ܴ௦ ൌ ݂ܿݏ 129.0 ⁄,ܾݐݏ  ܶ ൌ 200 oF,  ߛ௚ ൌ 0.748 

݈ܾ௠ ⁄ଷݐ݂  and  ߛ௢ ൌ 0.862 ݈ܾ௠ ⁄ଷݐ݂  are considered. 

When  ߤ௔௕ is used during the computation of Eq. (10), it 

is transformed into SI unit as pa-s and Eq. (11) can be 

written as; 

 

௔௕ߤ  ൌ ௢௕଼݁.ସଶଶൈଵ଴షఱሺ௣ ି ௣್ሻߤ  ൈ  10ିଷ……………(15)                                         

 

In this study, SI unit is considered, therefore, it is also 

necessary to transform Eq. (13) into SI as pressure in pa 

(1 psi = 6894.76 pa) and permeability in m2 (1 darcy = 

10-12 m2), then the equation becomes as, 

 

 ݇ ൌ ሾ0.003 ሺ݌ 6894.76⁄ ሻି଴.ଷଵ ൅ 0.0105ሿ ൈ 10ିଵଶ  

 

 ݇ ൌ ሾ3.0 ሺ݌ 6894.76⁄ ሻି଴.ଷଵ ൅ 10.5ሿ ൈ  10ିଵହ ..…(16)  

                                  

Substituting Eqs. (15) and (16) into Eq. (14) where  ߤ௔௕ 

and ݇ units are replaced from oil field unit to  SI unit.   

 

ߟ  ൌ  ௞
ఓೌ್

ሺݐሻఈ ൌ  ൣଷ.଴ ሺ௣ ଺଼ଽସ.଻଺⁄ ሻషబ.యభାଵ଴.ହ൧ൈ ଵ଴షభఱ

ఓ೚್௘ఴ.రమమൈభబషఱ൫೛ ష ೛್൯ ൈ ଵ଴షయ
 ሺݐሻఈ                  

 

ߟ  ൌ   ൣଷ.଴ ሺ௣ ଺଼ଽସ.଻଺⁄ ሻషబ.యభାଵ଴.ହ൧ൈ ଵ଴షభమ

ఓ೚್௘ఴ.రమమൈభబషఱ൫೛ ష ೛್൯ 
 ሺݐሻఈ ………...(17)                        

 

To solve the Eq. (10) based on the above data, the 

eq ation can be written as  u

  

ଵ
ఎ

 డఎ
డ௫

 ܼ ൅ ௙ܿ  డ௣
డ௫

 ܼ ൅ డ௓
డ௫

ൌ  థ ௖೟
ఎ

డ௣
డ௧

……………………(18)                       

 

where, ܼ ൌ  
׬ ሺ௧ି కሻష ഀ ങమ೛

ങ഍ങೣ డక ೟
బ

୻ሺଵି ஑ሻ
 

 

In solving Eq. (18), initially it is assumed that Darcy 

diffusivity equation is valid and the variation of the 

permeability with space and time is constant.  The initial 

computation then used to solve Eq. (18) where reservoir 

formation is homogeneous (e.g. precipitation is constant 

in every place in x-direction) and isotropic (e.g. 

precipitation is not constant in every place in other 

directions). Permeability is varied only with respect to 

time globally not locally. As a result, 

ߟ ൌ ܼ ሻ andݐ   ,݌ሺߟ  ൌ  ܼሺݐ   ,݌ሻ. It is also assumed that 

all coefficient approximated using pressure value at time 

step n, for the grid point i. Therefore, 

ߟ ൌ ௜݌ሺߟ 
௡ሻ and ܼ ൌ  ܼሺ݌௜

௡ሻ.   

 

Equation (18) can be solved using two concepts. These 

are based on space and pressure derivative concepts. 

 

Space derivative concept. Equation (18) can be 

expanded using the space derivative concept as 

 



  

 
 

 
 
߶ ܿ௧ 

డ௣
డ௧

 ൌ  డఎ
డ௫

ܼ ൅ ߟ డ௓
డ௫

൅ ௙ܿ ܼ ߟ డ௣
డ௫

             

 

 డ௣
డ௧

 ൌ  ଵ
థ ௖೟ 

ሺܥଵ ܼ ൅ ሻߟ ଶܥ ൅
௖೑ ௓ ఎ

థ ௖೟ 

డ௣
డ௫

……………….(19)                

 

where, ܥଵ ൌ డఎ
డ௫

  and  ܥଶ ൌ డ௓
డ௫

.          

 

Equation (19) is discretized using finite difference 

method as 

 ௣೔
೙ శ భି ௣೔

೙

୼௧
  

  ൌ ଵ
థ೔

೙ ௖೟ 
ሺܥଵ ௜

௡  ܼ௜
௡ ൅ ଶ ௜ܥ

௡ ௜ߟ 
௡ሻ ൅

௖೑  ௓೔
೙  ఎ೔

೙

థ೔
೙ ௖೟ 

 ௣೔శభ
೙ ି ௣೔

೙

୼௫
         

 

௜݌
௡ ା ଵ ൌ ௜݌

௡ ൅ ୼௧
 ௖೟ 

൬஼భ ೔
೙  ௓೔

೙ା஼మ ೔
೙  ఎ೔

೙

థ೔
೙ ൰ ൅ ୼௧ ௖೑  

୼௫ ௖೟ 

௓೔
೙  ఎ೔

೙

థ೔
೙ 

ሺ݌௜ାଵ
௡ െ ௜݌ 

௡ሻ      

 

௜݌ 
௡ ା ଵ  ൌ ௜݌ 

௡ ൅  ܽ ൅ ܾሺ݌௜ାଵ
௡ െ ݌௜

௡ሻ……………….(20) 

 

In Eq. (20), 

 

ܽ ൌ ܽଵܽଶ,   ܾ ൌ ܽଷܽସ,  ܽଵ ൌ  ୼௧
 ௖೟ 

 , ܽଶ ൌ  ஼భ ೔
೙  ௓೔

೙ା஼మ ೔
೙  ఎ೔

೙

థ೔
೙  , 

ܽଷ ൌ
୼௧ ௖೑  

୼௫ ௖೟ 
 and ܽସ ൌ  ௓೔

೙  ఎ೔
೙

థ೔
೙ 

 

 

Pressure derivative concept. Equation (18) can be 

expanded using the pressure derivative concept as 

 

 ߶ ܿ௧ 
డ௣
డ௧

 ൌ  డఎ
డ௫

ܼ ൅ ߟ డ௓
డ௫

൅ ௙ܿ ܼ ߟ డ௣
డ௫

             

    

 డ௣
డ௧

            

 ൌ  ଵ
థ ௖೟ 

ቀడఎ
డ௫

ܼ ൅ ߟ డ௓
డ௫

ቁ ൅
௖೑ ௓ ఎ

థ ௖೟ 

డ௣
డ௫

       

 

Applying the chain rule in the above equation, it 

becomes as;                                         

 

 డ௣
డ௧

 ൌ  ଵ
థ ௖೟ 

ቀడఎ
డ௣

డ௣
డ௫

ܼ ൅ ߟ డ௓
డ௣

 డ௣
డ௫

ቁ ൅
௖೑ ௓ ఎ

థ ௖೟ 

డ௣
డ௫

    

 

 డ௣
డ௧

 ൌ  ଵ
థ ௖೟ 

ቄడఎ
డ௣

ܼ ൅ ߟ డ௓
డ௣

൅ ௙ܿ ܼ ߟቅ డ௣
డ௫

     

 

 డ௣
డ௧

 ൌ  ଵ
థ ௖೟ 

൛ܦଵ ܼ ൅ ଶܦߟ ൅ ௙ܿ ܼ ߟൟ డ௣
డ௫

 …………….(21)                        

 

where, ܦଵ ൌ డఎ
డ௣

  and  ܦଶ ൌ డ௓
డ௣

.          

 

Equation (21) is discretized using finite difference 

method as 

 

௣೔
೙ శ భି ௣೔

೙

୼௧
 ൌ    ଵ

థ೔
೙ ௖೟ 

൫ܦଵ ௜
௡  ܼ௜

௡ ൅ ଶ ௜ܦ
௡ ௜ߟ 

௡ ൅  ௙ܿ  ܼ௜
௡  ߟ௜

௡൯ ௣೔శభ
೙ ି ௣೔

೙

୼௫
         

 

௡ ା ଵ ௜݌ 

 ൌ ௜݌ 
௡ ൅   ୼௧

 ଶ ୼௫ ௖೟ 
൬஽భ ೔

೙  ௓೔
೙ା஽మ ೔

೙  ఎ೔
೙ ା   ௖೑   ௓೔

೙  ఎ೔
೙

థ೔
೙ ൰ ሺ݌௜ାଵ

௡ െ ௜ିଵ݌ 
௡ ሻ       

 

௜݌
௡ ା ଵ  ൌ ௜݌ 

௡ ൅  ܽ ܾሺ݌௜ାଵ
௡ െ ݌௜ିଵ

௡ ሻ…………………..(22)                        

 

In Eq. (22), 

 

 ܽ ൌ ୼௧
 ଶ ୼௫ ௖೟ 

,  ܾ ൌ  ൬
஽భ ೔

೙  ௓೔
೙ା஽మ ೔

೙  ఎ೔
೙ ା   ௖೑   ௓೔

೙  ఎ೔
೙

థ೔
೙ ൰  

                              

Solution Procedure 

To solve the diffusivity equation with memory (Eq. (20) 

or Eq. (22)), the following steps were introduced; 



  
 
 

 
 

Based on the ab e initial Z-value is 

computed fo es; 

vi) A logical relations

 is chosen. The 

oice depends on the fluid and formation type. 

to fluid and rock type. The 

defi aries with fluid (i.e., crude oil) 

and reservoir rock type. Therefore, it is 

necessary to identify which correlation should 

 used to represent the pressure dependent 

alue. In this comp aideb 

(2003) viscosity correlat

(2006) permeability co sed; 

the in  

2) for pressure distribution in space and 

f 

pressure distribu

tion with the 

omentum equation.  

డ௫మ

  

i) Conventional Darcy’s law is used for initial 

computation of pressure variation with time and 

space; 

ii) To initialize the solution, conventional  

diffusivity equation is considered where no 

memory is used; 

iii) Solve the Darcy diffusivity equation to find out 

the pressure (p) as a function of time and space. 

Also computed is the ߲ଶ݌ ⁄ݐ߲ݔ߲  term; 

iv) Finite difference method is used to solve the 

diffusivity equation and SP-line function is 

used to compute the ߲ଶ݌ ⁄ݐ߲ݔ߲ ;  

v) ove steps, th

r different ߙ valu

hip of ߟ and pressure (p) 

based on the definition of ߟ (i.e., ߟ ൌ

݉ଷݏଵାఈ ݇݃⁄ ൌ ݉ଷݏ. ఈݏ ݇݃⁄ )

ch

 is sensitive ߟ

nition of ߟ v

be

v ߟ utation, Almeh

ions and Iሶscan et al. 

rrelations were u

vii) At itial condition (t = 0), ߙ ൌ 0, therefore,

ߟ ݉ଶݏఈ ሺ݇݃ ⁄ݏ ݉ ሻ⁄  ௢ is calculated as: ߟ௢ ൌ

 ൌ ݇௢ ൈ ఈݏ ⁄௢ߤ ൌ ݇௢ ⁄௢ߤ ; 

viii) Based on the above steps, solve the Eq. (20) or 

Eq. (2

time; 

ix) Repeat the all steps until the convergence o

tion (i.e.,  ݌௡ െ ௡ିଵ݌ ൏א) 

 

Conventional diffusivity equation. To initialize the 

solution of Eq. (20) or Eq. (22), the pressure distribution 

is assumed to be modeled through the diffusivity 

equation in porous media. This equation has been 

derived by combining the continuity equa

Darcy’s law as the m

 

డమ௣ ൌ ఓబథ ௖೟
௞

 డ௣
డ௧

… … ………………(23) 

௧ n Eq. (23) and 

y be written that 

… ……………

 

It is defined that ܽଶ ൌ ܿ ௢ߤ ߶  ݇⁄   i

therefore, it ma

 

డ௣  
డ௧

ൌ ଵ
௔మ

డమ௣
డ௫మ  

 

ଵ ݌௜
௡ା ൌ ௜݌

௡ ൅
௔మ

ଵ ୼
ሺ୼௫ሻమ

௧ ሺ݌௜ାଵ
௡ െ ௜

௡ ൅ ିଵ

 

൅ ܽଵ
௡ ሻ,………

݌2 ௜݌
௡ ሻ                                            

ଵ (24)   

ollowing initial and 

oundary conditions are considered. 

௜݌ 
௡ା ൌ ሺ1 െ 2ܽଵሻ݌௜

௡ ሺ݌௜ାଵ ൅ ௜ିଵ݌
௡

  

where, ݄ ൌ Δݐ ሺΔݔሻଶ⁄  and ܽଵ ൌ  ݄ ܽଶ⁄ . This equation 

can be solved using the specified initial and boundary 

conditions. In solving Eq. (24), the f

b



  
 
 

 
 

itial condition. 

y is considered as a constant production 

te boundary.  

u rd  to Darcy’s law,  

 

 

,ݔሺ݌ 0ሻ ൌ ௜ In݌

 

Boundary condition. The external boundary is 

considered as no flow boundary i.e. closed reservoir. The 

interior boundar

ra

 

Th  oe ter boundary. Acco ing

  

௫ୀ௅ݑ ൌ െ ௞
ఓ

డ௣
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ൌ 0, ֜  ௞
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௫ୀ௅

௣೔శ భ
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 భ
೙ ି ௣೔ష
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ൌ 0, ֜ ௜ା݌ 

௡ ൌ ௜ି݌ 
௡   ଵ ଵ

nn ing to Darcy’s law, 

 

Th  ie er boundary. Accord

  

௫ୀݍ ൌ ௫ݑ ܣ ൌ െ ௞ ஺೤೥ ଴ ఓ
డ௣
డ௫
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ݍ ൌ ሺ ሻ………………………..(25) ݁ଵ ௜ାଵ݌

௡ െ ௜ି݌ 
௡

 

௞ ஺೤೥where ݁ଵ ൌ െ
ଶఓ ∆௫

.  

Equation (25) can be written as  ݌௜ାଵ
௡ ൌ ௜ିଵ݌

௡ ൅ ݍ ݁ଵ⁄ . 

This is used in the solution of Eq. (20) or Eq. (22). 

 reaches at around 200 m after 1 month of production.   

which becom 0 at the oute boundary of the reservoir.      

 

Results and Discussion 

Fig. 2 presents the variation of pressure with distance 

from the wellbore towards the outer boundary of the 

reservoir based on Darcy’s diffusivity equation. Pressure 

response increases towards the boundary with time. The 

maximum pressure drop is in the wellbore and it 

gradually increases up to the initial reservoir pressure 

with distance. Pressure drop reaches at initial pressure at 

a distance approximately 850 m after 10 month whereas 

it

 

The effects of Z-values with distance are depicted in  

Fig. 3. The variation is shown for 1 and 10 months 

where Darcy diffusivity and  ߙ ൌ 0.2  are considered 

during computation. Z-values increase very fast around 

the wellbore and reach its pick at a distance of 120 m 

and 170 m for 1 and 10 months respectively. The 

decreasing trend begins after the pick and becomes zero 

after 350 m and 1200 m. The effects of z-values increase 

at a wider range of reservoir area from the wellbore with 

the increase of production life of reservoir.  Therefore, it 

can be concluded that at the beginning of production life, 

there is a great impact around the wellbore and as time 

passes, this impact affects throughout the reservoir 

es 

 

Variation of ࣁ with distance. Fig. 4 shows the variation 

of ߟ  with distance from the wellbore towards the outer 

boundary of the reservoir for ߙ ൌ 0.1. This figure 

compares the Darcy diffusivity equation and proposed 

diffusivity equation with memory.  Fig. 4(a) is plotted 

for 1 month after the start of production and Fig. 4(b) is 

for 2 months. There is no difference of change of ߟ  with 

respect to distance at the initial stage of the reservoir 

r 



  
 
 

 
 

ory” in describing fluid flow through 

orous media

ery high pressure where there is no 

 substantial difference in 

ressure response (Fig. 6(b)).  

      

tion of porosity over time 

 different reservoir position. 

production (Fig. 4(a)). However, the difference of 

changing ߟ becomes significant with production time 

(Fig. 4(b).  ߟ variation is more sensitive with time and 

around the wellbore of the reservoir which is captured by 

the notion of “memory”. The numerical value of ߟ is 

substantially reducing when production continues with 

time and the effects spread through the reservoir with 

time (Fig. 4(b)) which is only capturing by proposed 

model. So, it can be concluded that there is a strong 

effects of “mem

p .  

 

Variation of ࣁ with reservoir pressure. The variation 

of ߟ  with reservoir pressure is depicted by Fig. 5 for the 

proposed model. The trend of the curve is highly non-

linear and it is an elliptical shape. At the beginning of 

pressure, ߟ variation is very high and it starts to decrease 

with the increase of pressure. The variation of ߟ 

becomes stable at v

change of ߟ  value. 

The pressure response with respect to the variation of 

 is compared for both Darcy model and proposed  ߟ

model in Fig. 6 when ߙ ൌ 0.1. Fig. 6(a) is plotted when 

reservoir production time is considered as 1 month and 

Fig. 6(b) is shown the comparison for 2 months of 

production life. It is very interesting that after 1 month of 

production, there is no pressure variation over time or 

over ߟ when proposed model is used to calculate the 

pressure variation throughout the reservoir (Fig. 6(a)). 

However, the variation of pressure starts to decline with 

 after one month. This only due to the memory effects ߟ

on fluid and rock which is not possible to capture by 

conventional diffusivity equation. The declining pressure 

variation response is dominant with time. As production 

time of the reservoir increases, the effect of memory 

becomes dominant and gives a

p

 

Porosity change with distance. The variation of 

porosity over distance from the wellbore towards the 

outer boundary of the reservoir is shown in Figure 7 

using the conventional diffusivity equation and proposed 

model where ߙ ൌ 0.1 is considered.  At the beginning of 

the production, there is no substantial difference of 

porosity change with the initial porosity of 0.30   

(Fig. 7(a)). Use of Darcy diffusivity equation, does not 

give any significant variation of porosity. However, use 

of proposed model gives a difference of porosity value 

of 0.292 which represent a contribution of memory 

effect on rock property. This change is almost same 

throughout the reservoir. The variation of porosity 

becomes significant with the hydrocarbon production 

life. Fig. 7(b) shows the varia

at

 

Conclusions 

A diffusivity equation with rock/fluid memory has been 

developed by invoking time-dependence to permeability 

and viscosity. The resulting highly non-linear theoretical 

model has an option of triggering the memory variable, 



  
 
 

 
 

emory in reservoir fluid flow 

rough porous media. 

= ck perpendicular to the 

 = tal fluid compressibility of the 

= on rock compressibility of the system, 

= otal compressibility of the system, 

     n water compressibility of the system, 

=  well and outer 

Au = initial volume production rate,  

depending on the applicability.  These equations were 

solved in their non-linear form, showing the difference 

in prediction between the conventional diffusivity 

equation and the new memory-induced diffusivity. The 

results indicate that this model can be used for a wide 

range of applications. The variation of ߟ for different 

reservoir parameters is identified and the effects of 

“memory” is shown using both Darcy model and 

proposed model. The findings of this research establish 

the contribution of m

th

 

Nomenclature 

୷୸  C o ctional area of roA r ss se

flow of flowing fluid, mଶ 

 ܿ௢ ൅ ܿ௪  = toc୤

system, 1 ⁄ܽ݌  

  rܿ௦ fo mati

1 ⁄ܽ݌  

  ௙ܿ ൅  ܿ௦  = tܿ௧

1 ⁄ܽ݌  

  = formatioܿ௪

1 ⁄ܽ݌  

݇  = initial reservoir permeability, m2 

 distance between pr nܮ oductio

boundary along x direction, m 

  = pressure of the system, ܰ ݉ଶ⁄ ݌ 

 = initial pressure of the system, ܰ ݉ଶ⁄ ௜݌ 

ܰ ,௢  = a reference pressure of the system݌ ݉ଶ⁄  

௜ = ݉ଷݍ ⁄ݏ   

 ,௫ = fluid mass flow rate per unit area in x-directionݍ

݇݃ ݉ଶݏ⁄  

t 

 = filtration velocity in x direction, ݉ ⁄ݏ   

= time, s  

ݑ

 ௫  = fluid velocity in porous media in the direction of xݑ

axis, ݉ ⁄ݏ  

ߙ ferenti

   = density at pressure p, ݇݃ ݉ଷ⁄   

  = fractional order of dif ation, dimensionless 

ߩ

  = density at a reference pressure  ݌௢ , ݇ ௢ߩ݉ ݃ ଷ⁄  

  = porosity of fluid media at pressure p, ݉ଷ ݉ଷ⁄     ߶

߶௢  = porosity of fluid media at reference pressure ݌௢, 

݉ଷ ݉ଷ⁄     

ߤ

 ratio of the pseudopermeability of the medium = ߟ

with memory to fluid viscosity, ݉ଷݏଵାఈ ݇݃⁄     

  = fluid dynamic viscosity, ݏܽ݌    

 a dummy variable for time i.e. real part in the =  ߦ

plane of the integral, s 
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Appendix A: Figures  

  

  

  

  

  

  

 

 

Fig. 1– A rectangular block of a porous media 

 

 



  
 
 

 

Fig. 2–Pressure variation with distance based on Darcy diffusivity equation 
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Fig. 3 – Z variation with distance based on Darcy diffusivity equation for ߙ ൌ 0.1 
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Fig. 4– ߟ variations with distance for ߙ ൌ 0.1 

 

 

 
 



  
 
 

Fig. 5– Variation of ߟ  with pressure using proposed model with memory for ߙ ൌ 0.1. 
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Fig. 6–Variation of pressure with ߟ based on Darcy diffusivity equation and proposed diffusivity equation with 

memory for ߙ ൌ 0.1. 
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Fig. 7–Variation of porosity and distance using Darcy diffusivity equation and proposed diffusivity equation with 

memory for ߙ ൌ 0.1. 

 


