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Abstract  For a given elapsed time since the production has begun through the well bore, pressure 
changes occur everywhere within certain region around the well bore. The apparent radius of this 
region is termed as the radius of drainage. An estimation of this depends upon the criteria based on 
pressure and flow differentials. Previous studies have proposed correlations for the radius of 
drainage, based on the criteria with either pressure or production rate. This study examines the 
cross relationships of these considerations. 
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NOMENCLATURE 
 

 ct = Total compressibility, Lt2/m 

 erf η = Error function of η, ∫∫
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        [Important properties: erf 0 = 0, 
erf ∞ =1.0, erf (–η) = erf  η] 

 h = Net formation thickness, L 
 k = Reservoir rock permeability, L2 
      pi = Initial reservoir pressure, m/Lt2  
 pr,t = Pressure at radial distance r and time t, 

m/Lt2  
 pwf = Flowing bottom hole pressure, m/Lt2 
 q =  Flow rate, L3/t 
 qrd =  Flow rate through the radius of drainage 

into drainage area, L3/t 
 qwf =  Production rate through the well bore, L3/t 
 rd = Drainage radius, L 
 t = Time, t 
 x = Linear distance, L 
 trp ,∆  = Pressure drop at radial distance r and time t, 

m/Lt2 
 txp ,∆  = (pi – px,t), pressure drop at linear distance x 

and time t, m/Lt2 
 wfp∆  = (pi  – pwf), pressure drop at well bore, m/Lt2 

 φ = Porosity, fraction 

η =
kt

xct
4

2φµ  

 µ = Viscosity, m/Lt 
 
 

INTRODUCTION 
 
   Estimating the radius of drainage is very important on 
many counts. A well-test analysis provides important 
reservoir information on an average basis. This 
information is good for the region within the radius of 
drainage. Thus, it is important to know how much of the 
reservoir is participating to provide the parameters like 
permeability and storage capacity of the reservoir from 
a well-test analysis. Another important aspect of 
knowing the radius of drainage is to optimize the 
locations of new wells to be drilled in a field. However, 
it has been observed that an estimation of any radius of 
drainage is dependent on the assumed level of criterion 
on pressure or flow rate. As a result, there can be 
substantial variations of an estimated amount of the 
radius of drainage. 
 
   Most of the well-test analyses assume a single well 
producing at a constant rate in an infinitely acting 
reservoir. It can be defined as the case in which the 
pressure responses at the well bore in a porous medium 
have not been tempered with by the boundary effects. 
 
   A number of investigators in the field have proposed 
different equations for computing the radius of drainage, 
based on the criteria on pressure or flow rate. Tek et al. 
(1957) defined the radius of drainage as the location 
across which fluid influx occurs at a rate of 1% of the 
flow rate at the well bore. Solution of diffusivity 
equation for an infinite-acting reservoir in terms of the 
exponential integral function has been the basis of this 
kind of analysis.  
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   Hurst et al. (1961) introduced a radius of drainage 
formula. This formula is based on a constant pressure at 
the exterior boundary with constant rate production. 
Hurst et al. cited their radius of drainage equation by 
graphical presentation.  
 
   Jones (1962), in discussing reservoir limit tests on gas 
wells, asserted that field measurements of the time it 
takes for a pressure disturbance at one well to be 
detected at a neighboring well. This equation is based 
on principle of superposition (image well system). He 
considered the distance to a fault, the interference from 
a gas-water contact, the evaluation of the formation 
constants, and the effects of anisotropic permeability.   
 
   van Poolen (1964) used the error function solution of 
Bird et al. (1960) as developed from the heat transfer 
concept. This solution is analogous to that for heat flow 
through a semi-infinite slab, so that the temperature 
distribution in the slab resembles the pressure response 
in a reservoir. 
 
   Hurst (1968) introduced a radius of drainage formula 
on the basis of the Lord Kelvin effect (the pressure plots 
linearly with the logarithm of time). Hurst ignored the 
early time region part (i.e., Bessel function’s part) for 
the solution of diffusivity equation when he derived the 
radius of drainage equation.  
 
   The pressure and flow rate criteria, used to define the 
radius of drainage, in the literature are related. This 
study examines the cross relationships of these 
considerations.  
 

SOLUTION OF DIFFUSIVITY EQUATION 
 
   A well is considered to be producing under the 
following assumptions: 
 

• the well produces at a constant rate, 
• a line sink well is considered, 
• the reservoir is at uniform pressure, pi before 

production begins, 
• the well drains an infinite area which has a 

cylindrical shape, 
• the reservoir is homogeneous and isotropic. 

   Assuming a linear segment of the radial system, the 
solution of the diffusivity equation can be developed 

with the error function (abbreviated as erf), satisfying 
the above assumptions in a semi-infinite reservoir. This 
solution to the diffusivity equation can be written as: 

 η erf1, −=
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   Using the solution presented in Equation (1), Figure 1 
shows the relative pressure variations along the distance 
from the location of the well bore.  
 

 
 

DEVELOPMENT OF A NEW RADIUS OF 
DRAINAGE EQUATION 

 
   Since the definition of the radius of drainage depends 
on the definition of an “undetectable” pressure response, 
there have been a variety of definitions in the literature. 
van Poolen assumed a criterion that the radius of 
drainage is a point at which  1% of pressure change 
occurs with respect to well bore pressure change.  

Fig.1 The pressure distribution with variable, η,  for 
an infinite-acting reservoir. 

 
    The error function is a monotone increasing function 
ranging from 0 to 1. In other words, erf η = 1 when 
η = ∞. But for practical considerations as in Equation 
(1), a value of 0.999999984 for the error-function 
component is found when η [i.e., (pi – px,t)/ (pi  – pwf) = 
1.59*10-08 ] = 4.055 is considered. This fact can be 
used to define a boundary-drainage distance, x, as the 
distance for which the pressure change, (pi – px,t), has 
dropped to a value of 0.000000016 (pi  – pwf). That is, 
the drainage distance can be defined as the distance at 
which the pressure change is equal to 0% of pressure 
change in the well bore. Here, it should be mentioned 
that the pressure change would be zero at an infinite 
distance. In this study, considering the pressure change 
of 0.0000016% has been taken as zero from a practical 
point of view. Therefore, Equation (1) can be written as: 
 
 1 erf =η ………………………..……………(2) 
   In this case, considering η = 4,Equation (1) 
becomes  
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8=    ……………...…………..…(3) 

 
    This can easily be applied to a radial system 
considering the radial flow at constant terminal rate 
case. So x can be termed as the drainage radius and be 
expressed as 
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    This is the proposed equation for radius of drainage 
for an infinite-acting reservoir when an idealistic 
criterion is considered. The significance of this 
approach is discussed with respect to the contribution of 
the flow rate at the radius of drainage in the next 
section. This means, we are going to relate the pressure 
criteria with the rate criteria. 
 
 
 

RELATIONSHIP BETWEEN PRODUCTION 
RATE AND PRESSURE RESPONSES 

 
    The line-sink solution of diffusivity equation (Tek   
 et al.) for an infinite-acting reservoir can be written as: 
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   Applying the Darcy’s law and partial differential 
properties in evaluating the flow rate at radius, r, and 
time, t the following relationship can be written as:  
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   The above relationship in Equation (6) expresses the 
relative flow rate with respect to the production at the 
well bore at a distance, rd, which is estimated as a radius 
of drainage. Thus, it has been established that the radius 
of drainage is related to the flow rate as well as pressure 
response of the well. Equations (1) and (6) have been 
used to develop Table 1. This table shows the cross 
relationship between the criteria based on pressures and 
flow rates. 

 
DISCUSSION 

 
   In the present study, it has been established that the 
radius of drainage is related to the criterion values of 
pressure response of the well. The variation on 
percentage of pressure response will change the 
percentage of flow rate at the drainage boundary. Figure 
2 presents  the   roles  of  percentage  pressure responses 
and flow rate changes with respect to well bore. With 
the increase of percentage of pressure response, the 
percentage of flow rate will increase. Theoretically the 
drainage radius is defined, as the radius beyond which 
there would be no fluid flow through the drainage 
boundary of the reservoir. 

   As shown in Table 1 and Figure 2, 1% of pressure 
response introduces 3.32% of fluid influx through the 
drainage boundary. But ideally this fluid flow should be  
Table 1 Values showing a relationship between 
pressure and flow rate differentials in percentages. 
     

%wfr pp
d

∆∆  %wfr qq
d

 

10.0 23.13 
8.0 18.45 
6.0 16.16 
4.0 10.54 
3.0 7.73 
2.0 5.56 
1.0 3.32 
0.5 1.79 

0.05 0.22 
0.001 0.00556 

0.0001 0.00061 
0.00001 0.000067 

0.0000016 0.000011 
   
zero. So a consideration of taking 1% of pressure 
response as a criterion value is an approximation of the 
ideal situation. If 0.0000016% of pressure response is 
considered at the drainage boundary, the fluid influx is 
0.000011% of well bore flow. When one requires a 
higher precision in estimating the radius of drainage, the 
newly proposed equation (Equation (4)) will be useful. 
Simultaneously, it is possible to be aware of the 
corresponding relative rate of fluid influx into the 
drainage area across the assumed drainage radius. Table 
1 shows that the estimated drainage radius as with 
Equation (4) is subject to 0.000011% influx into the 
drainage area. There is always some room for argument 
that the 3.32% relative rate of fluid influx corresponding 
to the 1% pressure change criterion into the drainage 
area is too much for defining a radius of drainage. 
Therefore, the consideration of the idealistic situation as 
with Equation (4) will allow one to choose a realistic 

value of criterion based on pressure or flow rate. In 
other words,  
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Fig.2 Effects of pressure response on flow rate at the 
drainage boundary. 

 
 
 
The proposed Equation (4) for radius of drainage will be 
useful as a benchmark.  
 
 

CONCLUSIONS 
 

• The criteria based on pressure and flow rate to 
define the radius of drainage are related. 

 
• As the criterion gets close to the ideal condition 

in terms of pressure (e.g., ∆p → 0), the 
estimated drainage of radius increases twice as 
much that predicted using the criteria of 1% 
pressure differential. However, the contribution 
of flow rate decreases dramatically from 3.32% 
to 0.000011%. 
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