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Abstract 
Rock classification or assigning a type or class to a specific rock sample based on petrophysical characteristics is a 

fundamental technique to reduce the uncertainty in prediction of reservoir properties due to heterogeneity. One of the popular 

approaches is to classify a reservoir rock from the fundamentals of geology and the physics of flow at pore network scale.  In 

this approach, rocks of similar fluid conductivity are identified and grouped into classes. Each grouping is referred to as a 

hydraulic flow unit (HU).  HUs are estimated for the uncored section of the wells from wire line log data received from field 

using three popular artificial intelligence (AI) techniques such as (i) Adaptive Network Fuzzy Inference Systems (ANFIS); 

(ii) Functional Networks; and (iii) Support Vector Machines. HUs can either be predicted directly from wire line log data as a 

classification model or can be estimated indirectly from predicted permeability and porosity. In the present study, HUs were 

predicted employing both approaches. The comparison of the two approaches shows that it is a better practice to estimate 

HUs by directly relating them to well logs. Calculation of HUs from predicted permeability and porosity results in inferior 

accuracy. This is due to the accumulation of errors during the estimation of permeability and porosity. The Knowledge of 

HUs acquired from well logs can significantly help in determining ultimate hydrocarbon recovery, optimal well placement, 

and well stimulation. Thus, the finding of this research will impact the economy of the development and operations of a field. 

 
Keywords: permeability; Kozney-Carman model; porosity; artificial intelligence; reservoir management.  
 
Introduction 
Estimation of permeability in uncored but logged wells is a generic problem common to all reservoirs. Traditional approaches 

for estimation of permeability utilize mathematical functions and correlations to establish relationships between the well logs 

and the core data. Permeability calculation by HU concept offers an improved estimation over traditional regression based 

average relationships. HU concept has widely been used in reservoir characterization and management (Amaefule et al., 

1993; Abbaszadeh et al., 1996; Elkewidy, 1996; Al-Ajmi et al., 2000, Nooruddin and Hossain 2011). The concept relates the 

geological control properties of a rock such as tortuosity, cementation between grains, and the structure of the grains (grain 

size, grain shape, sorting and packing) to the petrophysical properties such as porosity, permeability, and capillary pressure.  

 Numerous studies have been conducted on this topic and the results show an improved reservoir characterization by 

classifying reservoir rock into HUs. Gardner and Albrechtsons (1995) observed a significant improvement in the reservoir 

description through the refinement of permeability model using HU concept. Svirsky et al. (2004) were able to resolve the 

challenges in Siberian Oil field using the concept of hydraulic flow units (HUs). Guo et al. (2007) showed that hydraulic flow 

concept proved to be an effective technique for rock-typing in clastic reservoirs in South America. Shenawi et al. (2009) 

developed generalized porosity-permeability transforms based on hydraulic unit technique with excellent accuracy for 

carbonate reservoirs in Saudi Arabia. Orodu et al. (2009) expressed a satisfactory estimation of permeability from HUs, 
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considering high reservoir heterogeneity, availability of less number of cored wells and poor well log response correlation to 

permeability. Shahvar et al. (2010) observed an enhanced prediction of relative permeability by discretizing reservoir rock 

based on hydraulic flow units for a carbonate reservoir in Iran. Recently, Nooruddin and Hossain (2011) developed a 

porosity-permeability model employing new parameters with conventional Kozney-Carman model. They used 30,000 data 

points of an exisiting Middle East field. The resuls show an excellent agreement with the data. 

 There exist a number of studies that have employed various methods to facilitate HUs for the uncored section of the 

wells. Flow zone index (FZI) groups the effect of geological properties such as tortuosity, cementation factor, grain size and 

shape. FZI is an effective indicator of the capability of a rock to permit fluid flow through it. Most of the researchers opted to 

predict FZI from well log data and then group the predicted FZI as hydraulic units (Al-Ajmi and Holditch, 2000; Soto et al., 

2001; Soto and Garcia, 2001, Nooruddin and Hossain, 2011). Some studies aimed to relate HUs directly to well log data 

(Abbaszadeh et al., 1996; Aminian et al., 2003). In general, a probabilistic approach was employed to tie well logs to HUs 

(Altunbay et al., 1997; Orodu et al., 2009). As HUs are the functions of permeability and porosity, HUs are indirectly 

estimated in the present study by making use of the predicted permeability and porosity. Furthermore, the permeability and 

porosity were predicted from well logs using AI techniques. Three different AI techniques such as (i) Adaptive Network 

Fuzzy Inference Systems (ANFIS); (ii) Functional Networks (FN) and; (iii) Support Vector Machines (SVM) were tried in 

order to assess their capabilities in predicting permeability and porosity. Further to these, HUs are also directly predicted 

from the available well logs using the classification algorithm of SVM. The HUs estimated indirectly from the predicted 

permeability and porosity were compared to the HUs predicted directly from well logs. 

 The rest of the paper is organized in the following manner. The first section describes a brief overview of the three 

computational algorithms used in the present study. The second section gives a brief introduction of the concept of HUs. A 

description about the data and the performance measures is listed in the following section. Finally, the results and discussion 

are presented along with the conclusions.  

  

Computational Intelligence Techniques 
A number of approaches have been applied, to the problem of rock typing which includes classification based on lithology, 

HUs and electrofacies. Delfiner et al. (1987) and Chakrabarty (1996) presented a Bayesian-type statistical approach to 

determine lithology from well logs (Delfiner et al., 1987); Chakrabarty, 1996). Baldwin et al. (1990) and Rogers et al. (1992) 

were among the first to apply ANNs to the problem of identification of lithofacies from well logs (Baldwin et al., 1990; 

Rogers et al., 1992). Later, Saggaf and Nebrija (1999) and Kapur et al. (1998) also proposed the identification of lithofacies 

from well logs through the use of ANNs (Saggaf and Nebrija, 1998; Kapur et al., 1998). Qi and Carr (2006) estimated 

lithofacies for a carbonate reservoir using ANN for an oil field in southwest Kansas. More recently, the performance of 

additional new techniques in classifying rocks has also been tested. Rezaei and Movahed (2008) applied a Fuzzy Logic 

Model for the determination of lithofacies. Al-Anazi and Gates (2010) demonstrated the superiority of SVM in identifying 

lithofacies from well log data, and compared to linear discriminant analysis and probabilistic ANNs. Singh (2011) presented 

an approach of Fuzzy inference system for identification of geological stratigraphy.  

 In the present study, the more recent computational techniques such as (i) Adaptive Network Fuzzy Inference Systems 

(ANFISs); (ii) Functional Networks (FNs) and; (iii) Support Vector Machines (SVMs) were employed to predict 

permeability and porosity and finally estimate HUs. The details of these three algorithms are very well documented in the 

literature. This section briefly describes each of these three techniques. 

 
Adaptive Network Fuzzy Inference Systems (ANFIS) 
 ANFIS is the result of coupling between ANN and Fuzzy Logic (FL). ANFIS consists of if–then rules and couples of 

input–output. Also for ANFIS training, learning algorithms of ANN are used. Jang (1993) implemented Takagi–Sugeno 

fuzzy rules by ANFIS. ANFIS uses a feed-forward neural network with five layers that is adapted by a supervised learning 

algorithm (Jang, 1993). The network uses unweighted connections and works with different activation functions in each 

layer. The learning algorithm modifies the premise parameters of the fuzzy sets according to the training data. 

 In this study, The ANFIS classifier has six input logs (x1, x2, x3, x4, x5, and x6) and one output (y) which is either 

permeability or porosity. For a first order Sugeno fuzzy model, a typical rule set with the base fuzzy if-then rules can be 

expressed as: 

 

If x1 is A1 and x2 is B1 and x3 is C1 and x4 is D1 and x5 is E1 and x6 is F1 then 

 

  f1 = px1 + ppx2 +qx3 +qqx4 + sx5 + ssx6 + u                                                                                                       (1) 

 

 In Eq. (1), p, pp, q, qq, s, ss, r, u are linear output parameters. A1, B1, C1, D1, E1 and F1 are fuzzy linguistic labels. The 

structure of this ANFIS classifier is formed by using five layer and 256 if-then rules. The first layer is the input layer, the 

second is the fuzzification layer, the third and the fourth are the fuzzy-rule-evaluation layers, and the fifth is the 

defuzzification layer. 

 

Layer-1: Every node i in this layer is a square node with a node function. 
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 O1,i = μAi (x1),   for i = 1, 2 

 O1,i = μBi (x2),   for i = 3, 4 

 O1,i = μCi (x3),   for i = 5, 6 

 O1,i = μDi (x4),   for i = 7, 8 

 O1,i = μEi (x5),   for i = 9, 10 

 O1,i = μFi (x6),   for i = 11, 12 

 

 where x1, x2, x3, x4, x5, x6 are inputs to node i, and Ai, Bi, Ci, Di, Ei and Fi  are linguistic label associated with this node 

function. In order words, O1,i is the membership function of Ai, Bi, Ci, Di, Ei and Fi. Usually it is choosen μAi (x1), μBi (x2), μCi 

(x3), μDi (x4), μEi (x5) and μFi (x6) to be bell-shaped with maximum equal to 1 and minimum equal to 0, such as: 

 

    (  )   
[ 

     
  

]
 

                                                                                                                                                (2) 

 

 
In Eq. (2), xi is the input and ai, ci are the parameter set. These parameters in this layer are referred to as premise 

parameters. 

 

Layer-2: Every node in this layer multiplies the incoming signals and computes the product as output of the corresponding 

node. The output of each node is fed as input to the following layer in the ANFIS architecture. For instance, 

 

  O2,i = wi = μAi (x1).μBi (x2).μCi (x3).μDi (x4).μEi (x5).μFi (x6),       i = 1, 2, 3, . . . , 256                                           (3) 

 

 Each node output represents the firing strength of a rule (In fact, other T-norm operators that performs generalized and 

can be used as the node function in this layer). 

 

Layer-3: Every node „i‟ in this layer calculates the ratio of the ith rules firing strength to the sum of all rule‟s firing strengths 

as represented in Eq. (4) where,  ̅ is the normalized firing strength. 

 

  O3,i =  ̅ = wi/(w1 + w2 +· · ·+ w256),   i = 1, 2, 3, . . . , 256                                                                                   (4) 

 

Layer-4: Every node i in this layer is a square node with a node function 

 

  O4,i = w i . fi = wi .(pix1 + ppix2 +qix3 +qqix4 + six5 + ssix6 + ui),   i = 1, 2, 3, . . . , 256                                       (5) 

 

 In Eq. (5), wi is the output of layer 3, and {pi, ppi, qi, qqi, si, ssi, ui} is the parameter set. Parameters in this layer are 

referred to as consequent parameters. 

 

Layer-5: The single node in this layer computes the overall output as the summation of all incoming signals to this node 

 

       ∑  ̅     
∑      

∑    
                                                                                                                                         (6)                                 

  

 
Functional Networks 

Functional Networks (FN) is an extension of Neural Networks which consists of different layers of neurons connected by 

links. Each computing unit or neuron performs a simple calculation: a scalar, typically monotone, function f of a weighted 

sum of inputs. The function f associated with the neurons is fixed, and the weights are learned from data using some well-

known algorithms such as the least-squares fitting algorithm. 

The main idea of FN consists of allowing the f functions to be learned while suppressing the weights. In addition, the f 

functions are allowed to be multi-dimensional, though they can be equivalently replaced by functions of single variables. 

When there are several links, say m links, going from the last layer of neurons to a given output unit, we can write the value 

of this output unit in several different forms (one per different link). Solving this system leads to a great simplification of the 

initial functions f associated with the neurons.  

As shown in Figure 1, an FN consists of a layer of input units which contains the input data (represented by small black 

circles with its corresponding name), a layer of output units which contains the output data (also represented by small black 

circles with its corresponding name), and one or several layers of neurons or computing units which evaluates a set of input 

values coming from the previous layer and sends a set of output values to the next layer of neurons or output units. The 

computing units are connected to each other, in the sense that output from one unit can serve as part of input to another 

neuron or to the units in the output layer. Once the input values are given, the output is determined by the neuron type, which 

can be defined by a function. For example, assume that we have a neuron with s inputs: (x1 , …, xs) and k outputs: (y1, …, 
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yk), then we assume that there exist k functions Fj; j = 1, …, k, such that yj = Fj(x1 , …, xs); j = 1, …, k.  

FN also consists of a set of directed links that connect the input layer to the first layer of neurons, neurons of one layer to 

neurons of the next layer, and the last layer of neurons to the output units. Connections are represented by arrows, indicating 

the direction of information flow. 

 

 
Figure1 – Illustration of the Generalized Associativity Functional Network: (a) Initial network (b) Equivalent 

simplified network 
 
Support Vector Machines (SVMs) 
 SVMs are learning systems, that are based on statistical learning theory (SLT) and the principle of structural risk 

minimization (SRM). In principal, the SVM is a supervised learning system where the training data are mapped into a high 

dimensional feature space in which an optimal separating hyper-plane between the two classes of the labeled data is obtained 

using the quadratic programming. The hyper-plane is then pulled back to the input space via inverse algebra and thus it 

becomes a non-linear decision system to separate/classify the input data (Cortes and Vapnik, 1995). 

 In fact, the input space in SVM is mapped into the high dimensional feature space using a Kernel function K () which is 

one of the main building blocks of SVMs. The kernel trick is a computational short-cut to avoid the implicit definition of 

feature space mapping (Scholkopf et al., 1997). In order to use the kernel approach we need to create a complicated feature 

space, then the inner product in that space is to be produced and following this a method to compute that value using the 

original inputs is to be designed. In other words the kernel function implicitly uses the feature space where the mapping from 

input space to feature space can be avoided. 

 

Hydraulic Flow Unit (HU) Theory  
The concept of HU is very well documented in the literature (Wyllie and gardner, 1958; Abbaszadeh et. al, 1996). The 

present section briefly refreshes the theory of HU. A generalized Kozeny-Carman equation (Wyllie and Gardner, 1958) 

approximating the fluid flow in a porous medium is given by Eq. (7). 

 

    
  

 

(    ) 

 

   
    

                                                                                                                                                 (7) 

 

 where k is in µm
2
 and Sgv is in µm

-1
. The effective porosity can be obtained either from core data or appropriate log data. 

The term    
    

  is a function of geological characteristics of porous media and varies with changes in pore geometry. Thus, 

this term captures the geological aspect of HUs. Equation (7) can be written as follows: 

 

       √
 

  
  

  

    

 

√      
                                                                                                                                     (8) 
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 where, the constant 0.0314 is the conversion factor from µm
2
 to md. Flow zone indicator (FZI) and reservoir quality 

index (RQI) are defined as follows: 

 

       
 

√      
                                                                                                                                                      (9) 

 

            √
 

  
                                                                                                                                                 (10) 

 

Equation (8) can now be written as 

 

                                                                                                                                                                (11) 

 

 where 

      
  

    
                                                                                                                                                          (12) 

 

FZI can be calculated from Eq. (11) for each of the measurements of permeability and porosity. If     vs    is plotted on 

log-log coordinates, data samples with similar FZI values will be located around a single unit slope straight line with a mean 

FZI value. The mean FZI value is the intercept of a unit-slope line with the coordinate    = 1. Samples with significantly 

different FZI will lie on other parallel unit-slope lines. The basic idea is to identify groupings of data that form the unit-slope 

straight lines representing similar flow characteristics and hence a distinct hydraulic unit. Permeability of a sample point is 

then calculated from the respective HU using its mean FZI value and the corresponding sample porosity using the Eq. (13) 

as: 

        (       )   
 

(    ) 
                                                                                                                            (13) 

 

Shenawi et al. (2009) developed a method to group FZI based on their range to discrete hydraulic unit numbers as given 

in Eq. (14). 

 

              (   )                                                                                                                             (14) 

 

Data Description and Performance Criterion 
The present study used a range of data sets available for four wells from a Middle East field. The wells are numbered as Well 

1, Well 2, Well 3 and Well 4 respectively. All the wells contain both log and core data. The present study only considered the 

horizontal wells. Core and log porosity values were plotted with respect to depth in order to check if the data needs any depth 

shifts. For almost all the wells, the trend/variation of log porosity with depth in general matched with that of core porosity. To 

ensure that the core and log values are at same depths, the log values were calculated at the core depths using linear 

interpolation. Five most commonly available logs were selected as input to predict permeability, porosity and HUs. These 

logs areneutron porosity (NPHI), densilty (RHOB), gamma ray (GR), water saturation (SWT) and acoustic transit arrival 

time (DT). 

 Average absolute error (AAE) was used to evaluate the measure of error for permeability and porosity prediction and 

percentage of correct classification (PCC) was used as a performance criterion for HU classification. PCC is given by Eq. 

(15) as: 

  

       
                                   

                           
                                                                                                           (15)                   

 

 

Results and Discussion 
 Hydraulic Unit Estimation Using Predicted Permeability and Predicted Porosity 
 HUs are regions in the reservoir exhibiting similar flow properties with FZI quantizing the measure of this flow 

property. Thus, Eq. (14) displays HU as a function of FZI. FZI in turn is a function of permeability and porosity as seen from 

Eq. (11). For the uncored section of wells and wells for which core data does not exist, permeability and porosity needs to be 

predicted first. In the present section permeability and porosity are predicted from well log data and finally the HUs are 

estimated making use of Eqs. (10) – Eqs. (14). 

 Table 1 compares the prediction of permeability and porosity and the resulting HUs using ANFIS, SVM and FN. The 

accuracy of prediction for permeability and porosity are measured by calculating AAE. It is clear that the error in 

permeability and porosity is the least when SVM was used as the predictive algorithm. This is reflected in a relatively better 

percentage of correct classification for HU estimation. Comparison between the predicted and core permeability plotted 

against an arbitrary depth, for the four wells using SVM algorithm is shown in Figure 2. A similar comparison for porosity is 
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shown in Figure 3. Figure 2 shows a good match between the predicted and core permeability for all the four wells. An 

excellent match between the predicted and core porosity was obtained as seen in Figure 3. However, the accuracy of 

permeability is more critical when compared to porosity. Considering the percentage of correct classification of HUs none of 

the four wells could exceed an accuracy of more than 50%. HUs are a function of ratio of permeability to porosity. Although, 

an excellent performance in predicting porosity is abtained, as shown in Table 1, the accuracy of calculated HUs are low, 

indicating that the error in predicted permeability seem to play a critical role in lower HU classification accuracy. Figure 4 

shows a plot of permeability vs porosity with identified HUs based on core data. The boundaries of each HU are marked by 

black lines as shown in Figure 4. The effect of error in the predicted permeability on the accuracy of HU classifaction is 

analyzed considering a fixed instance of porosity. For example, the samples containing 15% porosity is shown in Figure 4 

where it is marked with a red verticle line. It is noted that each HU is associated with a range of permeability values at that 

porosity value (15%). All the HUs groups are separated by the red color horizontal lines where the permeability ranges 

increase with the increase of HU number. HU7 represents approximately the permeability ranges from 0.08 to 0.18 mD, and 

the rest of the HUs show as 0.18 to 0.55 mD for HU8, 0.55 to 1.8 mD for HU9, 1.8 mD to 4 mD for HU10, 4 to 10 mD for 

HU11, 10 to 29 mD for HU12, 29 to 75 mD for HU13 and 75 to 400 mD for Hu14. Most of the available data fall on the 

HU8, HU9, HU10 and HU11 where the combined permeability ranges are between 0.18 to 10 mD. However, the average 

error obtained in predicting permeability (as shown in Table 1) is much more than 10 mD except for Well2. It was observed 

that an average absolute error of approximately 4.5 mD is obtained for Well2 even though the error is beyond the 

permeability range of an individual HU. This might explain the reason for low classification accuracy (less than 50%) in 

predicting HUs. 

Table 1 – Performance of permeability and porosity predictions and HU classification performance for four wells 

 

 ANFIS SVM FN 

Well 

Name 

AAE 

(K) 

AAE 

( ) 
PCC 

AAE 

(K) 

AAE 

( ) 
PCC 

AAE 

(K) 

AAE 

( ) 
PCC 

Well1 26.53 0.02 22.22 23.44 0.001 50.00 26.27 0.03 16.67 

Well2 4.61 0.02 31.82 4.32 0.004 45.45 5.16 0.02 38.64 

Well3 26.06 0.02 38.46 25.56 0.003 39.74 26.04 0.02 41.67 

Well4 15.57 0.02 36.59 14.35 0.003 45.12 17.77 0.02 34.15 
  

 

                      
Figure 2 – Comparison of core and predicted permeability       Figure 3 – Comparison of core and predicted porosity 

   for 4 wells using SVM algorithm                                                for 4 wells using SVM algorithm 
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Figure 4 – HUs estimated from core data 

 
 Hydraulic Unit Predicted Directly from Well Logs 

 
 In the present section HUs were first identified using core permeability and porosity data and the identified HUs were 

directly predicted by multiple classification technique using log data as input. Similar logs, as were used in the previous 

section to predict the permeability and porosity, were used to predict HUs. For each of the four wells, 70% (randomly 

selected) of thelog data along with the corresponding HUs was used as training data to train SVM.  The validation check was 

performed on 15% of the remaining 30% data points and the testing of the model was carried out by feeding the log values 

for the rest 15% unseen data into the model. The performance of the model was evaluated by calculating the PCC. 

 SVM with polynomial kernels was used to build the model. For each well the SVMs complexity constant C and 

polynomial exponent E was varied in order to tune the SVM to obtain the best possible performance. Table 2 lists the PCC of 

HUs obtained for the four wells using SVM algorithm predicted directly from well logs. For comparison, Table 2 also lists 

the PCC of estimated HUs obtained with the previous approach. It is clear from Table 2 that although similar algorithm was 

used, the approach of predicting HUs directly from well logs yielded better accuracy when compared to the other approach. 

The inferior accuracy of the former approach might be due to the accumulation of errors while predicting permeability and 

porosity and these combined errors of two parameters is contributing to low classification accuracy. 

 

Table 2 – Comparison of the two approaches in predicting HUs 

 

Well # 
HUs predicted directly 

from well logs 

HUs estimated using predicted 

permeability and porosity 

 SVM (PCC) SVM (PCC) 

Well 1 55.6 50.00 

Well 2 57.9 45.45 

Well 3 56.5 39.74 

Well 4 74.3 45.12 
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Conclusions 
1. Capabilities of three latest computational intelligence techniques such as ANFIS, SVM and FN in predicting 

permeability and porosity are presented. 

2. SVM algorithm outperformed the other two techniques in predicting permeability and porosity for all the four 

wells considered. 

3. Calculation of HUs from predicted permeability and porosity yielded inferior accuracy due to the accumulation 

of errors during the estimation of permeability and porosity.  

4. HUs predicted from well logs yielded better accuracy indicating that it is a better to estimate HUs by directly 

relating them to well logs.  

 

 

Nomenclature 
 

x1, x2, x3, x4, x5, x6  the input to nodes 

i  the membership function for ith node 

ai ,ci   the parameter set for membership function of ith node 

OJ,I   the output of the ith node in layer-jth 

wi  the ith rule firing strength 

pi, ppi, qi, qqi, si, ssi, ui   the node‟s parameter set 
e    effective porosity 

Fs    shape factor 

    tortuosity 

Sgv    surface area per unit grain volume 

FZI    flow zone index 

Irq    reservoir quality index 

      normalized effective porosity 

HU    hydraulic unit 

AAE    average absolute error 

PCC    percentage correct classification 
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