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Abstract 

In this paper, an artificial intelligence (AI) model has been created to estimate the production rate of each layer in a multi-
layered gas reservoir using static properties (such as those obtained from well logging)and dynamic properties (such as 
pressure).  This helps in several reservoir engineering applications, such as understanding depletion in layers, or targeting 
specific layers for workover.  It could also be used for PLT analysis where the measured PLT values are compared to the 
expected values and a variance analysis could be performed. 

Data were collected from more than 100 wells in a certain reservoir spanning over four fields. They were clustered in related 
input variables and fed to the AI model for learning purposes. To compare the AI methods, the data were fed to 4 different 
methods (MLP, RBF, SVM, and GRNN) and the results were optimized for each method. 

Between the tested AI methods, SVM and GRNN performed best with a low mean absolute error percentage and a very high 
correlation coefficient.  This paper shows a high potential for AI methods in estimating production rate from each layer in a 
multi-layered gas reservoir. 

 

Introduction 

The ultimate goal of this paper is to create a model that can estimate the production ratio of each layer in a well to generate 
what could be considered as a “virtual PLT curve”. Our approach consists of the following steps: 

 Gather relevant data from well logs, pvt tests, and well tests in a table that can be processed by the AI Application to 
create an AI model using these data. 

 Include the results of flow equations (Darcy & Forchheimer) in the table to help in guiding the artificial model. 

 Use several artificial intelligence methods to develop the model and recommend the method with the highest 
accuracy. 

We have built artificial intelligence models using the aforementioned inputs with rate as the output. Several artificial 
intelligence methods such as ANN, GRNN, RBF, and SVM are presented in this study. 
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We have used two different data sets.  The first one includes the inputs in their original formats and the second one has 
normalized inputs. The results of each data set are compared for their performance and efficiency. 

Literature Review 

Well Deliverability 

Well deliverability equations describe the relationship between the well production rate and the drawdown pressure, i.e. the 
difference between the reservoir pressure and the flowing bottomhole pressure.  Presenting the production rate as a function of 
the drawadown pressure helps in comparing wells as well as in estimating the production rate under various conditions. This is 
also known as the “inflow performance relationship” or IPR. 

In a single-layered gas reservoir, the gas well deliverability can be approximated using the pseudo-steady state relationship 
developed from Darcy’s law [Economides et al., 1994]: 

ଶ̅ െ ௪
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The gas rate is in MSCF/d and the properties ߤ and ܼ are average properties between ̅ and ௪. 

The above equation is commonly expressed as: 

ݍ ൌ ଶ̅ሺܥ െ ௪
ଶ ሻ (3) 

Where C is defined as: 
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Since this approximation assumes Darcy flow in the reservoir, this approximation is only acceptable for low gas flow rate. 
However for larger gas flow rates, where non-Darcy flow is dominant, we use the solution of the Forchheimer equation for gas 
flow through porous media and get: 
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This equation can be rearranged to come up with the following equation: 
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Or in different terms: 
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The Dq term in equation 5 refer to the turbulence skin effect which could be quite high for some high rate wells.  Several 
authors proposed approximations for the non-Darcy coefficient (D). One is the following empirical correlation [Economides et 
al., 1994]: 

ܦ ൌ ൈଵషఱംೖೞ
షబ.భ

ఓೢ ೝ
మ  (10) 

To estimate the rate in a multi-layered reservoir, we use the principle of superposition [Juell et al., 2011]: 

ݍ ൌ ∑ ேݍ
ୀଵ  (11) 

Artificial Intelligence 

Artificial Intelligence is defined as “the subfield of computer science concerned with the use of computers in tasks that are 
normally considered to require knowledge, perception, reasoning, learning, understanding and similar cognitive abilities” 
[Duda, 1981]. It uses soft computing techniques to provide better results than the conventional solutions. It includes, amongst 
many things, perceptrons, problem solving, language, conscious, and unconscious processes. 

Artificial intelligence has become more and more popular in the last two decades in the petroleum industry. It has been 
extensively used and many SPE papers showed successful usage of artificial intelligence methods to solve petroleum 
engineering problems [Mohaghegh, 2005].  

Artificial intelligence applications in the petroleum industry includes oil field optimization [Saputelli et al., 2002] lithofacies 
identification PVT properties estimation, production optimization, reserve estimation, history matching, MWD data analysis, 
drill bit diagnosis, hydraulic fracture analysis, bottomhole pressure prediction, well test analysis, critical gas flow rate 
prediction, and gas-lift optimization [Al-Dhufairi, 2011]. 

ANN	

There are several types of Artificial Neural Networks (ANN). The most common ones are Multilayer Perception Networks 
(MLP), Probabilistic Neural Networks (PNN) & General Regression Neural Networks (GRNN), and Radial Basic Functions 
(RBF). We will briefly discuss each of these types. 

MLP	

It is the most common type of ANN, usually when the term ANN is used without qualification, it refers to MLP. An MLP 
Network usually consists of a single input layer, a single (or multiple) hidden layer, and a single output layer. Each layer 
consists of at least one neuron. For each predictor (input) variable, there is a neuron in the input layer. Similarly, for each 
target (output) variable there is a neuron in the output layer [Beale et al.]. 

For optimum results, the input variables should be normalized. The input layer will feed each input variable to all of the 
neurons in the next hidden layer. Moreover, the bias, which is a constant equals to 1, is also fed to all of the neuron in each 
hidden layer. After getting multiplied by a weight, the bias is added to the sum which is fed to the neuron. 
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For PNN network the third layer contains one pattern neuron for each of the categories of the target (output) layer. The 
weighted value that came from the hidden layer is fed only to the pattern neuron that is related to the category of the hidden 
neuron. The values of each class are added by the representative neuron. 

On the other hand, the GRNN network has only 2 neurons in the summation layer. They are called the denominator summation 
unit and the numerator summation unit. The weight values coming from each of the hidden layers are summed in the 
denominator summation unit while the numerator summation unit sums the weights multiplied by the actual target (output) 
value of each hidden neuron. 

The fourth and final layer is the decision layer. For PNN networks, the decision layer look at the values of the weighted votes 
for each target category in the pattern layer and uses the largest accumulation to predict the target category (the output). For 
the GRNN networks, in the division layer, the value which accumulated in the numerator summation unit is divided by the 
value accumulated in the denominator summation unit and the result is used to predict the target value [Sherrod, 2008]. 

RBF	

Radial Basis Function Neural Networks (RBF) are very similar to GRNN networks with one main difference which is that 
while GRNN have one neuron for each input data point, RBF have a number of neurons which is most of the time much less 
than the number of input data points. It is recommended to use GRNN for small to medium-sized data sets, since they will 
deliver more accurate results than RBF. However, RBF is more suited for large and very large data sets since GRNN is almost 
not practical for these kinds of data sets. 

The basic idea of RBF models is, like PNN/GRNN, that the target variable is probably very close to the value of other 
variables that have very similar predictor (input) variables.  What RBF networks do is that they place at least one RBF neuron 
in the space which is described by the input variables. The dimensions of this space have the same number as the predictor 
variables. The neuron being evaluated calculates the Euclidean distance between the center of the neuron and the center of 
each neuron in that space. An RBF function (usually Gaussian) is applied to each distance to estimate the weight based on the 
influence of each neuron. The further away a neuron is, the less influence it has on target neuron. The predicted value is best 
estimated by multiplying the weight of the connection by the output value of the RBF function. 

RBF networks have three layers, input, a hidden layer which contains an RBF function (like Gaussian function), and an output 
layer. The input is normalized by subtracting the median and dividing by the interquartile range. Subsequently the data is fed 
to all of the neurons in the hidden layer. 

The number of neurons in the hidden layer is variable and is determined by the training process. The neuron in the hidden 
layer stores both the values of input variable for that specific case and the target value. The hidden neuron calculates the 
Euclidean distance between the center of the neuron and the test case. After that, using the sigma variables it applies the RBF 
kernel function using the sigma values. Then the data is fed to the neurons in the summation layer. 

The last layer is the summation layer. It gets the output of the hidden layer multiplied by a specific weight that is specific for 
that neuron. It then sums all of the incoming values to get the output [Sherrod, 2008]. 

SVM	

Support vector machine model classify data by creating an N-dimensional hyperplane which separates the data optimally. In 
SVM, the predictor variable is called an attribute. When it is transformed to define the hyperplane, it is called a feature. The 
set of features that describes one case of predictor values is called a vector. 

Ultimately, the goal of support vector machine is to find an optimal hyperplane where one category of the target variables is on 
one side, and another category is on the other. SVM uses kernel functions such as linear, polynomial, sigmoid, and radial 
based functions [Sherrod, 2008]. 
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Data Inputs 

It is generally a good idea to include physical relationships or correlations in the input of the artificial intelligence model. It 
helps in guiding the model in the training phase. After we look at the solution of Darcy’s equation for flow in porous media: 

ݍ ൌ ଶ̅ሺܥ െ ௪
ଶ ሻ (3) 

and the solution of Forchheimer equation as well: 

ଶ̅ െ ௪
ଶ ൌ ݍ	ܽ   ଶ (7)ݍ	ܾ

We observed that the gas rate is directly related to the difference of the squared pressures, so we defined as an input: 

݀ሺଶሻ ൌ ଶ̅ െ ௪
ଶ  (12) 

We have also decided to use the constants used in these equations (C, a, and b) as inputs: 
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 (9) 

Moreover, to account for the effects of turbulent flow, we included the non-Darcy flow coefficient: 

 

ܦ ൌ ൈଵషఱംೖೞ
షబ.భ

ఓೢ ೝ
మ  (10) 

 

And finally since the permeability is a key difference between the wells in our study, we decided to include it as an input as 
well. 

So, we ended up with six inputs [a, b, C, D, d(p2), and permeability] and one output [qlayer]. 

We have also performed statistical analysis (Tables 1-3) on the input data to eliminate any anomalies and to learn the limits of 
the artificial intelligence model.  

 

Property 
Reservoir 
Pressure 

Perforation 
Thickness 

Flowing 
Temperature 

Flowing 
Pressure 

psi  ft  of  psi 

Minimum  2298  2.60  238.40  1665 

Maximum  6960  61.70  292.03  6630 

Mean  5334  14.79  256.47  4650 

Median  5340  10.90  254.43  4708 

Standard Deviation  1036  10.03  9.14  1154 

Coefficient of Correlation  0.0040  0.2523  0.0500  ‐0.0296 
Table 1: Statistical Analysis of the Reservoir Pressure, Perforation Thickness, Flowing Temperature, and Flowing Pressure 
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Property  Diameter 
Flow Zone 
Thickness 

Water 
Saturation 

Porosity 

Ft  ft  Fraction  Fraction 

Minimum  3.650  5.25  0.0454  0.0374 

Maximum  9.020  66.50  0.4752  0.2303 

Mean  5.361  18.37  0.2452  0.1067 

Median  6.004  14.00  0.2321  0.1072 

Standard Deviation  1.029  11.96  0.0809  0.0302 

Coefficient of Correlation  0.1116  0.2484  ‐0.1265  0.2478 
Table 2: Statistical Analysis of the Diameter, Flow Zone Thickness, Water Saturation, and Porosity 

 
 
 

Property  Permeability 
Gas Specific 
Gravity 

Skin 
Gas Flow 
Rate 

Md  Ratio  MMSCF 

Minimum  0.1035  0.6333  ‐5.90  104 

Maximum  99.69  0.6724  ‐1.59  25385 

Mean  12.78  0.6480  ‐4.72  3349 

Median  6.86  0.6490  ‐4.70  2023 

Standard Deviation  15.90  0.0115  0.69  3700 

Coefficient of Correlation  0.6323  0.0171  0.0062  1.0000 
Table 3: Statistical Analysis of the Permeability, Gas Specific Gravity, Skin, and Gas Flow Rate 

 
 

Results 

Hundreds of runs were performed using different artificial intelligence methods. In all runs we used 70:30 training to testing 
and validation ratio. Between the tested AI methods, SVM and GRNN performed best with a low mean absolute error 
percentage and a very high correlation coefficient. This paper shows promising use for AI methods in estimating production 
rate from each layer in a multi-layered gas reservoir. 

Overall, the normalized set has shown better performance (major improvement in the cases of MLP and SVM). Figure 2 shows 
the mean absolute error of the model in MSCF. It shows that the normalized SVM model has peroformed best with a mean 
absolute error of 77 MSCF. Figure 3 shows the mean absolute percentage error of the different AI methods used in this study. 
Once again, the normalized SVM model has performed best with a mean absolute percentage error of 2.25%. 

Figure 4 shows that all the models had a high coefficient of correlation. However, the highest were the normalized GRNN and 
SVM sets. 
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Conclusions and Reccommendations 

 GRNN and SVM methods show promising results for estimating production rate from each layer in a multi-layered 

gas reservoir. 

 Normalizing the input data sets has led to the improvement in the results, drastically in some cases.  

 The accuracy of the model can be improved by quality checking and adding new data samples that covers wider 

ranges and different combinations. 

 The developed model shouldn’t be used outside the range of the training data. If need arises, it should be re-trained 

with new data points that widen the range. 
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