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Enhanced oil recovery (EOR) techniques are regaining interest as high oil prices have rendered such techniques econom-
ically attractive. Thermal EOR processes, which involve injection of heat into the reservoir, cause continuous alteration
of the thermal characteristics of both reservoir rock and fluids that are seldom modeled in the heat and momentum
transfer equations. In this study, the memory concept is employed to develop new dimensionless numbers that can
characterize convective heat transfer between the rock and fluids in a continuous alteration phenomenon. The energy
balance equation is employed to develop the heat transfer coefficient with the assumption that the rock achieves the fluid
temperature instantaneously. The final form of the equation is written in terms of Peclet number and the three proposed
dimensionless numbers. The results show that the proposed dimensionless numbers are sensitive to the absolute and
effective thermal conductivities of the solid and fluids, average system heat capacity, and the hydraulic diffusivity of
the fluid-saturated porous medium. One of the new numbers correlates with the Nusselt and Prandtl numbers, while
the local Peclet number is found to be sensitive to memory. Since heat convection and conduction in porous media can
now be explained through the proposed numbers with the memory concept, these numbers help characterize the rheolog-
ical behavior of the rock–fluid system. This work will enhance understanding the effect of heat transfer on alteration of
thermal conductivity during thermal recovery operations in a hydrocarbon reservoir.

KEY WORDS: heat transfer coefficient, reservoir modeling, forced convection, Peclet number, temperature
distribution, temperature profile, numerical simulation, reservoir management

1. INTRODUCTION

A temperature difference within a physical system causes
heat transfer to occur from the higher-temperature region
to the lower-temperature region. This transport process
continues until the system attains a uniform temperature.
The heat flux, which is a function of temperature differ-
ence, depends on one or a combination of the various
transport mechanisms, that is, conduction, radiation, or
convection. While the first two mechanisms could be sig-

nificant in any system, convective heat transfer is of ut-
most interest in porous media where fluid velocity is the
major concern.

The temperature distribution in a hydrocarbon reser-
voir is an important issue due to its utilization in detect-
ing water or gas influx or type of fluid entering into the
wellbore. This information is necessary for better reser-
voir management, which is subject to reservoir rock–fluid
rheologies. During thermal EOR operations, conversely,
the highly complex characteristics of rock–fluid interac-
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938 Hossain & Abu-Khamsin

NOMENCLATURE

A cross-sectional area of rock perpendicularLc−Ra characteristic length for Rayleigh number, m
to the flow of flowing fluid, m2 Lc−Re characteristic length for Reynolds number, m

cf total fluid compressibility Lc−Sh characteristic length for Sherwood number, m
of the system, 1/Pa Lc−We characteristic length for Weber number, m

cs formation rock compressibility L∗ dimensionless length of the reservoir
of the system, 1/Pa M average system heat capacity, kJ/m3K

ct total compressibility of the system, 1/Pa N rotational speed
cpf specific heat capacity of injected (NNuL)b = hcLc/ke, local Nusselt number of bulk

fluid, kJ/kg K porous media saturated with
cpg specific heat capacity of steam, kJ/kg K fluid, dimensionless
cpo specific heat capacity of oil, kJ/kg K (NNu)x∗ = hcx

∗/ke, local Nusselt number with
cps specific heat capacity of solid respect to wellbore position toward the

rock matrix, kJ/kg K boundary of the reservoir, dimensionless
cpw specific heat capacity of water, kJ/kg K NPeL = Lcρfcpfum/ke, local Peclet number,
D diameter, m dimensionless
g gravitational acceleration in x direction, m/s2 NPr = µcpf/ke, Prandtl number, dimensionless
hc convection heat transfer coefficient, (NPr)b = v/αTb, bulk Prandtl number of fluid-

kJ/hm2K saturated porous medium, dimensionless
k absolute variable permeability, m2 p pressure of the system, Pa
ke effective thermal conductivity of fluid- Pw power, hp

saturated porous media, kJ/h m K Pi initial pressure of the system, Pa
kf absolute thermal conductivity of fluid a reference pressure of the system, Pa

within the porous rock matrix, kJ/h m K qi = Au, initial volume production rate, m3/s
kg thermal conductivity of gas, kJ/h m K qx fluid mass flow rate per unit area in
Kmc mass transfer coefficient, m/s x direction, kg/m2s
Ko thermal conductivity of oil, kJ/h m K q∗ dimensionless volume production rate
Ks absolute thermal conductivity of qinj = Au, volume flow rate of injected

solid rock matrix, kJ/h m K hot water, m3/s
Kw thermal conductivity of water, kJ/h m K qprod = Au, production volume flow rate
L distance between production and of oil, m3/s

injection well alongx direction, m rpt pore-throat radius, microns
Lc characteristic length related to Sg gas saturation, volume fraction

pore-throat diameter, m So oil saturation, volume fraction
Lc−Bi = Vbody/Asurface, characteristic length Sw water saturation, volume fraction

for Biot number, m Swi initial water saturation, volume fraction
Lc−Bo characteristic length for Bond number, m t time, s
Lc−Fo characteristic length through which tc characteristic time, s

conduction occurs for Fourier number, m T temperature, k
Lc−Gr characteristic length through which T ∗ dimensionless temperature

conduction occurs for Grashof number, m Tf temperature of injected fluid, K
Lc−Nu characteristic length for Nusselt number, mT ∗

f dimensionless temperature of injected fluid
Lc−Pe characteristic length for Peclet number, m Ti initial reservoir temperature, K
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NOMENCLATURE (Continued)

Tr reference temperature of injected fluid, K η ratio of the pseudopermeability
Ts average temperature of solid of the medium with memory to fluid

rock matrix, K viscosity, m3 s1+α/kg
T ∗
s dimensionless temperature of µ fluid dynamic viscosity, Pa s

solid rock matrix µL fluid dynamic viscosity for
Tst injected hot water temperature, K capillary number, Pa s
t∗ dimensionless time ξ a dummy variable for time, i.e., real
um fluid velocity with memory in porous part in the plane of the integral, s

media in the direction ofx axis, m/s ξ∗ dimensionless dummy variable for time,
u∗ dimensionless velocity i.e., real part in the plane of the integral
V fluid velocity for Reynolds number, m/s Γ gamma function
VL characteristic velocity of liquid, m/s ρ fluid density, kg/m3

x flow dimension at any point along ∆ρ = ρw − ρo, density difference of fluids
x direction, m (i.e., water and oil), kg/m3

x∗ dimensionless distance φ porosity of the rock, volume fraction
ρf density of fluid, kg/m3

Greek Symbols ρg density of gas, kg/m3

α fractional order of differentiation, ρo density of oil, kg/m3

dimensionless ρs density of solid rock matrix, kg/m3

αH = k/φµct, hydraulic diffusivity of the fluid- ρw density of water, kg/m3

saturated porous medium, m2/s σBo surface tension of the interface or
αm mass diffusivity, m2/s interfacial forces for Bond number, N/m
αTb = ke/M , bulk thermal diffusivity of fluid- σca surface or interfacial tension

saturated porous medium, m2/s between the two fluid phases for
αTi thermal diffusivity at temperature Capillary number, N/m

Ts for Fourier number, m2/s σwe surface tension for Weber number, N/m
β = 1/v (∂v/∂p) p, volumetric thermal

expansion coefficient, m3/m3K Acronyms and Field Units
∆T temperature difference, K API American petroleum institute
ν = µ/ρf , kinematic viscosity (ratio of rb reservoir barrels

absolute or dynamic viscosity to stb standard barrels
density), m2/s scf standard cubic feet

tion play a vital role in heat transfer between the rock ma-
trix and flowing hydrocarbons. Such heat transfer is the
major factor governing the temperature profile within the
reservoir. The previously mentioned complex phenomena
can be explained by the concept of continuous time func-
tion, termedmemory, to analyze the rheological behav-
ior of rock and fluid properties when the rock is not in
thermal equilibrium with the fluid(s) (Hossain and Abu-
Khamsin, 2012).

The memory concept is of interest to researchers in
different areas of science and engineering. Caputo and
Plastino (2004) modified Darcy’s constitutive equation

with the introduction of the memory concept. They also
modified the second constitutive equation of diffusion,
which relates the density variations in the fluid to pres-
sure, where they incorporated the memory formalisms.
They computed the Green’s function of pressure in the
layer when a constant pressure is applied to the boundary
for which they found closed-form formulae and attempted
to capture the memory parameters experimentally. They
concluded that the memory concept represents media in
which the fluid flux decays more rapidly in time and de-
lays the effect of the pressure at the boundary relative to
the effects of the classic Darcy formula.
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940 Hossain & Abu-Khamsin

De Espíındola et al. (2005) used the fractional deriva-
tive model (i.e., a measure of memory) to identify the
dynamic properties of viscoelastic materials. They also
presented numerical and experimental results where they
claimed that no previous work had produced a technique
for the identification of the fractional parameters of vis-
coelastic materials directly from an experiment. To val-
idate the procedure, a comparison of the measured and
regenerated transmissibility was made. Storage modulus
and loss factors were computed using the minimizing pa-
rameters of a particular cost function. These functions
were then plotted in terms of frequency and temperature.

Cloot and Botha (2006) used the generalized classical
Darcy law, where they used a noninteger order derivative
of the piezometric head for groundwater flow. Numerical
solutions of their equation for various fractional orders
of the derivatives were compared with experimental data
to see the behavior of fractional derivatives of modified
Darcy’s law.

For porous media application, Iaffaldano et al. (2006)
conducted an experiment to capture the permeability
changes with time for a sand layer. They also provided
a memory model for diffusion of fluids in porous media,
which matched well with the flux rate observed in exper-
iments. They concluded that the flux rate variations ob-
served during the experiments were compatible with the
compaction of sand. This variation was due to the amount
of fluid that went through the grains locally. As a result,
there was a reduction of porosity.

Zavala-Sanchez et al. (2009) investigated solute trans-
port in a vertically bounded stratified random medium.
They studied the effective mixing and spreading dynam-
ics at preasymptotic times in terms of effective average
transport coefficients, which had been defined on the
basis of local moments, that is, moments of the trans-
port Green function. They quantified the disorder-induced
mixing and spreading by a constant Taylor dispersion co-
efficient. They observed the impact of the position of the
initial plume and the initial plume size on the preasymp-
totic effective spreading and mixing dynamics for single
realizations. They showed that the system “remembers”
its initial state, which was defined as memory effects for
the effective transport coefficients. This memory effect
disappeared after the solute had sampled the full vertical
extent of the medium.

Recently, Di Giuseppe et al. (2010) modified the con-
stitutive equations by introducing a memory formalism
operating on both the pressure gradient–flux and the
pressure–density variations where fractional order deriva-
tives were used to represent the memory formalism. They

conducted sets of laboratory experiments in uniformly
packed columns for both homogeneous and heteroge-
neous media where a constant pressure was applied on the
lower boundary. They concluded that the memory largely
influenced the experiments; they showed how mechanical
compaction can decrease permeability and, consequently,
flux, through data and theory. Moreover, memory can be
affected by the tank height, the particle size distribution,
the stability of the initial particle distribution, and so on.

In EOR processes, alteration of rock–fluid properties
during thermal recovery is well established in the litera-
ture (Hossain et al., 2007, 2008a, 2008b, 2009a; Hossain
and Islam, 2009). This alteration occurs because when
a fluid flows through a porous medium, the permeabil-
ity of the matrix may vary locally with time (Iaffaldano
et al., 2006; Cloot and Botha, 2006) for several reasons:
chemical dissolution of the medium, swelling and floc-
culation, pore plugging and precipitation reactions, trans-
port of particles obstructing the pores, mechanical com-
paction, and grain crumbling due to high pressure (Di
Giuseppe et al., 2010). All these phenomena, in conjunc-
tion with possible chemical reactions between the fluid
and the medium, create continuous local changes of both
porosity and permeability, resulting in memory; that is, at
a given instant in time, the advection process is affected
by the history of pressure and flux (Iaffaldano et al., 2006;
Di Giuseppe et al., 2010). Most importantly, the alteration
of rock and fluid properties guides the temperature profile
within the reservoir formation. Published literature shows
that the fluid velocity (Yoshioka et al., 2005a, 2005b) and
time have strong effects on the temperature profile (Hos-
sain, 2008; Hossain et al., 2008a, 2008b). Therefore it is
important to investigate the effects of memory in terms
of different heat transfer dimensionless numbers based on
the rheology of the rock–fluid system.

Convection and conduction heat transfer depends on
the fluid temperature, which is related to surroundings’
temperature, surroundings’ conductivity (i.e., limestone,
seawater, and air), insulation, inner-film conductivity, and
residence time. The available models are unable to han-
dle the alteration of rock and fluid properties with time
during thermal operations (Marx and Langenheim, 1959;
Willman et al., 1961; Spillette, 1965; Chan and Baner-
jee, 1981; Kaviany, 2002). Recent investigations show
that due to memory and temperature variation in the for-
mation, the porosity, permeability, and rheology of the
reservoir may change as a result of continuous heat trans-
fer within the fluid and rock matrix (Hossain et al., 2007,
2009a; Hossain, 2008). However, previous works did not
consider the thermal effects in terms of Peclet number and
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other heat transfer coefficients when the rock and fluid
temperatures are considered equal(Ts = Tf ). In addition,
the continuous alteration of fluid and pore space proper-
ties may be greatly influenced by the fluid memory, es-
pecially in geothermal reservoirs (Hossain et al., 2007,
2009a; Hossain, 2008). Hossain et al. (2009a) showed
how stress–strain relationships can be presented and char-
acterized through the memory concept. They did not use
this concept for thermal recovery processes.

Therefore the present paper shows the effects of in-
cluding the memory function in the fluid flow behavior
during hot water injection into a hydrocarbon reservoir.
As discussed earlier, fluid velocity and time have strong
effects on the temperature profile. Thus it is very impor-
tant to investigate the effects of fluid memory as well as
the rheology of the rock–fluid system based on heat trans-
fer coefficients.

In this study, model equations developed by Hossain
and coauthors (Hossain et al., 2011; Hossain and Abu-
Khamsin, 2012) are employed to investigate the major
role of alteration of various rock and fluid properties dur-
ing thermal operations in terms of Peclet number and
three proposed dimensionless numbers associated with
heat transfer in porous media. While those studies were
conducted for unequal rock and fluid temperatures, the
present study assumes that the rock attains the fluid’s tem-
perature instantaneously, that is, that the rock and fluid
temperatures are equal throughout the system. The main
objective of this study is to characterize different heat
transfer dimensionless numbers that are sensitive to the
time dimension. The model equation describes how the
fluid and rock properties are dependent on the continuous
time function. Thus the equation affords investigation of
the dependence of different heat transfer coefficients—in
terms of dimensionless numbers—on the system’s param-
eters and properties. To solve the model equation for dif-
ferent dimensionless numbers, MATLAB programming
was used. This analysis will provide a better understand-
ing of heat transfer phenomena during thermal operations
in porous media.

2. MATHEMATICAL FORMULATION

The model considers a porous medium of uniform cross-
sectional area and that is homogeneous along thex axis.
Normal practice assumes fluid flow in porous media to
be governed by Darcy’s law. In this study, however, the
modified Darcy’s law is employed to introduce the no-
tion of fluid memory (Caputo, 1999, 2000; Hossain et al.,
2008c; Hossain and Islam, 2009). Before commencement

of hot fluid injection, both pressure and temperature are
assumed to be uniform throughout the reservoir. Since the
medium is homogeneous, the pressure along thex direc-
tion may be considered to vary initially according to the
Darcy diffusivity equation. It is also considered that the
thermal conductivities of both fluid and solid rock ma-
trices are not functions of temperature and are constant
throughout the reservoir.

To develop the new dimensionless numbers, the tem-
perature distribution pattern is developed based on the en-
ergy balance equation (Hossain et al., 2011). In this re-
gard, the equation is considered as the governing equa-
tion for both rock and fluid separately. The inclusion of
time-dependent rock and fluid properties is of great sig-
nificance to petroleum engineers because prediction of
production performance and management is highly uncer-
tain. Therefore consideration of time-dependent phenom-
ena is necessary for a well-managed petroleum project.
Inclusion of the memory concept is made using the mod-
ified Darcy’s law as the flow rate equation, which may be
written for a 1-D system as (Hossain et al., 2007, 2008c,
2009b)

um = − η

Γ (1− α)

t∫
0

(t− ξ)
−α

[
∂2p

∂ξ∂x

]
∂ξ (1)

Hossain et al. (2008c) defined the composite variable,η,
which is a function of permeability and viscosity, for any
type of reservoir as

η =
k

µab
(t)

α (2a)

For example, Eq. (2a) can be expressed for sandstone as
(Hossain et al., 2008c)

η =

[
3.0 (p/6894.76)

−0.31
]
× 10−12

µobe8.422×10−5 (p− pb)
(t)

α (2b)

where

µob = 6.59927× 105R−0.597627
s T−0.941624γ−0.555208

g

×API−1.487449

pb = −620.592 + 6.23087
Rsγo

γgB1.38559
o

+ 2.89868T

Bo = Bobe
−Co(p−pb)

Bob = 1.122018 + 1.410× 10−6RsT

γ2
o
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942 Hossain & Abu-Khamsin

Co =

(
−70603.2 + 98.404Rs + 378.266T
−6102.03γg + 755.345API

)
p+ 3755.53

Equation (2b) is based on field units, which are oil
formation volume factor (Bo), rb/stb; oil compressibil-
ity (Co), psi−1; oil formation volume factor at the bubble
point (Bob), rb/stb; oil viscosity at the bubble point (µob),
cp; oil viscosity above the bubble point (µab), cp; solu-
tion gas oil ratio (Rs), scf/stb; crude oil temperature (T ),
◦F; gas specific gravity (γg),lbm/ft

3; oil specific gravity
(γo),lbm/ft

3; and oil API gravity (API),◦API.
If the temperatures of the fluid and rock matrix are

the same, the energy balance equations can be combined
into a single equation [Eq. (3)] as used by several au-
thors (Kaviany, 1995; Lee and Vafai, 1999; Alazmi and
Vafai, 2000; Nield and Bejan, 2006). A detailed deriva-
tion of Eq. (3) is presented in the appendix and appears as
Eq. (A14):

M
∂T

∂t
+ ρfcpfum

∂T

∂x
− ke

∂2T

∂x2
− = 0 (3)

Equation (3) can be transformed into dimensionless form
using the following nondimensional parameters:

T ∗ =
T

Ti
, T ∗

s =
Ts

Ti
, T ∗

f =
Tf

Ti
, x∗ =

x

L
,

p∗ =
p

pi
, q∗ =

q

qi
, t∗ =

kt

ϕµctL2
, ξ∗ =

kξ

ϕµctL2

Using these parameters, the final form of Eq. (3) is ob-
tained as [Appendix, Eq. (A18)]

∂2T ∗

∂x∗2 −NHA4
∂T ∗

∂t∗
−NPeL

L

Lc

∂T ∗

∂x∗ = 0 (4a)

Now introducing a new dimensionless ratio,NHA3 =
(ks + kf )/ke, Eq. (4a) can be written as

1

NHA3

∂2T ∗

∂x∗2 − NPeL

NHA3

L

Lc

∂T ∗

∂x∗ − NHA4

NHA3

∂T ∗

∂t∗
= 0 (4b)

where

NHA3 =
ks + kf

ke
(5)

NHA4 =
MαH

ke
(6)

ke = ϕkf + (1− ϕ) ks (7)

Equations (4a) and (4b) give the dimensionless tempera-
ture profile and heat transfer along the formation length
when the rock and fluid temperatures are considered

equal. This model has been developed using the memory
concept. Therefore, during the numerical computation,
um is used to the find the impact of the memory function,
while temperature distribution is governed by Eq. (4a) or
(4b). This partial differential equation is solved to find
the effects of different rock–fluid parameters in terms of
Peclet number and three proposed numbers. Computa-
tions on Eq. (4b) are carried out for different rock–fluid
parameters, where the initial and boundary conditions
are defined asTf (x, 0) = Ts (x, 0) = Ti in terms of di-
mensionless formT ∗

f (x, 0) = T ∗
s (x, 0) = 1; Tf (0, t) =

Ts (0, t) = Tst in terms of dimensionless formT ∗
f (0, t) =

T ∗
s (0, t) = Tst/Ti; andTf (L, t) = Ts (L, t) = Ti in terms

of dimensionless formT ∗
f (L, t) = T ∗

s (L, t) = 1.

3. SIGNIFICANCE OF THE PROPOSED
DIMENSIONLESS NUMBER

There are at least 15 dimensionless numbers associated
with fluid dynamics and heat and mass transfer. Those
numbers are summarized in Table 1. The proposed num-
ber 3 [Eq. (5)] can be defined as the ratio of the total abso-
lute thermal conductivities of the fluid and rock to the ef-
fective thermal conductivity of the fluid-saturated porous
medium, that is,

NHA3 =
ks + kf

ke
=

Total absolute
thermal conductivity of
fluid and rock matrix

Effective thermal
conductivity of fluid-

saturated porous medium

(8)

Introducing a new dimensionless number, (NAH ), defined
as

NAH =
ν

αH
(9)

the proposed number is the ratio of the fluid’s kinematic
viscosity to the system’s (i.e., the fluid-saturated porous
medium) hydraulic diffusivity. It is similar to the Schmidt
number (Table 1) but replaces the fluid’s mass diffusiv-
ity with the system’s hydraulic diffusivity, which incor-
porates the effect of the rock matrix. Kinematic viscos-
ity, also called themomentum diffusivity, is the ability
of a fluid to transport momentum by molecular “diffu-
sion.” Since hydraulic diffusivity is the ratio of the sys-
tem’s fluid transmissivity to the system’s fluid storativ-
ity, NAH becomes a measure of the system’s diffusive to
convective momentum transport capability, as influenced
by its compressibility. For sandstone of 0.2 porosity and
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TABLE 1: Proposed new dimensionless number and different other dimensionless numbers used in heat transfer and
fluid dynamics (Hossain and Abu-Khamsin, 2012)

Name Symbol Definition Comments

Biot NBi NBi = (hcLc−Bi)/ks Ratio of conductive to convective heat transfer resistance

Bond NBo NBo = (∆ρgL2
c−Bo)/σBo Ratio of body forces (often gravitational) to surface ten-

sion forces, i.e., interfacial forces

Capillary Nca Nca = (µLvL)/σca Ratio of viscous forces to interfacial forces or surface
tension

Fourier NFo NFo = (αTstC)/L
2
c−Fo Ratio of the heat conduction rate to the rate of thermal

energy storage; also expressed as a ratio of current time
to reach steady state

Grashof NGr NGr = (gβ∆TL3
c−Gr)/ν

2 Ratio of the buoyancy to viscous force acting on a fluid;
also a ratio of natural convection buoyancy force to vis-
cous force

Proposed
number 1

NHA1
NHA1 = (kρf )/(µ

2ct)

= {Npr}e/{Npr}f
Ratio of the Prandtl number of the fluid-saturated porous
medium to the Prandtl number of the fluid

Proposed
number 2

NHA2
NHA2 = (1− ϕ)/ϕ

×(ρscps)/(ρfcpf )
Ratio of the heat transfer of solid matrix to the heat trans-
fer of reservoir fluid

Proposed
number 3

NHA3 NHA3 = (ks + kf )/ke Ratio of total absolute thermal conductivity of fluid and
rock to the effective thermal conductivity of the fluid-
saturated porous medium; a new dimensionless number
for fluid-saturated rock

Proposed
number 4

NHA4
NHA4 = αH/αTb

= {Npr}b/NAH

Ratio of the bulk Prandtl number of the fluid-saturated
porous medium to the proposed number; a new dimen-
sionless number for fluid-saturated rock

Proposed
number 5

NAH NAH = ν/αH Ratio of the fluid’s momentum diffusivity to the system’s
(fluid-saturated porous medium) hydraulic diffusivity; a
new dimensionless number for fluid-saturated rock

Nusselt NNu NNu = (hcLc−Nu)/ke Ratio of convective to conductive heat transfer across
(i.e., normal to) the boundary

Peclet Npe
Npe = (ρfcpfuxLc−Pe)/ke

= (uxLc−Pe)/αTf

Ratio of convective to diffusive heat/mass transport in a
fluid

Power Npo Npo = Pw/(ρN
3D5) Also known as Newton number and a ratio of resistance

force to the inertia force

Prandtl Npr Npr = ν/αTf
= (µcpf )/kf Ratio of momentum diffusivity (kinematic viscosity) and

thermal diffusivity, or ratio of viscous diffusion rate to
thermal diffusion rate

Rayleigh NRa
NRa = NGrNPr

= (gβ∆TL3
c−Ra)/(ναTf

)
Ratio of buoyancy forces and the product of thermal and
momentum diffusivities; ratio of natural convective to
diffusive heat/mass transport; determines the transition
to turbulence

Volume 15, Number 10, 2012



944 Hossain & Abu-Khamsin

TABLE 1 (Continued)
Name Symbol Definition Comments
Reynolds NRe NRe = (ρV Lc−Re)/µ Ratio of inertial forces

(
ρV 2L2

)
to viscous forces

(µV L); ratio of convective to viscous momentum
transport

Schmidt NSc NSc = ν/αm = µ/(ραm) Ratio of momentum diffusivity (viscosity) and mass
diffusivity and used to characterize fluid flows in which
there are simultaneous momentum and mass diffusion
convection processes

Sherwood NSh NSh = (KmcLc−Sh)/αm Ratio of convective to diffusive mass transport; also
called the mass transfer Nusselt number and used in
mass transfer operations

Weber NWe NWe = (ρV 2Lc−We)/σWe A measure of the relative importance of the fluid’s iner-
tia compared to its surface tension and related to surface
behavior for a two- phase system

0.1 × 10−12 m2 absolute permeability,NAH would be
about 2.0× 10−6 if the rock is saturated with air at ambi-
ent conditions. For the same sandstone, if saturated with
freshwater,NAH would be about 1.4× 10−5, which is 7
times larger due to water’s largerν (kinematic viscosity)
and the water-saturated system’s smallerαH .

Manipulating Eq. (6) yields

NHA4 =
MαH

ke
=

αH

αTb
=

ν

ν

αH

αTb
=

ν/αH

ν/αTb

=
(NPr)b
NAH

(10)

The proposed number 4 (NHA4) is the ratio of the hy-
draulic diffusivity to the thermal diffusivity—both of the
fluid-saturated porous media—within the system volume.
In essence, it is the ratio of the convective ability of the
fluid-saturated porous medium to its conductive ability.
Equation (10) also shows that (NHA4) can be looked at as
the ratio of the bulk Prandtl number of the fluid-saturated
porous medium to its proposed number 5 (NAH ). There-
foreNHA4 expresses the influence of the rock matrix on
the thermal and flow characteristics of the fluid within the
porous medium. The three dimensionless numbers pro-
posed in this article are also listed in Table 1. Two di-
mensionless numbers proposed previously (Hossain and
Abu-Khamsin, 2012) are listed in this table as well.

Again, Eq. (6) can be manipulated into

NHA4 =
MαH

ke
=

MαH

hcLc

hcLc

ke
=

MαH

hcLc
(NNuL)b

=
(NNuL)b

(hcLc)/(MαH)
(11)

In Eq. (11), the proposed number 4 (NHA4) is the ra-
tio of the local bulk Nusselt number—that is, for the
whole fluid-saturated porous medium—to the system’s
heat transfer mechanism, that is, both conduction and
convection. ThereforeNHA4 explains the correlation and
influence of the system’s heat transfer mechanism on the
Nusselt number, where continuous alteration of rock–
fluid properties can be linked up with time and Nusselt
number during any thermal recovery process.

4. RESULTS AND DISCUSSION

Computations are carried out for a reservoir 3000 m long,
where hot water is injected at a constant rate of 17.5 m3

of equivalent water volume per day. All assumed rock and
fluid parameters are listed in Table 2. The time and dis-
tance steps are set at∆x∗ = 0.0167 and∆t∗ = 0.00001.
Temperature variation is obtained for the case where
the fluid and rock temperatures are equal. In Eqs. (4a)
and (4b), the local Peclet number can be defined as
(NPe)L = Lcρfcpfum/ke, whereLc represents a char-
acteristic length such as the mean pore throat diameter of
the porous medium. During the computation,Lc is cal-
culated by Winlad’s (Kolodzie, 1980) correlation,Lc =
2πrpt and log rpt = 0.732 + 0.588 log k − 0.864 logϕ,
wherek is in mD andrpt is in microns. Kolodzie (1980)
and Pittman (1992) proposed the preceding correlation as
the best permeability estimator for sandstones. They and
others (Rezaee et al., 2006) indicated that the best results
are obtained from a mercury injection capillary pressure
test at 35% mercury saturation. Other correlations for car-
bonate rocks are also proposed in the same literature. Dur-
ing the computation of(NNuL)b, the same procedure is
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TABLE 2: Fluid and rock property values for numerical computation

Fluid and rock properties Fluid and rock properties
cpg= 29.7263 [KJ/Kg - K] Sg = 20% [vol/vol]

cpo = 2.0934 [KJ/Kg - K] So = 60% [vol/vol]

cps = 0.8792 [KJ/Kg - K] Sw = 20% [vol/vol]

cpw = 4.1868 [KJ/Kg - K] Tst = 550 K

hc = 280.87 [KJ/h - m2 - K] Ti = 300 K

kg = 0.0143 [KJ/h - m - K] ρg = 16.7121 [Kg/m3]

ko = 1.3962 [KJ/h - m - K] ρo = 800.923 [Kg/m3]

ks = 9.346 [KJ/h - m - K] ρs = 2675.08 [Kg/m3]

kw = 3.7758 [KJ/h - m - K] ρw = 1000.0 [Kg/m3]

ki = 10−15 [m2] ϕ = 25% [m3/m3]

pi = 48263299.0 [pa ] µf = 10 pa.s [Ns/m2]

cf = 1.2473× 10−9 [1/pa] qi = 17.5 m3/d [110 bbl/day]

cs = 5.8015× 10−10 [1/pa] A = 300 m × 20 m = 6000 m2

used to calculate theLc for local NHA4 and (NNuL)b.
Moreover, as Nusselt number,NNu, refers to the ratio of
total to conductive heat transfer, the local Nusselt number
with respect to wellbore position and reservoir boundary
can be defined as(NNu)x∗ = [∂T ∗/∂y∗]x∗=0,1, while it
can also be calculated using(NNu)x∗ = hcx

∗/ke.
Figures 1(a)–1(c) show the variation of the proposed

number 3(NHA3) with the solid’s (ks), the fluid’s (kf ),
and the total (ks + kf ) absolute thermal conductivity for
various effective thermal conductivities (ke). NHA3 in-
creases linearly with the increase inks for a particularke
value and decreases with the increase inke [Figs. 1(a) and
1(b)]. The same trend is seen in Fig. 1(c), however, the
rate of increase ofNHA3 is lower than in Figs. 1(a) and
1(b). This indicates that the solid’s thermal conductivity is
more dominant onNHA3 compared with the fluid’s con-
ductivity. Therefore conduction heat transfer has a greater
influence onNHA3.

Figure 2 depicts the variation of the proposed num-
ber 3 (NHA3) with effective thermal conductivity (ke) for
various total absolute thermal conductivities (ks + kf ).
NHA3 decreases nonlinearly with the increase inke for
a particular (ks + kf ) value and increases with increase
in (ks + kf ). Again, this implies the great influence of
conduction heat transfer onNHA3.

Figures 3(a) and 3(b) show the variation of the pro-
posed number 4 (NHA4) with effective thermal conduc-
tivity (ke) for different average system heat capacities
(M ) and for different hydraulic diffusivities of the fluid-
saturated porous medium (αH ). NHA4 decreases nonlin-

early with increase inke for a particularM , and both
slope and nonlinearity of the curve increases for higher
M [Fig. 3(a)].NHA4 also increases with increase inM .
Therefore the system’s heat capacity has an influence on
NHA4, which means both conduction and convection heat
transfer play a significant role onNHA4. The same non-
linear trend is seen in Fig. 3(b). However, for lowαH ,
NHA4 does not change significantly with increase inke.
AsαH increases, the degree of nonlinearity and the slope
increase steadily forNHA4 versuske plots.

Figures 4(a) and 4(b) depict variation of the proposed
number 4 (NHA4) with different average system heat ca-
pacities (M ) for different effective thermal conductivi-
ties (ke) and different hydraulic diffusivities of the fluid-
saturated porous mediumαH , NHA4 increases nonlin-
early with increase inM for a particularke value, and
NHA4 decreases with increase inke value for a particu-
lar M value [Fig. 4(a)]. A slightly sloping linear trend is
shown forNHA4 versusM plots in Fig. 4(b). However,
with increase in hydraulic diffusivity,NHA4 increases for
a particularM value, which is more sensitive for larger
αH .

Figures 5(a) and 5(b) depict variation of the proposed
number 4 (NHA4) with hydraulic diffusivityαH for dif-
ferent average system heat capacities (M ) and for differ-
ent effective thermal conductivities (ke)—all for the fluid-
saturated porous medium.NHA4increases linearly with
increase inαH for a particularM value and the slope of
the trend increases with increase inM value [Fig. 5(a)].
Conversely,NHA4 decreases with increase inke value
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(a)

(b)

(c)

FIG. 1: Variation of the proposed number 3(NHA3)
with absolute thermal conductivity of solid (ks) at a
given kf = 1.5957 KJ/hmK, fluid (kf ) at a givenks =
9.346 KJ/hmK, and total solid and fluid (ks + kf ) for dif-
ferent effective thermal conductivites (ke)

FIG. 2: Variation of the proposed number 3(NHA3) with
effective thermal conductivity (ke) for different total ab-
solute thermal conductivites of solid and fluid (ks + kf )

(a)

(b)

FIG. 3: Variation of the proposed number 4(NHA4)
with effective thermal conductivity (ke) for different av-
erage system heat capacities (M ) at a givenαH =
2.3202 × 10−5 and with different hydraulic diffusivities
of the fluid-saturated porous mediumαH at a givenM =
2273.83
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(a)

(b)

FIG. 4: Variation of the proposed number 4(NHA4) with
average system heat capacity (M ) for different effective
thermal conductivities (ke) at a givenαH = 5.6184 ×
10−4 and different hydraulic diffusivities of the fluid-
saturated porous medium (αH ) at a givenke = 7.8657

for a particularαH value, which has a linear step trend
[Fig. 5(b)].

Figure 6(a) depicts variation of the proposed number 4
(NHA4) with bulk Prandtl number((NPr)b) for different
the proposed number 5NAH values, both of the fluid-
saturated porous medium as defined by Eq. (10).NHA4

increases linearly with increase in(NPr)b for all NAH

values. Since the Prandtl numberNPr is the ratio of con-
vective to conductive heat transfer, increase inNHA4 with
(NPr)b implies more heat convection during steam injec-
tion.NHA4 decreases with increase inNAH for a partic-
ular (NPr)b. Figure 6(b) depicts the variation ofNHA4

with NAH for different (NPr)b using the same equation.

(a)

(b)

FIG. 5: Variation of the proposed number 4(NHA4) with
hydraulic diffusivity of the fluid-saturated porous medium
(αH ) for different average system heat capacities (M ) at
a givenke = 7.8657 and for different effective thermal
conductivities (ke) at a givenM = 2273.83

NHA4 decreases nonlinearly with increase inNAH for a
particular(NPr)b, andNHA4 does not show a noticeable
change with increase in(NPr)b.

Equation (11) is used to plot Figs. 7(a)–7(d), which de-
pict the variation of the proposed number 4(NHA4) with
the local Nusselt number of the fluid-saturated porous
medium (the bulk Nusselt number(NNuL)b for differ-
ent M , Lc, hc, andαH values).NHA4 varies linearly
with (NNuL)b for variousM values [Fig. 7(a)]; however,
NHA4 is less sensitive to(NNuL)b for low M values than
for high M values. The same trend is seen in Figs. 7(b)
and 7(c).NHA4 versus(NNuL)b shows steep slopes for
differenthc values [Fig. 7(d)]. This sharp sloping of the
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(a) (b)

FIG. 6: Effect of the bulk Prandtl number(NPr)b and the proposed number 5 (NAH ), both of the fluid-saturated
porous medium, on the system’s proposed number 4(NHA4)

(a) (b)

(c) (d)

FIG. 7: Variation of the proposed number 4(NHA4) with the local Nusselt number of the fluid-saturated porous
medium((NNuL)b) for various average system heat capacities (M ) at a givenαH = 2.3202 × 10−5, hc = 280.87,
Lc = 255.87; various hydraulic diffusivity values of the fluid-saturated porous medium(αH) at a givenM =
2273.83, hc = 280.87, Lc = 255.87; various characteristic lengths(Lc) at a givenαH = 2.3202 × 10−5, hc =
280.87, Lc = 255.87; and various convection heat transfer coefficients (hc) at a givenαH = 2.3202 × 10−5,
M = 2273.83, Lc = 255.87
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curve indicates that porous medium’s local Nusselt num-
ber andNHA4 are very sensitive to convective heat trans-
fer coefficient (hc). Moreover,NHA4 increases linearly
with increase in(NNuL)b for a particularhc value. All
the previously mentioned figures indicate that more heat
conduction takes place whenM , aH , Lc, andhc are in-
creased, which is related toNHA4. Therefore heat con-
duction in porous media can be well explained by the pro-
posed numberNHA4.

Equation (9) is used to plot Figs. 8(a) and 8(b), which
depict the variation of the proposed number 5 (NAH ) with
fluid density (ρf ) and fluid viscosity (µ) for different hy-
draulic diffusivities of the fluid-saturated porous medium
(aH ). NAH decreases nonlinearly with increase inρf for

a particularαH value, andNAH decreases with the in-
crease ofαH for the same fluid density [Fig. 8(a)]. Con-
versely,NAH increases linearly with increase ofµ for a
particularαH value, andNAH decreases with the increase
of αH for the same fluid viscosity [Fig. 8(b)]. This indi-
cates that if the fluid momentum diffusivity is increased,
NAH increases significantly.

Figures 9(a) and 9(b) show variation of the proposed
number 5 (NAH ) with fluid kinematic viscosity and hy-
draulic diffusivities of the fluid-saturated porous medium
(αH ) for variousαH andν values. Figure 9(a) shows that
NAH increases linearly with increase inν for a particular
αH , which reveals the same trend and behavior as com-
mented for Fig. 8(b). This indicates thatNAH is sensitive

(a) (b)

FIG. 8: Variation of the proposed number 5 (NAH ) with fluid density(ρf ) at a givenµ = 10 and fluid viscosity(µ)
at a givenρf = 600 for different hydraulic diffusivities of the fluid-saturated porous mediumαH

(a) (b)

FIG. 9: Variation of the proposed number 5(NAH) with fluid kinematic viscosity(ν) and hydraulic diffusivities of
the fluid-saturated porous mediumαH for differentαH andν
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to the fluid’s momentum diffusivity.NAH decreases non-
linearly with increase inαH for a particularν value, and
NAH increases with increase inν for the same system’s
hydraulic diffusivity [Fig. 9(b)].

The local Peclet number of Eq. (4b) is plotted in
Figs. 10(a)–10(c), which depict the variation ofNPeL

with memory-based fluid velocity (um) for variouske,
ρfcpf , andLc values.NPeL increases linearly with (um)
for different (ke) values [Fig. 10(a)] and decreases with
the increase inke. For low um, ke has less influence on
NPeL. As the degree of memory increases (i.e., increase
in um), ke starts to dominateNPeL. The same trend is
seen in Fig. 10(b); however, the influence of memory
is more pronounced than in the case ofke. The charac-
teristic length with memory plays a great role onNPeL

[Fig. 10(c)], andNPeL increases with increase inLc and
memory becomes more dominant for largerLc values.

5. CONCLUSIONS

A mathematical model with the inclusion of the mem-
ory concept is presented here to introduce new dimen-
sionless numbers during thermal operations in porous me-
dia. These numbers can be useful in characterizing reser-
voir rock and fluid properties. The results and analysis are
based on a numerical solution of the model equations us-
ing real reservoir data. These results are then employed
to explain heat conduction and convection processes in
terms of the proposed dimensionless numbers. The case
investigated in this study is when the reservoir rock attains
the fluid temperature instantaneously. The proposed num-
bers are well capable of handling the variable rock and
fluid properties with time and space and are able to bet-
ter explain the continuous alteration of rock–fluid behav-
ior. Such information on continuous alteration of rock–
fluid rheology is useful for better prediction of reservoir
performance. The proposed mathematical tool is used to
investigate the effects of temperature on different reser-
voir parameters, which can also be utilized to investigate
the temperature profile by solving the model equations for
temperature. The utility of the proposed numbers lies in
the ability to characterize the rheological properties of a
reservoir if those numbers are known for another analo-
gous reservoir, thus eliminating the need for rigorous in-
vestigation.
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APPENDIX

To determine the temperature distribution with space and
time, the energy balance equation is considered as the
governing equation separately for both rock and fluid. The
partial differential equations have a familiar form because
the system has been averaged over representative elemen-
tary volumes (REV). A right-handed Cartesian coordi-
nate system is considered where thex axis is along the
reservoir length. The conventional forms of energy bal-
ance equations are available in literature (Spillette, 1965;
van Poollen et al., 1980; Chan and Banerjee, 1981; Lake,
1989; Satman et al., 1984; Kaviany, 2002; Dawkrajai et
al., 2006; Yoshioka et al., 2006, 2007, 2009; Hossain et
al., 2008a, 2008b, 2009b; Weibo et al., 2010; Cengel and
Ghajar, 2011; Wang and Horne, 2011). However, if we
neglect the kinetic energy, the viscous dissipative heating,
the thermal energy change caused by fluid expansion, the
potential energy, and the gravity work, the general form
of the differential energy balance equations in three di-
mensions may be given as (Kaviany, 1995; Lee and Vafai,
1999; Alazmi and Vafai, 2000; Nield and Bejan, 2006)

∇. [(1− ϕ) ks∇Ts] = (1− ϕ) ρscps
∂Ts

∂t

+
hc

L
(Ts − Tf ) (A1)

∇. (ϕkf∇Tf )− ρfcpf (um.∇Tf ) = ϕρfcpf
∂Tf

∂t

+
hc

L
(Tf − Ts) (A2)

where

ρfcpf = ρwcpwSw + ρocpoSo + ρgcpgSg (A3)

ρf = ρwSw + ρoSo + ρgSg (A4)
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Sw + So + Sg = 1 (A5)

In Eqs. (A1) and (A2),Ts andTf are the rock matrix and
fluid temperatures, respectively. These represent the ther-
mal state of each phase in the same REV.

Taking into account a porous medium of uniform
cross-sectional area and homogeneous along thex axis,
and considering that the thermal conductivities of the fluid
and solid rock matrix are temperature independent and are
constant along the medium, Eqs. (A1) and (A2) can be
written in one-dimensional form as

(1− ϕ) ks
∂2Ts

∂x2
= (1− ϕ) ρscps

∂Ts

∂t

+
hc

L
(Ts − Tf ) (A6)

ϕkf
∂2Tf

∂x2
− ρfcpfum

∂Tf

∂x
= ϕρfcpf

∂Tf

∂t

+
hc

L
(Tf − Ts) (A7)

where

kf = kwSw + koSo + kgSg (A8)

Equation (A6) can be rearranged after settingkseff =
(1− ϕ) ks as

hc

L
(Tf − Ts) = (1− ϕ) ρscps

∂Ts

∂t
− kseff

∂2Ts

∂x2
(A9)

Substituting Eq. (A9) into Eq. (A7) after settingkfeff =
ϕkf in Eq. (A7) yields

kfeff
∂2Tf

∂x2
− ρfcpfum

∂Tf

∂x
= ϕρfcpf

∂Tf

∂t

+ (1− ϕ) ρscps
∂Ts

∂t
− kseff

∂2Ts

∂x2
(A10)

If the temperatures of the fluid and solid rock are the
same, the preceding energy balance equation, Eq. (A10),
can be written as

(kseff + kfeff )
∂2T

∂x2
− ρfcpfum

∂T

∂x
=

{
(1− ϕ) ρscps

+ ϕρfcpf
}∂T
∂t

(A11)

Defining the average system heat capacity as

M = (1− ϕ) ρscps + ϕρwcpwSw + ϕρocpoSo

+ ϕρgcpgSg (A12)

and substituting Eq. (A3) into Eq. (A12) yields

M = (1− ϕ) ρscps + ϕρfcpf (A13)

Substituting Eq. (A13) into Eq. (A11) yields

M
∂T

∂t
+ ρfcpfum

∂T

∂x
− ke

∂2T

∂x2
= 0 (A14)

Where,
ke = kseff + kfeff (A15)

The first term of Eq. (A14) is the accumulation of en-
ergy, the second term is the thermal energy transported
by convection, and the third term is thermal energy trans-
ported by heat conduction.

Equation (A14) can be transformed into dimensionless
form using the defined non-dimensional parameters as de-
scribed in Section 2. Substituting the above transforma-
tions in to Eq. (A14) yields:

M
Tik

ϕµctL2

∂T ∗

∂t∗
+ ρfcpfum

Ti

L

∂T ∗

∂x∗

− ke
Ti

L2

∂2T ∗

∂x∗2 = 0 (A16)

M
k

ϕµct

∂T ∗

∂t∗
+

Lcρfcpfum

ke
ke

L

Lc

∂T ∗

∂x∗

− ke
∂2T ∗

∂x∗2 = 0 (A17)

Finally Eq. (A17) can be written in terms ofNPeL and
NHA4 as:

NHA4
∂T ∗

∂t∗
+NPeL

L

Lc

∂T ∗

∂x∗ − ∂2T ∗

∂x∗2 = 0 (A18)

where,

NHA4 =
MαH

ke
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