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Various dimensionless numbers such as the Nusselt, Prandtl, and Peclet numbers, play a significant role in the analysis
of heat transfer in any non-isothermal physical system. This transport phenomenon is modeled by a very complex
set of differential equations that could involve a large number of variables and for which analytical solutions may be
unattainable. Therefore, the model equations are often linearized by neglecting one or more terms (such as convection)
or by employing simplifying assumptions. With the advent of advanced computational tools, it is possible to tackle such
mathematical challenges numerically. Using a mathematical model based on nonlinear energy balance equations, new
dimensionless numbers were developed to describe the role of various heat transport mechanisms (such as conduction
and convection) in thermal recovery processes in porous media. The results show that the proposed numbers are sensitive
to most of the reservoir rock/fluid properties such as porosity, permeability, densities, heat capacities, etc. Therefore, the
proposed dimensionless numbers help to characterize the rheological behavior of the rock–fluid system. This work will
enhance the understanding of the effect of heat transfer on the alteration of effective permeability during thermal recovery
operations in a hydrocarbon reservoir.

KEY WORDS: heat transfer, porous media, dimensionless number, temperature distribution, temperature
profile, numerical simulation, reservoir management

1. INTRODUCTION

The analysis of the temperature distribution in a reservoir
formation is gaining importance due to its utility in de-
tecting water or gas influx entering into the wellbore. It
is also a key factor in evaluating the performance of ther-
mal recovery processes such as hot water injection, steam
flooding, and in situ combustion. The temperature dis-
tribution is governed mainly by heat transfer within the
rock matrix and its fluid content, which is controlled by
the highly complex characteristics of the rock/fluid inter-
action. Furthermore, heat transfer depends on the fluid
temperature, which is related to the surrounding tempera-
ture, surrounding conductivity (e.g., limestone, sea water,
and air), insulation, intra-film conductivity, and residence
time.

Recent advances in pressure and temperature measure-
ment within porous media have enabled researchers to in-
vestigate temperature propagation patterns and their de-
pendence on various parameters during thermal opera-
tions (Dawkrajai et al., 2006; Yoshioka et al., 2006; Hos-
sain et al., 2008a, 2009a), who concluded that the tem-
perature distribution is much more sensitive to time and
formation fluid velocity. It is also sensitive to the steam
or hot water injection rate or velocity. Researchers have
assumed a linear function for fluid velocity in the forma-
tion but did not consider the thermal effects in terms of
the Nusselt, Peclet, and Prandtl numbers.

The alteration of rock/fluid properties during thermal
processes are well established in the literature, mainly
by Hossain and co-workers (Hossain et al., 2007, 2008a,
2009a; Hossain and Islam, 2009). Such alterations of
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NOMENCLATURE

API American petroleum institute Lc−Fo characteristic length for
cf total fluid compressibility (1/Pa) Fourier number (m)
cs reservoir formation rock Lc−Gr characteristic length for

compressibility (1/Pa) Grashof number (m)
ct total compressibility (1/Pa) Lc−Nu characteristic length for
cpf specific heat capacity of Nusselt number (m)

reservoir fluid (kJ/kg K) Lc−Pe characteristic length for
cpg specific heat capacity of Peclet number (m)

injected hot water (kJ/kg K) Lc−Ra characteristic length for
cpo specific heat capacity of Rayleigh number (m)

reservoir oil (kJ/kg K) Lc−Re characteristic length for
cps specific heat capacity of Reynolds number (m)

reservoir rock (kJ/kg K) Lc−Sh characteristic length for
cpw specific heat capacity of water (kJ/kg K) Sherwood number (m)
D diameter (m) Lc−We characteristic length for
g gravitational acceleration in Weber number (m)

x direction (m/s2) L∗ dimensionless length of the reservoir
hc convection heat transfer M average system heat capacity (kJ/m3 K)

coefficient (kJ/hm2 K) N rotational speed (rpm)
k absolute permeability of solid NNuL local Nusselt number,

rock matrix (m2) dimensionless (hcLc/ke)
ki initial permeability of solid NPeL local Peclet number, dimensionless

rock matrix (m2) (Lcρfcpfux/ke)
kf thermal conductivity of reservoir fluid NPr Prandtl number, dimensionless (µcpf /ke)

(kJ/hm K) (NPr)f Prandtl number of fluid in porous
kg thermal reservoir gas (kJ/hm K) medium, dimensionless (µcpf /kf )
ko thermal conductivity of reservoir oil (kJ/hm K) (NPr)fs Prandtl number of fluid-saturated porous
ks thermal conductivity of reservoir rock medium, dimensionless (αH /αTe)

(kJ/hm K) (NPr)b bulk Prandtl number of fluid-saturated
kw thermal conductivity of water (kJ/hm K) porous medium, dimensionless (ν/αTb)
ke effective thermal conductivity of p pressure of the system (Pa)

solid rock matrix (kJ/hm K) PW power (hp)
Kmc mass transfer coefficient (m/s) pi initial pressure of the system (Pa)
L distance between injection and production po a reference pressure of the system (Pa)

wells alongx direction (m) qi initial volumetric production rate (m3/s)
Lc characteristic length (2πrpt) (i.e., pore qinj volumetric injection rate of hot water

throat diameter of the porous rock (m3/s)
matrix) (m) qprod volumetric production rate of oil (m3/s)

Lc−Bi characteristic length for Biot qx fluid mass flow rate per unit area
number (Vbody/Asurface) (m) in x-direction (kg/m2 s)

Lc−Bo characteristic length for rpt pore-throat radius (microns)
Bond number (m) rb reservoir barrels
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NOMENCLATURE (Continued)

stb standard barrel αTf absolute thermal diffusivity of
scf standard cubic feet reservoir fluid (kf /ρfcpf ) (m2/s)
Sg gas saturation (volume fraction) αTs absolute thermal diffusivity of solid
So oil saturation (volume fraction) rock matrix (ks/ρscps) (m2/s)
Sw water saturation (volume fraction) β volumetric thermal expansion coefficient

Swi initial water saturation (volume fraction)
[
(1/V ) (∂V /∂p)p

]
(m3/m3 K)

t time (s) ∆T temperature difference (K)
t∗ dimensionless time ∆ρ density difference of fluids (i.e.,
tC characteristic time (s) water and oil) (ρw − ρo) (kg/m3)
T temperature (K) ν kinematic viscosity (ratio of absolute or
T ∗ dimensionless temperature dynamic viscosity to density)
Ti initial reservoir temperature (K) (µ/ρf ) (m2/s)
Tf reservoir fluid temperature (K) η ratio of the pseudo-permeability of the
Tr reference temperature of medium with memory to fluid viscosity

injected fluid (K) (m3s1+α/kg)
Ts average temperature of µi initial fluid dynamic viscosity (Pa/s)

solid rock matrix (K) µL fluid dynamic viscosity (Pa/s)
Tst temperature of injected hot water (K) ξ a dummy variable for time (i.e., real
ui initial fluid velocity alongx direction (m/s) part in the plane of the integral) (s)
ux fluid velocity alongx direction at any timet (m/s) Γ gamma function
u∗ dimensionless velocity ρ fluid density (kg/m3)
V fluid velocity of the Reynolds number (m/s) ϕ porosity of the rock (volume fraction)
VL characteristic velocity of liquid (m/s) ϕi initial porosity of rock
x flow dimension at any point along (volume fraction)

x-direction (m) ρf density of fluid (kg/m3)
x∗ dimensionless distance respectively ρg density of gas (kg/m3)

ρo density of oil (kg/m3)
Greek Symbols ρs density of solid rock (kg/m3)
α fractional order of differentiation, ρw density of water (kg/m3)

dimensionless σBo surface tension of the interface
αH hydraulic diffusivity of fluid-saturated or interfacial forces for

porous medium (k/φµct) (m2/s) Bond number (N/m)
αm mass diffusivity (m2/s) σCa surface tension of the interface
αTb bulk thermal diffusivity of the fluid- or interfacial forces for Capillary

saturated porous medium (ke/M ) (m2/s) number (N/m)
αTe effective thermal diffusivity of σWe surface tension of the interface

fluid-saturated porous medium or interfacial forces for
(kf /φρfcpf ) (m2/s) Weber number (N/m)

rock/fluid properties influence heat transfer, which gov-
erns the temperature profile within the reservoir. The lit-
erature also shows that the fluid velocity (Yoshioka et

al., 2005a,b) and time (Hossain, 2008; Hossain et al.,
2008a,b) have strong effects on the temperature profile.
Since available models are unable to handle the alteration
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of rock/fluid properties with time during a thermal opera-
tion (Marx and Langenheim, 1959; Willman et al., 1961;
Spillette, 1965; Chan and Banerjee, 1981; Kaviany, 2002;
Hossain et al., 2008b, 2009b), this study focuses on the
development of new dimensionless numbers that char-
acterize heat transfer while incorporating the concept of
“memory.” Memory is defined as the effect of past events
on the present and future course of developments. In this
work, it refers to the continuous alteration of the rheolog-
ical behavior of a rock/fluid system with time (Hossain et
al., 2009a). Therefore, it is important to investigate the ef-
fects of memory in terms of various heat transfer dimen-
sionless numbers based on the rheology of a rock/fluid
system. The rheology of a rock/fluid system is composed
of continuous functions in time.

2. MODEL DESCRIPTION

A homogenous porous medium of uniform cross-
sectional area along thex axis is considered. Instead of
the customary use of Darcy’s law to describe fluid flow
in porous media, this study uses the modified Darcy’s law
(Hossain et al., 2008c; Hossain and Islam, 2009) to in-
troduce the notion of fluid memory. Since the medium is
homogeneous, the pressure along thex direction may ini-
tially be considered to vary according to the Darcy diffu-
sivity equation. It is also assumed that the thermal con-
ductivities of fluids and the rock matrix are not func-
tions of temperature but rather constant throughout the
medium. This is warranted by the initial uniform distri-
butions of pressure and temperature throughout the reser-
voir. The computations are carried out for different fluid
velocities. In this problem, the fluid is defined as a ho-
mogeneous mixture of injected hot water and the orig-
inal reservoir fluid. The mixture’s composition is con-
stant throughout the reservoir. The medium is defined as
a porous rock where its properties change with time and
space.

3. MATHEMATICAL FORMULATION

To develop the new dimensionless numbers, the model
equations for the temperature profile must first be de-
rived based on the energy balance equation, which is
considered as the governing equation for both rock and
fluids separately. Such a derivation has been presented
by Hossain et al. (2008b) in full detail and by Hossain
et al. (2009b) in a summarized version. However, dur-
ing the development of the model equations Hossain et
al. (2008b, 2009b) did not consider the time-dependent

rheological properties of the reservoir. The inclusion of
time-dependent rock and fluid properties may be of sig-
nificant value to petroleum engineers because production
performance and management are usually laden with un-
certainty.

Therefore, the concept of memory is introduced to the
model equations in this article using the modified Darcy’s
law as the flow rate equation [Eq. (1)], which may be
written for a one-dimensional (1D) system (Hossain et al.
2007, 2008c, 2009a) as

u = − η

Γ (1− α)

∫ t

0

(t− ξ)
−α

[
∂2p

∂ξ∂x

]
∂ξ (1)

Hossain et al. (2008c) defined the composite variable,η,
which is a function of permeability and viscosity, for any
type of reservoir as

η =
k

µab
(t)

α (2a)

For example, Eq. (2a) can be expressed for sandstone as

η =

[
3.0 (p/6894.76)

−0.31
+ 10.5

]
× 10−12

µobe8.422×10−5(p−pb)
(t)

α

(2b)
where

µob = 6.59927× 105R−0.597627
s T−0.941624

× γ−0.555208
g API−1.487449

pb = −620.592 + 6.23087
Rsγo

γgB1.38559
o

+ 2.89868T

Bo = Bobe
−Co(p−pb)

Bob = 1.122018 + 1.410× 10−6RsT

γ2
o

Co =
(
− 70603.2 + 98.404Rs + 378.266T

− 6102.03γg + 755.345API
)
/(p+ 3755.53)

In Eq. (2b),p is the fluid pressure at any time or location
within the system. The bubble-point pressure (pb) is the
saturation pressure of the oil phase, which is the pressure
below which gas begins to evolve and separate from the
oil. The bubble-point pressure depends on the system’s
temperature as well as the oil composition, which is re-
flected byRs, γo, andγg. As a result of gas separation,
the oil volume would shrink progressively with pressure
reduction, which is indicated by the oil formation volume
factor (Bo). All units in Eq. (2b) are field units, which
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are the oil formation volume factor (Bo), rb/stb; oil com-
pressibility (Co), psi−1; oil formation volume factor at
the bubble point (Bob), rb/stb; oil viscosity at the bubble
point (µob), cp; oil viscosity above the bubble point (µab),
cp; solution gas oil ratio (Rs), scf/stb; crude oil tempera-
ture (T ), ◦F; gas specific gravity (γg), lbm/ft3; oil specific
gravity (γo), lbm/ft3; and oil API gravity (API),◦API.

The 1D energy balance equations can be written to de-
velop the new dimensionless numbers. The notion of the
memory concept is incorporated into the energy balance
using flow rate Eq. (1). Now, if we consider the system to
have different rock and fluid temperatures (Ts ̸= Tf ), the
conservation of energy equations for both the rock ma-
trix and fluid can be written as follows (Hossain et al.,
2008a,b, 2009b):

ks
∂2Ts

∂x2
= (1−φ) ρscps

∂Ts

∂t
+

hc

L
(Ts − Tf ) (3)

kf
∂2Tf

∂x2
− ρfcpfux

∂Tf

∂x
= φρfcpf

∂Tf

∂t

+
hc

L
(Tf − Ts) (4)

where

M = (1−φ) ρscps +φρwcpwSw +φρocpoSo

+φρgcpgSg (5)

ρfcpf = ρwcpwSw + ρocpoSo + ρgcpgSg (6)

kf = kwSw + koSo + kgSg (7)

ke = φkf + (1−φ) ks (8)

ρf = ρwSw + ρoSo + ρgSg (9)

Sw + So + Sg = 1 (10)

Equations (3) and (4) can be converted into dimensionless
forms using dimensionless parameters defined asT ∗ =
T/Ti, T ∗

S = TS/Ti, T ∗
f = Tf/Ti, x∗ = x/L, p∗ = p/pi,

q∗ = q/qi, t∗ = kt/φµctL
2, andξ∗ = kt/φµctL

2. The
initial and boundary conditions are defined asT ∗

f (x, 0) =
T ∗
s (x, 0) = 1, T ∗

f (0, t) = T ∗
s (0, t) = Tst/Ti, and

T ∗
f (L, t) = T ∗

s (L, t) = 1.
Using these dimensionless parameters, the final forms

of Eqs. (3) and (4) become (Hossain et al., 2011):

ks
ke

∂2T ∗
s

∂x∗2 −NHA1NPrNHA2
∂T ∗

s

∂t∗
−NNuL

× L

Lc

(
T ∗
s − T ∗

f

)
= 0 (11)

kf
ke

∂2T ∗
f

∂x∗2 −NPeL
L

Lc

∂T ∗
f

∂x∗ −NPrNHA1

∂T ∗
f

∂t∗

−NNuL
L

Lc

(
T ∗
f − T ∗

s

)
= 0 (12)

where

NHA1 =
kρf
µ2ct

(13)

NHA2 =
(1−φ)

φ

ρscps
ρfcpf

(14)

In the Peclet number,u represents the case where the
memory effect is considered. Therefore, during numeri-
cal computationsu is used to find out the impact of mem-
ory, while the temperature distribution is governed by
Eqs. (11) and (12). These two partial differential equa-
tions can be solved simultaneously to evaluate the ef-
fects of different rock/fluid parameters in terms of the
Nusselt, Prandtl, and Peclet numbers. Equations (11) and
(12) are also governed by the two proposed numbers that
are called asNHA1 and NHA2 (where HA stands for
Hossain–Abu-Khamsin).

4. SIGNIFICANCE OF PROPOSED
DIMENSIONLESS NUMBERS

There are at least 15 dimensionless numbers associated
with fluid dynamics and heat and mass transfer. Those
numbers, along with the two proposed dimensionless
numbers, are defined in Table 1. Manipulating Eq. (13)
yields

NHA1 =
kρf
µ2ct

=
k

φµct

φρf

µ

cpf
kf

kf
cpf

= αH
φρfcpf

kf

kf
µcpf

=
αH

αTe

(
1

NPr

)
f

(15)

Therefore,NHA1, expresses the influence of the rock
matrix on the thermal and flow characteristics of the fluid.
If the rock has no permeability,NHA1 becomes inversely
proportional to the fluid’s Prandtl number. This is the ra-
tio of convection to conduction heat transfer between the
porous rock matrix and the fluid saturating it. It is also
the ratio of the momentum diffusivity over the thermal
diffusivity. Therefore, the proposed number can be ex-
pressed as the hydraulic diffusivity over the momentum
diffusivity. Finally, it can also be expressed as the ratio
of the hydraulic diffusivity to the thermal diffusivity—
both of the fluid-saturated porous medium within the sys-
tem volume–divided by the Prandtl number of the fluid.
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TABLE 1: Proposed new dimensionless numbers along with other dimensionless numbers used in heat transfer and
fluid dynamics

Name Symbol Definition Comments

Biot NBi NBi = hcLc−Bi/ks Ratio of conductive to convective heat transfer resistance

Bond NBo NBo = ∆ρgL2
c−Bo/σBo Ratio of body forces (often gravitational) to surface tension

forces (i.e., interfacial forces)

Capillary NCa NCa = µLVL/σCa Ratio of viscous forces to interfacial forces or surface ten-
sion

Fourier NFo NFo = αTstc/L
2
c−Fo Ratio of the heat conduction rate to the rate of thermal en-

ergy storage. It is also expressed as a ratio of current time
to time to reach steady state

Grashof NGr NGr = gβ∆TL3
c−Gr/ν

2 Ratio of the buoyancy to viscous force acting on a fluid.
It is also a ratio of natural convection buoyancy force to
viscous force

Proposed
number 1

NHA1 NHA1 = kρf/µ
2ct

= {NPr}e/{NPr}f
Ratio of the Prandtl number of the fluid-saturated porous
medium to the Prandtl number of the fluid. A new dimen-
sionless number for fluid-saturated rock

Proposed
number 2

NHA2 NHA2 = (1−φ)/φ
·ρscps/ρfcpf

A new dimensionless number for fluid-saturated rock (=
heat transfer of solid matrix/heat transfer of reservoir fluid)

Nusselt NNu NNu = hcLc−Nu/ke Ratio of convective to conductive heat transfer across (i.e.,
normal to) the boundary

Peclet NPe NPe = Lc−Peρfcpfux/ke
= Lc−Peux/αTf

Ratio of convective to diffusive heat/mass transport in a
fluid

Power Npo Npo = Pw/ρN
3D5 Also known as the Newton number and is a ratio of the

resistance force to the inertia force

Prandtl NPr NPr = ν/αTf = µcpf/kf Ratio of momentum diffusivity (kinematic viscosity) and
thermal diffusivity; or ratio of viscous diffusion rate to ther-
mal diffusion rate

Rayleigh NRa NRa = NGrNPr

= gβ∆TL3
c−Ra/ναTf

Ratio of buoyancy forces and the product of thermal and
momentum diffusivities. Ratio of natural convective to dif-
fusive heat/mass transport. Determines the transition to tur-
bulence

Reynolds NRe NRe = ρV Lc−Re/µ Ratio of inertial forces (ρV 2L2) to viscous forces (µV L).
Ratio of convective to viscous momentum transport

Schmidt NSc NSc = ν/αm = µ/ραm Ratio of momentum diffusivity (viscosity) and mass diffu-
sivity and is used to characterize fluid flows in which there
are simultaneous momentum and mass diffusion convec-
tion processes

Sherwood NSh NSh = KmcLc−Sh/αm Ratio of convective to diffusive mass transport. Also called
the mass transfer Nusselt number and is used in mass-
transfer operations

Weber NWe NWe = ρV 2Lc−We/σWe A measure of the relative importance of the fluid’s inertia
compared to its surface tension and related to the surface
behavior for two-phase systems
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In essence,NHA1 is the ratio of the Prandtl number of the
fluid-saturated porous medium to the Prandtl number of
the fluid itself:

NHA1 =
(NPr)s
(NPr)f

(16)

Equation (14) can be expressed as

NHA2 =
(1−φ)

φ

ρscps
ρfcpf

=
heat transfer of solid matrix

heat transfer of reservoir fluid
(17)

Further manipulation yields

NHA2 =
(1−φ)

φ

ks
kf

αTf

αTs
=

heat conduction of solid

heat conduction of fluid

× absolute thermal diffusivity of fluid

absolute thermal diffusivity of solid
(18)

5. RESULTS AND DISCUSSION

The MATLAB programming language was used to solve
the model equations. The computations were carried out
for a reservoir ofL = 5000 m and all other assumed rock
and fluid data are listed in Table 2. Hot water was injected
through a well of 130 mm diameter; its temperature was
different from that of the reservoir. The space and time
steps were∆x∗ = 0.01 and∆t∗ = 0.00001.

Figures 1(a) and 1(b) show linear variations ofNHA1

with permeability for different fluid velocities and total
compressibilities, respectively. Equation (15) is employed
to find these variations. Figure 1(a) shows thatNHA1 in-
creases with the increase of both the permeability and
fluid density. On the other hand,NHA1 increases with the
increase of permeability for any given total compressibil-
ity but decreases with the increase of total compressibil-
ity for a given permeability [Fig. 1(b)]. For an analogous
system, ifNHA1 is known, one can easily calculate the
permeability value once the fluid density and total com-
pressibility of the system are known. Figures 2(a) and 2(b)
show the linear variation ofNHA1 with the fluid veloc-
ity for different total compressibilities and fluid viscosi-
ties, respectively. Figure 2(a) shows thatNHA1 increases
with the increase of the fluid density for a particular com-
pressibility value. However,NHA1 decreases with the to-
tal compressibility for the same fluid density; the same
trend is true for the viscosity [Fig. 2(b)].

TABLE 2: Fluid and rock property values employed in
numerical computations

Property (rock or fluid)
cpg = 29.7263 (kJ/kg K)

cpo = 2.0934 (kJ/kg K)

cps = 0.8792 (kJ/kg K)

cpw = 4.1868 (kJ/kg K)

hc = 280.87 (kJ/hm2 K)

kg = 0.0143 (kJ/hm K)

ko = 1.3962 (kJ/hm K)

ks = 9.3460 (kJ/hm K)

kw = 3.7758 (kJ/hm K)

ki = 10−15 (m2)

pi = 48263299.0 (Pa)

cf = 12.473× 10−10 (1/Pa)

cs = 5.80147× 10−10 (1/Pa)

Sg = 20% (vol/vol)

So = 60% (vol/vol)

Sw = 20% (vol/vol)

Tst = 550 K

Ti = 300 K

ρg = 16.7121 (kg/m3)

ρo = 800.923 (kg/m3)

ρs = 2675.08 (kg/m3)

ρw = 1000.0 (kg/m3)

φi= 25% (m3/m3)

µf = 10 Pa/s (Ns/m2)

qi = 17.5 m3/d (110 bbl/day)

A = 300× 20 m = 6000 m2

Figures 3(a)–3(c) show the nonlinear variations of
NHA1 with the total compressibility for different perme-
abilities, fluid densities, and viscosities, respectively. The
NHA1 decreases with the increase in compressibility for a
particular permeability, and the nonlinearity ofNHA1 in-
creases with the increase in permeability [Fig. 3(a)]. For
the same compressibility,NHA1 increases with the in-
crease in permeability and there is no significant change
of NHA1 when the permeability decreases to 10−14 m2

(10 mD). The same trend is observed in Fig. 3(b), ex-
cept that there is a fluid density effect onNHA1 (even if it
is low). Figure 3(c) shows that low-viscosity fluids have
greater effects onNHA1 than more viscous fluids. For the
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FIG. 1: Variation of (NHA1) with permeability (k) for different fluid viscosities (ρf ) and total compressibilities (ct)
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FIG. 2: Variation of (NHA1) with fluid density (ρf ) for different total compressibilities (ct), and fluid viscosities (µ)

same total compressibility,NHA1 decreases as the vis-
cosity increases, which is an opposite trend to that of the
permeability and fluid density.

Figures 4(a) and 4(b) depict the nonlinear variations
of NHA1 with the fluid viscosity for different permeabil-
ities and fluid densities, respectively. The trend ofNHA1

variation is similar to that of Fig. 3. However,NHA1 is

more sensitive to viscosity for different permeabilities and
fluid densities compared with Fig. 3. On the other hand,
the fluid density (as a result, compressibility) has more
influence onNHA1 for low-viscosity fluids [Fig. 4(b)].
The same trend and characteristics are observed with per-
meability alteration on a wider range once viscosity is
changed [Fig. 4(a)].
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(a) (b)

FIG. 5: Variation of (NHA1) with different Prandtl numbers of fluid saturated porous media [(NPr)s]

Figures 5(a) and 5(b) show the nonlinear variations
of NHA1 with different Prandtl numbers of the fluid-
saturated porous medium (NPr)s for differentM andν,
respectively. Initially,NHA1 decreases sharply for low
(NPr)s and then gradually decreases for a givenM value
[Fig. 5(a)]; NHA1 does not change significantly with
changes inM . The same trend is observed in Fig. 5(b).
However,NHA1 increases with the increase of dynamic
viscosity and the difference is significant when (NPr)s is
below 0.002 and there is no effect of the thermal conduc-
tivity of fluid (kf ) onNHA1.

Figures 6(a)–6(f) show the nonlinear decreasing trends
for NHA2 with porosity for differentρs, ρf , cps, cpf ,
ρscps, andρfcpf . The decrease is initially rapid at low
porosity then gradually levels off for all parameters ex-
ceptcpf [Fig. 6(d)], where such a trend is seen for lowcpf
values only. For highcpf values,NHA2 approaches zero
at high porosities. For the same porosity value,NHA2 in-
creases with the increase ofρs, cps, andρscps [Figs. 6(a),
6(c), and 6(e)]. On the other hand,NHA2 decreases with
the increase ofρf , cpf , andρfcpf [Figs. 6(b), 6(d), and
6(f)].

Figures 7(a)–7(d) show the linear variations ofNHA2

with the rock density for differentφ, ρf , cpf , andρfcpf .
At low porosities, the slope is larger than at high porosi-
ties, but for a particular rock densityNHA2 decreases
with the increase of porosity [Fig. 7(a)]. The same trend
and behavior are seen in all other figures in Fig. 7 except

Fig. 7(c), where the slope markedly large only for lowcpf
values.

Figures 8(a)–8(d) depict variations ofNHA2 with the
specific heat capacity of solid (cps) for differentφ, cpf ,
ρscps, andρs with increasing linear trends. The same be-
havior is shown for those rock/fluid properties as seen in
Figs. 7(a)–7(d). However, whenρs increases,NHA2 in-
creases for the samecps [Fig. 8(d)].

Figures 9(a)–9(d) depict variations ofNHA2 with fluid
density (ρf ) for differentφ, cpf , cps, andρscps with a
nonlinear decreasing trend. Asφ andcpf decrease,NHA2

increases. However, the slopes of theNHA2 versusρf
plots for highφ andcpf decrease faster than for lowφ
and cpf [Figs. 9(a) and 9(b)]. For the sameρf , NHA2

decreases with the increase ofφ and cpf . On the other
hand, the slopes ofNHA2 versusρf plots continue to de-
crease forcps andρscps in a moderate way [Figs. 9(c) and
9(d)]. However, for the sameρf , NHA2 increases with
the increase ofcps andρscps. Figures 10(a)–10(d) depict
NHA2 versus the specific heat capacity of the fluid (cpf )
for differentφ, ρs, cps, andρscps with decreasing non-
linear trends. For all four parameters, a sharp decrease in
NHA2 is observed up to acpf value of 7, then it switches
to a gentler decline beyond a value of 10. However, for
the same value ofcpf , NHA2 decreases with the increase
of φ and increases with the increase ofρs, cps, andρscps.

Figures 11(a)–11(d) depictNHA2 versusρfcpf for dif-
ferentφ, ρs, cps, andρscps with decreasing nonlinear
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FIG. 10: Variation of (NHA2) with specific heat capacity of fluid (cpf ) for different porosities (φ), rock densities
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FIG. 11: Variation of (NHA2) with (ρfcpf ) for different porosities (φ), rock densities (ρs), specific heat capacities of
solid (cps), and (ρscps)

trends as observed earlier withcpf . The trend and pattern
of NHA2 versusρfcpf are almost the same for all inves-
tigated parameters. However, for the sameρfcpf value,
NHA2 decreases with the increase ofφ and increases with
the increase ofρs, cps, andρscps. Thus,NHA2 is more
sensitive toρscps at low porosity as shown in Fig. 11(a).

6. CONCLUSIONS

Mathematical models with the inclusion of the memory
concept are presented here to introduce dimensionless

numbers that can be useful for characterizing reservoir
rock/fluid properties. Formulated for porous media appli-
cations, the two proposed dimensionless numbers are ca-
pable of handling variable rock and fluid properties with
time and space. They are sensitive to rock/fluid rheologi-
cal properties and can explain such properties if the rock
and fluid temperatures are different. The utility of the pro-
posed numbers lies in the ability to characterize the rhe-
ological properties of a reservoir if those numbers are
known for another analogous reservoir, thus eliminating
the need for rigorous investigation.
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