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It is well established that reservoir simulation studies are very subjective and varies from simulator to simulator. How-
ever, reservoir simulation, as practiced in the oil industry, is well recognized and is the standard tool for solving reservoir
engineering problems. Unfortunately, almost all the existing simulators and their mathematical models are based on the
conventional approach. It is also well-known that this approach comprises inherent assumptions which result the lin-
earization of the model and solution. In contrary, the concept of engineering approach allows to bypassing linearization
during the development of model equations. To avoid the hidden misconceptions and uncertainty in formulation, en-
gineering approach is becoming more popular as long as it is more easily understandable. The present study critically
reviews the inherent shortcomings of the conventional approach and analyzes the hidden assumptions behind the con-
ventional approach and identifies the limitations of engineering approach. The strengths and weaknesses of the both
approaches are outlined. The comprehensive modeling of complex petroleum phenomena will help researcher and indus-
try to rethink and revisit their contribution in reservoir simulation. It will also help to build a new rigorous simulator
using the noble concept.

KEY WORDS: reservoir simulation, mathematical approach, engineering approach, discretization, fluid
flow equation, inherent assumptions, grid block, critical review

1. INTRODUCTION

In this informationage,almostall phasesof reservoir en-
gineeringproblemsare solved by reservoir simulators,
rangingfrom a simple decisionthroughwell testing to
predictionof enhancedoil recovery. For everyapplication
thereis aseparateuser-friendlyandcustom-designedsim-
ulator. Even though,quite often, “comprehensive,” “all-
purpose,” andotherdenominationsareusedto describe
a company simulator, every simulationstudyis a unique
process,startingfrom the reservoir descriptionto the fi-
nalanalysisof theresults.Therefore,reservoir simulation
is the art of combiningscience(i.e., physics,chemistry,
etc.), mathematics,reservoir engineering,andcomputer
programmingto develop a tool for predictinghydrocar-
bonreservoir performanceundervariousoperatingstrate-
gies.The first stepof simulationis to develop a model

equationwhich shouldbe the true representationof the
realscenarioof theproblem.In mostcases,it is observed
that the modelequationis not the true representationof
the naturalphenomenadueto spuriousassumptionsand
somebuilt-in limitations of the conventionalmathemat-
ical equations.Also thereareother immensechallenges
that lay behindthe formulationof themodel.Due to the
built-in shortcomingsof the conventionalapproach,cur-
rentlytheentirereservoir simulationprocessis facingsig-
nificantdisagreements.This researchcapturesthosemys-
teriousandunrealisticconsiderationsof theconventional
simulationapproach.On theotherhand,theengineering
approachshows how to bypassthe conventionalformu-
lation of the modelequations.The modelequationsare
writtenfor agivengridblockin spaceatagiventimelevel.
Theseequationsreflecttheflow equationsin analgebraic
form. The most important featuresof the model equa-
tionsarethebypassingscopeof theformulationprocess,
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NOMENCLATURE

f(t+∆t) a function of time(t+∆t) ∆t time step, [day]
Ma Marangoni number ∆x size of control volume in the
R universal gas constant, x direction, ft [m]

[kJ/mol −K] µ fluid viscosity, cp [Pa s]
p pressure, psia [kPa] σ surface tension, [N/m]
pi pressure of gridblocki, psia [kPa] αD thermal diffusivity, [m2/s]
pni pressure of gridblocki at time, µT fluid dynamic viscosity at

psia [kPa] temperatureT , [cp]
pn+1
i pressure of gridblocki at µ0 fluid dynamic viscosity at a reference

time tn+1, psia [kPa] temperature,T0, [cp]
pi−1 pressure of gridblocki− 1, psia [kPa] α fractional order of differentiation
pni−1 pressure of gridblocki− 1 at ϕ porosity of fluid media, [m3/m3]

time tn, psia [kPa] τT shear stress at temperatureT , [Pa]
pn+1
i−1 pressure of gridblocki− 1 at ξ dummy variable for time, i.e.,

time tn+1, psia [kPa] real part in the plane of the integral, [s]
pi+1 pressure of gridblocki+ 1, psia [kPa] ρ0 density of the fluid, [kg/m3]
pni+1 pressure of gridblocki+ 1 at η ratio of the pseudopermeability of the

time tn, psia [kPa] medium with memory to fluid viscosity,
pn+1
i+1 pressure of gridblocki+ 1 at [m3 s1+α/kg]

time tn+1, psia [kPa] ∂σ/∂T the derivative of surface tensionσ
qsc well volumetric rate at standard conditions, with temperature and can be positive

STB/D or scf/D [std m3/d] or negative depending on the substance,
qsci well volumetric rate at standard conditions [N/mk]

in gridblocki, STB/D or scf/D [std m3/d] f(t+∆t) a function of time(t+∆t)
qsci±1/2

interblock volumetric flow rates at
standard conditions between gridblock Acronyms
i andgy direction, [m/s/m] PDEs partial differential equations

SPE Society of Petroleum Engineers
Greek Symbols REV representative elemental volume
αc volume conversion factor = 5.614583 1D one-dimensional system

for customary units or 1 for SPE 2D two-dimensional system
preferred SI units 3D three-dimensional system

βc transmissibility conversion factor LHS left-hand side
= 0.001127 for customary units or RHS right-hand side
0.0864 for SPE preferred SI units FVF formation-volume factor

considerationof fluid androck propertiesin a gridblock
form, anddiscretizationof thoseblocksinto thousandsof
blocks.Thecombinationof the independentblock equa-
tionsresultsin a realisticpresentationof themodelequa-
tion of the reservoir without any spuriousassumptions.
This is thecorestrengthof theengineeringapproach.

While Societyof PetroleumEngineers(SPE)bench-
marking has helpedto acceptdifferencesin predicting
petroleumreservoir performance,therehasbeenno sci-
entific explanationbehind the variability that has frus-
tratedmany policymakers,operationsmanagers,andpuz-
zled scientists/engineers.HossainandIslam (2010a)ex-
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plaineda new approach,namely, a “knowledge-based”
approachwherethey consideredaddingtheknowledgedi-
mensionto theproblem.They showedthatreservoir sim-
ulationequationshaveembeddedvariability andmultiple
solutionsthat are in line with physics ratherthanspuri-
ous mathematicalsolutions.With this clear addition of
knowledgein reservoir simulation,a freshperspective in
this areais needed.Unlike themajority of reservoir sim-
ulationapproachesavailabletoday, theknowledge-based
approachdoesnot stopat questioningthe fundamentals
of reservoir simulationbut offers solutionsand demon-
stratesthat properreservoir simulationshouldbe trans-
parentin order to empower decisionmakers ratherthan
creatinga black box. In this regard, the engineeringap-
proachis the properanalyticalmethodto empower the
planner’s decisionbecauseit no longer createsa black
box simulatordueto its inherentstrengthin formulation.
As mathematicaldevelopmentsof new governingequa-
tions occurbasedon in-depthunderstandingof the fac-
tors, theseequationsinfluencefluid flow in porousme-
dia underdifferent flow conditions,which is again the
strengthof the engineeringapproach.Behavior of the
flow-throughmatrix and fracturedsystemsin the same
reservoir, heterogeneityand rock/fluid property interac-
tions,Darcy andnon-Darcy flow, andvariablerock/fluid
propertiesareamongtheissuesthoroughlyneedingto be
addressedduringthedevelopmentof acommercialsimu-
lator.

2. THE FUNDAMENTAL NATURE OF
RESERVOIR SIMULATION

It is difficult to capturethe natural phenomenaand its
behavior over time. Sometimeit is not possibleto ex-
plain the featuresof reality due to the highly nonlinear
andchaoticbehavior of thenaturalprocess.Underground
reservoir behavior is not a differentcaseexcept the true
presentationof naturalphenomena.In mostcasesthere-

searcherstried to linearize the natural and chaotic be-
havior throughspuriousassumptions.Current literature
shows that theformulationof fluid flow equationsin dis-
cretizedform (nonlinearalgebraicequations)canbe ob-
tainedby either the conventionalapproachor the engi-
neeringapproach(Ertekin et al., 2001;Abou-Kassemet
al.,2006).Bothof theseapproachesmakeuseof thesame
basicprinciplesandbothapproachesdiscretizethereser-
voir in gridblocksor gridpoints.Both approachesyield
the samediscretizedflow equationsfor modeling any
reservoir-fluid system(multiphase,multicomponent,ther-
mal, heterogeneousreservoir) usingany coordinatesys-
tem in one-,two-, or three-dimensional(1D, 2D, or 3D)
reservoirs (Abou-Kassemet al., 2006).Both approaches
considerDarcy’s law astheconstitutive equationthatde-
scribestherateof fluid movementinto or outof thereser-
voir element.At thispoint,theengineeringapproachcon-
sidersonly theassumptionsbehindDarcy’s law asvalid.
RecentlyHossainet al. (2009a)modifiedthis shortcom-
ing of the engineeringapproachby using the memory
conceptalongwith it. Thepresentstudyis limited to the
conventionalandtheengineeringapproachonly.

2.1 Conventional Appr oach

It is worth mentioning that the researchers need to ad-
dress the core issues and the existing nature of reservoir
simulation that lead to spurious and uncertain results and
conclusions. The first step is to identify the most inher-
ent shortcomings of the existing developmental features
toward the reservoir simulator. Odeh (1982) is proba-
bly the researcher who initiated and depicted the major
steps involved in the development of a reservoir simula-
tor. To characterize the reservoir simulator, this approach
is developed using major steps such as formulation, dis-
cretization, well representation, linearization, solution,
and validation. In the conventional approach (Fig. 1), the
algebraic flow equations are derived in three consecu-
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FIG. 1: Major stepsusedto developreservoir simulatorsbasedontheconventionalapproach(modifiedfrom Hossain
etal., 2010b).
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tive steps:(i) derivation of the partial differential equa-
tions (PDEs) describingfluid flow in the reservoir us-
ing the threebasicprinciples(massconservation, equa-
tion of state,constitutive equations),(ii) discretizationof
the reservoir into gridblocksor gridpoints,and(iii) dis-
cretizationof theresultingPDEin spaceandtime(Abou-
Kassem,2008).The formulationstepoutlinesthe basic
assumptionsinherentto thesimulator. Theseassumptions
in precisemathematicaltermsapply to a control volume
in thereservoir (Fig. 1).

Newton’sapproximationisusedto renderthesecontrol
volumeequationsinto a setof coupled,nonlinearPDEs
that describefluid flow throughporousmedia (Ertekin
et al., 2001). ThesePDEs are then discretized,giving
rise to a setof nonlinearalgebraicequations.Taylor se-
ries expansionis usedto discretizethe governingPDEs.
Even thoughthis procedurehasbeenthe standardin the
petroleumindustryfor decades,in 2006Abou-Kassemet
al. pointedout that this is unnecessary. They introduced
anew discretizationprocedurecalledan“engineeringap-
proach.” By settingup the algebraicequationsdirectly,
onecanmake theprocesssimpleandyet maintainaccu-
racy (MustafizandIslam, 2008).The PDEsthat arede-
rived during the formulationstep,if solved analytically,
would give reservoir pressure,fluid saturations,andwell
flow ratesascontinuousfunctionsof spaceandtime.Be-
causeof thehighly nonlinearnatureof thePDEs,analyt-
ical techniquescannotbeusedandsolutionsmustbeob-
tainedwith numericalmethods.In contrastto analytical
solutions,numericalsolutionsgive thevaluesof pressure
andfluid saturationsonly at discretepoints in the reser-
voir andat discretetimes.Discretizationis theprocessof
convertingPDEsinto algebraicequations.Severalnumer-
icalmethodscanbeusedtodiscretizethePDEs.However,
the most commonapproachin the oil industry today is
thefinite-differencemethod.To carryoutdiscretization,a
PDEis written for a givenpoint in spaceat a given time
level. The choiceof time level (i.e., old time level, cur-
renttime level, or theintermediatetime level) leadsto the
explicit, implicit, or Crank-Nicolsonformulationmethod.
Thediscretizationprocessresultsin asystemof nonlinear
algebraicequations.Theseequationsgenerallycannotbe
solved with linear equationsolvers,and linearizationof
suchequationsbecomesanecessarystepbeforesolutions
canbe obtained.Well representationis usedto incorpo-
ratefluid production/injectioninto thenonlinearalgebraic
equations.Linearizationinvolvesapproximatingnonlin-
eartermsin bothspaceandtime.Linearizationresultsin
a setof linearalgebraicequations.Any of theseverallin-
earequationsolverscanthenbeusedto obtainthesolu-

tion. Thesolutioncomprisespressureandfluid saturation
distributionsin the reservoir andwell flow rates.Valida-
tion of areservoir simulatoris thelaststepin developinga
simulator, afterwhich thesimulatorcanbeusedfor prac-
tical field applications.The validation stepis necessary
to make surethat no error wasintroducedin the various
stepsof developmentandin computerprogramming.

2.2 Engineering Appr oach

Thefeaturesof thestepsforcetheresearchersanddevel-
opersof reservoir simulatorsto dependon mathematics
in thefirst two stepsof theconventionalapproachto ob-
tain the third stepof finding out the nonlinearalgebraic
equationsor finite-differenceequations(Fig. 1). In con-
trast,it is possibleto bypassthestepof formulationin the
form of PDEsand directly expressthe fluid flow equa-
tion in the form of a nonlinearalgebraicequation,as
pointedout by Abou-Kassem(2008).In fact, by setting
upthealgebraicequationsdirectly, onecanmakethepro-
cesssimpleandyet maintainaccuracy throughthe engi-
neeringapproach.In theengineeringapproach,thefinite-
differenceequationsare derived without going through
the severity of PDEsand discretization(Fig. 2). In this
approachthe derivation of the nonlinearalgebraicflow
equationis straightforward.It is accomplishedin twocon-
secutive stepsup to thederivationof nonlinearalgebraic
flow equationswheretheformulationprocessof thecon-
ventionalapproachis absent.Figure2 shows thesesteps
asadiscretizationof thereservoir into gridblocksor grid-
pointsto removetheeffectof thespacevariable.Thenext
stepis thenthederivationof thealgebraicflow equation
for gridblocki (orgridpointi) usingthethreebasicprinci-
ples,taking into considerationthevariationof interblock
flow termsand the source/sinkterm with time within a
timestep.Theapproximationof thetime integralsis then
consideredin theresultingflow equationto producea fi-
nite nonlinearalgebraicflow equationfor time t. Theba-
sic differencebetweenthesetwo approachesis that one
hasroom for the time approximation(engineering)and
theother(conventional)doesnothavethatoption.Oncea
nonlinearalgebraicequationis derived,thewell presenta-
tion is addedto includeproduction/injectionwells.Using
theapproximationof time integral, theequationtruncates
to anintermediatestagewhereonecansolve theequation
numericallyusingdifferentnumericalschemes.The so-
lution canbevalidatedusinganexperimentalprocedure.
It is alsopossibleto compareit with otherexisting natu-
ral phenomenawhich hasreasonableresults.Finally, the
validatedmodelis beingusedto developanew simulator.
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Figure 2. Major steps used to develop reservoir simulators based on engineering approach  
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FIG. 2: Major stepsusedto developreservoir simulatorsbasedon theengineeringapproach.

2.3 The Outlook of Both Appr oaches

Thereare threemethodsavailable for the discretization
of any PDE: (i) the Taylor seriesmethod,(ii) the inte-
gral method,and (iii) the variationalmethod(Aziz and
Settari,1979).The first two methodsresult in the finite-
differencemethod,whereasthe third resultsin the vari-
ational method.The “mathematicalapproach”refers to
themethodsthatobtainthenonlinearalgebraicequations
throughderiving anddiscretizingthe PDEs.Developers
of simulatorsrely heavily on mathematicsin theconven-
tional approachto obtain the nonlinearalgebraicequa-
tions or the finite-differenceequations.However, some-
times they do not realize the inherentassumptionsbe-
hind this approach.Abou-Kassemet al. (2006) intro-
duceda new approachwhich is usedto derive thefinite-
differenceequationswithout going throughthe rigor of
PDEsanddiscretization.This approachutilizesfictitious
wells to representboundaryconditions.They describe
this approachas an “engineeringapproach”becauseit
is closer to the engineer’s thinking and to the physical
meaningof the terms in the flow equations.Both ap-
proachestreatboundaryconditionswith the sameaccu-
racy if the conventionalapproachusessecond-orderap-
proximations.The engineeringapproachis simple and
yet generaland rigorous—anotherstrengthof the en-
gineeringapproach.In addition, it results in the same
finite-differenceequationsfor any hydrocarbonrecov-
ery or reservoir process.Theengineeringapproachis in-
dependentof the mathematicalapproach.It reconfirms
the useof the central-differenceapproximationin space
discretizationand highlights the assumptionsinvolved
in choosinga time level in the mathematicalapproach.
Thereforethe engineeringapproachdoesnot needthose
approximations,which is the most significantcontribu-
tion of thisapproach.

Abou-Kassem(2007)pointedoutthatbothapproaches
give identicalequationsfor specifiedflow rate,pressure
gradients,andspecifiedpressureboundaryconditionsfor
both thepoint-distributedandblock-centeredgrids.This
treatmentof boundaryconditionsis of second-orderac-
curacy. The engineeringapproachgives a more accu-
rate treatmentthan the conventional approachif first-
order approximationis usedin the treatmentof speci-
fied pressureboundaryconditionsin the block-centered
grid (Abou-Kassemand Osman,2008). Using the en-
gineeringapproach,Abou-Kassemet al. (2006)derived
theflow equationsandpresentedthetreatmentof bound-
ary conditionsfor the casesof single-wellsimulationin
radial-cylindrical coordinatesandmultidimensional,mul-
tiphaseflow in black-oil models.It givesthesamefinite-
differenceequationsfor any formation processdue to
the scopeof bypassingthe whole formulation process
(Fig. 2). Sincetheengineeringapproachis free from the
conventionalapproach,it providesjustificationfor useof
the central-differenceapproximationin spaceand gives
allusionsof the estimates.On the otherhand,theseap-
proximationsusually use the conventional approachin
timediscretization.

3. INHERENT MYSTERIES IN THE SIMULATION

The whole petroleumindustry is like a reservoir of risk
anduncertainty. At present,investors,planners,andexec-
utivesarein a situationwherethey do not feel secureto
invest their capital investmentin the petroleumindustry
due to the probability of success:8–12%in any explo-
ration activity (Hossainet al., 2010b).Unstableenergy
pricing is theotherfactorwhich mitigatesthedecisionof
theinvestor. All thisuncertaintyandrisk is directlyor in-
directly relatedto thereservoir simulation.Thereforeit is
importantto identify the big challengesanduncertainty
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cloudingthepetroleumindustry. Recently, Hossainet al.
(2010b)demonstratedthe chronologicalstepsandmajor
sourcesof uncertaintyand risks of the entirepetroleum
industry, rangingfrom explorationthroughproductionto
enduser. This researchdiscussessomeof thefundamen-
tal assumptionsbehindthemodelingapproachesandtheir
mathematics.

3.1 Assumptions Behind Various Modeling
Appr oaches

Reservoir performanceis traditionally predictedusing
three methods—(i) analogical, (ii) experimental, and
(iii) mathematical.The following critical review is made
basedon their assumptionsandability to forecastreser-
voir performance.

3.1.1 Analogical Method

Theanalogicalmethodconsistsof usingmaturereservoir
propertiesthat aresimilar to the target reservoir to pre-
dict the behavior of the reservoir. This methodis espe-
cially usefulwhenthereis a limited availabledata.The
datafrom the reservoir in the samegeologicalbasinor
province may be appliedto predict the performanceof
thetarget reservoir. In this methodthefollowing two ap-
proachesaretakento predictthefutureof thereservoir.

Statisticalapproach.—In the statisticalapproach,the
pastperformanceof numerousreservoirs is statistically
accountedfor by deriving the empirical correlations.In
general, thesecorrelationsare used for future perfor-
mancepredictionsof the reservoir. This approachmay
be describedas a “formal extensionof the analogical
method.” Statisticalmethodshave several assumptions
that are listed in Table1. Moreover, ZatzmanandIslam
(2007)questionedthe fundamentalpoint of why the as-
sumptionof randomnessanywhereis an antinaturephe-
nomenon.Theproblemlurks in thecharacterof thevery
definition of randomness,that any of a (potentially in-
finite) set of possibleoutcomesis equally likely. Since
outcomesof any naturalprocessdependon the stateof
natureat somegivenpointsin spaceandtime,somepos-
sibleoutcomeswill bemuchmorelikely andsomemuch
lesslikely at that samepoint in spaceand time. Hence
naturecan never be “random” in the senserequiredfor
applyingthe theoryof mathematicalprobability to com-
puteoutcomes.Mathematicalrandomnessis justaspecial
binary-outcomecaseof any functionor equationthatpro-
ducesa uniqueresult,whetherthat resulttakesthe form
of a singlenumberor the form of a setof valuesoccu-

pying a uniqueness(i.e., fixed range).The questionthen
revolves aroundhow natureworks, sincea reservoir is
all aboutnaturalphenomena.ZatzmanandIslam (2007)
addressthe issuevery well. In addition,they point out a
moresubtle,yet far more importantshortcomingof the
statisticalmethod.Practicallyall statisticalmethodsas-
sumethattwo or moreobjectsbasedona limited number
of tangibleexpressionsmakesit legitimateto commenton
theunderlyingscience.It is equivalentto statingthatif ef-
fectsshow areasonablecorrelation,thecausescanalsobe
correlated.Accordingto them,this posesa seriousprob-
lem,asin theabsenceof a time-spacecorrelation(apath-
way rather than end result), anything can be correlated
with anything,makingthewholeprocessof scientificin-
vestigation spurious.They make their point by showing
thecorrelationbetweenglobalwarmingincreaseswith a
decreasein the numberof pirates.The absurdityof the
statisticalprocessbecomesevidentby drawing this anal-
ogy.

Declinecurveanalysis.—Therateof oil productionde-
clinegenerallyfollowsoneof thefollowing mathematical
forms—exponential,hyperbolic, or harmonic.The fol-
lowing assumptionsapply to the declinecurve analysis
(MustafizandIslam,2008):(i) pastprocessescontinueto
occur in the future and(ii) operationalpracticesareas-
sumedto remainthesame.

3.1.2 ExperimentalMethod

Theneedfor well-designedexperimentalwork cannotbe
overemphasizedin orderto improve thequality of reser-
voir simulators.Experimentalmethodsmeasurethereser-
voir characteristicsin the laboratorymodelsand scale
theseresultsto theentirehydrocarbonaccumulation.The
mostsignificantchallengesin experimentaldesignarise
from the determinationof rock/fluid properties.Even
thoughprogresshasbeenmadein termsof specialized
coreanalysisandpressurevolumeandtemperature(PVT)
measurements,numerousproblemspersistdue to diffi-
cultiesassociatedwith samplingtechniquesandcorein-
tegrity. In a reservoir simulationstudy, all relevant ther-
mal properties,including coefficient of thermal expan-
sion, porosity variation with temperature,and thermal
conductivity, needto be measuredin casesuch infor-
mation is not available. Experimentalfacilities suchas
double-diffusivemeasurements,transientrockproperties,
andpoint permeabilitymeasurementscanbevery impor-
tantin fulfilling thetask.In thisregard,thework of Belhaj
etal. (2006)is noteworthy, wherethey useda3D spotgas
permeameterto measurepermeabilityat any spoton the
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TABLE 1: Assumptions behind different equations and techniques.

Equations Assumptions
Statistical
method

1) Reservoir propertiesarewithin thelimit of thedatabase.
2) Reservoir symmetryexists.
3) Ultimate recovery is independent of the rate of production.

Material
balance
equation

1) Rockandfluid propertiesdonot changein space.
2) Hydrodynamicsof thefluid flow in theporousmediais adequatelydescribedby Darcy’s law.
3) Fluid segregationis spontaneousandcomplete.
4) Geometricalconfigurationof thereservoir is known andexact.
5) PVT dataobtainedin thelaboratorywith thesamegas-liberationprocess(flashvs differential)
arevalid in thefield.
6) Sensitive to inaccuracies in measured reservoir pressure. The model breaks down when no
appreciable decline occurs in reservoir pressure, as in pressure maintenance operations.

Momentum
balance
equation

1) Thefluid is homogenous,single-phase,andNewtonian.
2) No chemicalreactiontakesplacebetweenthefluid andtheporousmedium.
3) Laminarflow conditionprevails.
4) Permeabilityis apropertyof theporousmedium,whichis independentof pressure,temperature,
andtheflowing fluid.
5) Thereis noslippageeffect,e.g.,Klinkenberg phenomenon.
6) Thereis noelectrokineticeffect.
7) It is valid for theslow flow of aNewtonianfluid with rigid solidmatrix (i.e., inertial effectsare
neglectedandmostof theporousmediafluidsarenon-Newtonianin nature(Hossainetal., 2007).
8) No-slip boundary conditions are assumed at the fluid–solid boundary on the microscopic level.

Taylor
series
expansion

1) All pointsof thefunctionareassumedcontinuousonaninterval containingx andx0 for limited
numbersandtheresultantproductexistson this interval.
2) The plotting of function [e.g., f (x)] in a certaininterval of f , truncatethis to a polynomial
P (x), andplot thispolynomialwith theunderlyingassumptionthatf (x) ≈ p (x) in this interval.
3) Taylor series expansion based on the mean value theorem, i.e., f ′ (c) =
[f (x)− f (x0) /x− x0], wherec is anumberbetweenx andx0.
4) Thevalidity of the formula restson theassumptionthat the function [e.g.,f ] is differentiable
to all ordersandis showing thattheremaindertermtendsto zeroasthedenominatorof theseries
[i.e., k] tends to infinity forc in a suitable interval.

Sources:Bear (1972); HassanizadehandGray (1979a,1979b,1980); Whitaker (1986a,1986b);MustafizandIslam (2008);
ZatzmanandIslam(2007).

surfaceof the sample,regardlessof shapeandsize.De-
spitemakinggreatadvances(Tharanivasanet al., 2004;
YangandGu, 2005)in the experimentalmethod,proper
characterizationof complex phenomenacontinuesto bea
formidablechallenge.

3.1.3 MathematicalMethod

In themathematicalmethod,basicconservationlaws and
constitutiveequationsareappliedto formulatethebehav-
ior of fluid flow andothercharacteristicsin mathematical
notationsandformulations.The two basicequationsare
the materialbalanceand momentumbalanceequations.
Thematerialbalanceequationis oneof themostwidely

usedmathematicalrepresentationsfor thereservoir. This
equationdescribesthefundamentalphysicsof theproduc-
tion schemeof thereservoir. It is well known thatDarcy’s
law hasbeenusedin thepetroleumindustryfor centuries.
As a result,practicallyall reservoir simulationstudiesin-
volve the useof this law asa momentumbalanceequa-
tion. However, theseequationshave several inherentas-
sumptionsthat might raisequestionsin the researcher’s
mind.Thereforeit is importantto understandtheassump-
tionsbehindthis equation.Theassumptionsarelisted in
Table1.

Thesetwo equationsareexpressedfor differentphases
of fluid flow in the reservoir andarecombinedto obtain
a singleequationfor eachphaseof theflow. However, it
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is necessaryto apply otherequations/laws for modeling
to enhanceoil recovery. As an example,the energy bal-
anceequationis necessaryto analyzethereservoir behav-
ior for steaminjection or in situ combustion reservoirs.
The mathematicalmodel traditionally includesmaterial
balanceequations,declinecurves,statisticalapproaches,
andalsoanalyticalmethods.In mostcases,themathemat-
ical modelsfor fluid flow throughthe porousmediaare
extremelydifficult to solve analytically. Analytical meth-
odscanonly beappliedto linearequations.Thesemeth-
odscanapply to somesimplified models.However, this
solutioncanbeappliedasthebenchmarksolutionto val-
idatethenumericalapproaches.Thenumericalcomputa-
tionsof thederivedmathematicalmodelaremostlybased
on thefinite-differencemethod.All thesemodelsandap-
proachesarebasedon several assumptionsandapproxi-
mationsthatmaycauseerroneousresultsandpredictions.
Thefollowing sectionsdescribetheinherentassumptions
behindthoseequationsandtechniques.

Taylor seriesexpansion.—Taylor seriesexpansionis a
very importanttool in numericalanalysis.If we usethis
expansiontechnique,themostwell-behavedfunctionsare
convertedto simplepolynomials.WhentheTaylor series
expansionis carriedout for a finite numberof termsand
if theremainderis ignored,theseriesbecomesanapprox-
imationof thefunction.Thisapproximationgeneratesthe
truncationerror during numericalcomputation.Further-
more,it is adirecteffectof thelocaltruncationerroror lo-
cal discretizationerror. TheassumptionsbehindtheTay-
lor seriesexpansionarelisted in Table1. Thereforeit is
importantto look for someimprovementin simulation.

Finite-difference approximation.—Finite-difference
calculusis usedto approximatevaluesof functionsand
their derivatives at unknown discretepoints. Newton’s
formula suffers from the approximationthat the magni-
tudeanddirectionchangeindependentlywith eachother.
There is no problem in having separatederivatives for
eachcomponentof the vectoror in superimposingtheir
effects separatelyand regardlessof order. That is what
mathematiciansmean when they describe or discuss
Newton’s derivative being usedas a “linear operator.”
Following this, it comeson Newton’s difference-quotient
formula. This methodrelies implicitly on the notion of
approximatinginstantaneousmomentsof curvature, or
infinitely smallsegments,by meansof straightlines.This
aloneshouldhave tipped everyoneoff that this deriva-
tive is a linearoperatorpreciselybecause,andto theex-
tent that, it examineschangeover time/distancewithin
analreadyestablishedfunction(Islam,2006).This func-
tion is applicableto an infinitely small domain,making

it nonexistent.When integration is performed,however,
this nonexistent domain is assumedto be extendedto
a finite and realistic domain,making the entire process
questionable.During thesemathematicaloperations,all
confusionsarisedueto theassumptionsbehindthefinite-
differenceapproximationwhicharelistedin Table2.

By examining the first assumptionsinvolved, Zatz-
man and Islam (2007) were able to characterizeNew-
ton’slaw asaphenomenalfor threereasons:(1) it removes
timeconsciousness,(2) it recognizestheroleof “external
force”; and(3) it doesnot includetheroleof first premise.
In brief, Newton’s law ignores,albeitimplicitly, all intan-
gibles from naturalscience.Zatzmanand Islam (2007)
identifiedthe mostsignificantcontribution of Newton in
mathematicsandshowed how the derivative works with
its limitations. Indeed,it took anothercenturyfollowing
Newton’s deathbeforemathematicianswould work out
theconditions.Theseconditionsaretherequirementsfor
continuity of the function to be differentiatedwithin the
domainof values.In sucha domain, its derivative (the
namegiven to the ratio quotientgeneratedby the limit
formula)couldbeappliedandyield reliableresults.Kline
(1972)detailedtheproblemsinvolving this breakthrough
formulationof Newton’s.However, noonein thepasthas
proposedanalternative to this differentialformulation,at
leastnotexplicitly.

Figure 3 illustrates the above-mentioned difficulty. In
this figure, the economic index (it may be one of many
indicators) is plotted as a function of time. In nature, all
functions are very similar. They do have local trends as
well as global trends (in time). One can imagine how the
slope of this graph, on a very small timeframe, would be
quite arbitrary and how devastating it would be to take
that slope to a long term. One can easily show that the
trend emerging from Newton’s differential quotient would

Economic Index 

0 50

No. of years

100

FIG. 3: Economicwellbeingis known to fluctuatewith
time (adaptedfrom Zatzmanetal., 2009).
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TABLE 2: Assumptions behind the finite-difference approximation.

Equation Assumptions
Finite-
difference
methods

1) Therelationshipbetweenderivativeandthefinite-differenceoperatorsis establishedthrough
theTaylor seriesexpansion.
2) Therelationshipinvolvestruncationof theTaylor seriesof theunknown variablesafter few
terms.Suchtruncationleadsto accumulationof error.
a. The forward differenceandthe backward differenceapproximationsarethe first-orderap-
proximationsto thefirst derivative.
b. Although the approximationto the secondderivative by a central-differenceoperatorin-
creasesaccuracy becauseof a second-orderapproximation,it still suffers from the truncation
problem.
c. As thespacingsizereduces,thetruncationerrorapproacheszeromorerapidly. Therefore,a
higherorderapproximationwill eliminatetheneedof samenumberof measurementsor discrete
points.It mightmaintainthesamelevel of accuracy; however, lessinformationatdiscretepoints
mightberisky aswell.
3) Thesolutionsof thefinite-differenceequationsareobtainedonly at thediscretepoints.
4) Thesolutionsobtainedfor gridpointsarein contrastto thesolutionsof thecontinuousequa-
tions.
5) Thelocal truncationerroror local discretizationerror is not readilyquantifiablebecausethe
calculationinvolvesbothcontinuousanddiscreteforms.
6) The computational operation increases, which eventually increases the round-off error.

Sources:ZatzmanandIslam(2007);MustafizandIslam(2008).

be diametricallyoppositeto the real trend.Zatzmanand
Islam (2007) provided a basisfor determiningthe real
gradientratherthanthe local gradientthatemergesfrom
Newton’s differential quotient. In that formulation it is
shown that the actualvalueof ∆t, over which a reliable
gradienthas to be observed, needsto be several times
greaterthanthe characteristictime of a system.The no-
tion of REV, asfirst promotedby Bear(1972), is useful
in determininga reasonablevalue for this characteristic
time. The secondprinciple is that at no time can∆t be
allowed to approach0 (Newton’s approximation),even
whenthecharacteristicvalueis verysmall(e.g.,phenom-
ena at nanoscale).According to Abou-Kassem(2008),
useof theengineeringapproachturnsoutsuchanapprox-
imation becausethis approachbypassesthe recastingof
governingequationsinto Taylor seriesexpansioninstead
of relying on directly transforminggoverningequations
into a setof algebraicequations.Finally, the initial anal-
ysisshouldinvolve theextension∆t to ∞ in orderto de-
terminethedirection,whichis relatedto thesustainability
of aprocess(Zatzmanetal., 2008).

4. AN EXAMPLE OF COMPLEXITY

Finally, anexamplecanbedrawn for which theelimina-
tion of oneassumptionhelpscapturenaturalphenomena.

Hossainetal. (2007)developedafluid rheologicalmodel
that hadeliminatedNewton’s assumptionregardingvis-
cosityandshearstress.Insteadof resortingto a so-called
nonlinearrelationship,amemoryfunctionwasintroduced
as a continuousfunction of time. The model equations
areshown in Eqs.(1) and(2). With the inclusionof the
memoryfunction, new governing equationsbecomefar
morecomplex than thoseof the conventionalapproach.
Oneimmediateconsequenceis the possibility of having
multiplesolutions.Becausetheexactform of thememory
is never known, this depictionwould give oneanoppor-
tunity to refinethepredictionenveloperatherthanputting
toomuchemphasisonasinglesolution.Thismodeof re-
castingthegoverningequationopensupopportunitiesfor
finding solutionsthatarecloserto the realsolutionsof a
naturalphenomenon:

τ = µ[(dux)/(dy)], (1)

τ = (−1)
0.5

(
∂σ

∂T

∆T

αDMa

)
t∫
0

(t− ξ)
−α

{
∂2p
∂ξ∂x

}
dξ

Γ (1− α)


× a0.5

[
6Kµ0η

(∂p)/(∂x)

]0.5
eE/(RT ) dux

dy
. (2)
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5. STRENGTHS AND WEAKNESSES OF
DERIVED FLOW EQUATIONS

The nonlinearalgebraicequationsfor fluid flow through
porous media can be obtained by either the tradi-
tional approachor the engineeringapproach.The same
basic principles are used for both these approaches.
Both approachesdiscretize the reservoir into grid-
blocks/gridpointsand yield the samediscretizedflow
equationsfor modelingany reservoir-fluid system(mul-
tiphase,multicomponent,thermal,heterogeneousreser-
voir) usingany coordinatesystem(Cartesian,cylindrical,
spherical)in 1D, 2D, or 3D reservoirs (Abou-Kassemet
al., 2006).Thereforethe presentationhereis limited to
only single-phase,compressiblefluid in a horizontal,1D
reservoir usingirregularblock sizedistribution in rectan-
gular coordinates.This researchtakesadvantageof this
simplecaseto demonstratethe strengthof the engineer-
ing approach.

5.1 Conventional Appr oach

The conventionalapproachfollows the stepsoutlinedin
Fig. 1 duringthedevelopmentof thealgebraicflow equa-
tions. Theseequationsare derived in threeconsecutive
steps:(i) derivation of the PDE describingfluid flow
in the reservoir using the three basic principles men-
tionedearlier;(ii) discretizationof thereservoir into grid-
blocks/gridpoints;and(iii) discretizationof the resulting
PDEin spaceandtime.Finally, theflow equationcanbe
obtainedby combiningthecontinuityequation,theequa-
tion of state,andDarcy’s law as(Abou-Kassem,2007)

∂

∂x

(
βc

kx
µB

∂p

∂x

)
+

qsc
Vb

=
1

αc

∂

∂t

(
ϕ

B

)
(3)

Equation(3) is a PDEthatdescribessingle-phaseflow in
a 1D rectangularcoordinatesystem.Theabove equation
canbediscretizedusingforward-differencediscretization
andobtainedas(Abou-Kassem,2007)

Tn
xi−1/2

(
pni−1 − pni

)
+ Tn

xi+1/2

(
pni+1 − pni

)
+ qnsci

∼=
Vbi

αc∆t

(
ϕ

B

)′

i

(
pn+1
i − pni

)
, (4)

where

Tn
xi±1/2

=

(
βc

kxAx

µB∆x

)
i±1/2

and(
ϕ

B

)′

i

=
(ϕ/B)

n+1
i − (ϕ/B)

n
i(

pn+1
i − pni

) .

5.1.1 LimitationsandObservationof Equation(4)

The interblockflow termsandproduction/injectionrates
on the LHS of the equationis datedat time level n for
theexplicit flow equation.On theotherhand,theRHSof
the flow equationrepresentsan accumulationover time
step∆t. This meansthat the accumulationterm in the
RHS of the flow equationdoesnot take into considera-
tion thevariationof interblockflow termsandtheproduc-
tion/injectionrate(source/sinkterm)within a timestep.

A closeinspectionof the flow termson the LHS of
thediscretizedflow equationrevealsthat thesetermsare
nothingbut Darcy’s law describingvolumetricflow rates
atstandardconditionsqsci±1/2

betweengridblocki andits
neighboringgridblock(i− 1) or (i+1) in thex direction,
whichmeansthatall theassumptionsbehindDarcy’s law
arebeingincorporatedhere.

The interblockgeometricfactor [βc(kxAx)/(∆x)] is
constant,independentof spaceandtime.

The pressure-dependentterm (µB)i±1/2 of transmis-
sibility usessomeaverageviscosityandFVF of thefluid
containedin blocki andneighboringblock(i+1) or some
weight at any instantof time t. In otherwords,the term
(µB)i±1/2 is not a function of spacebut a function of
timeasblockpressurechangeswith time.

The transmissibility factor Txi±1/2
betweenblock i

andneighboringblock (i + 1) is a functionof time only;
it doesnotdependonspaceatany instantof time.

5.2 Engineering Appr oach
The engineeringapproachfollows the stepsoutlined in
Fig. 2 duringthedevelopmentof thealgebraicflow equa-
tions. Theseequationsare developed in three succes-
sive steps:(i) discretizationof the reservoir into grid-
blocks/gridpointsto remove the effect of the spacevari-
ableasmentionedin observations3, 4, and5 above; (ii)
derivation of the algebraicflow equationfor gridblock i
or gridpoint i usingthe threebasicprinciplesmentioned
earlier, taking into considerationthe variationof the in-
terblockflow termsandsource/sinktermwith timewithin
a time step;and(iii) approximationof the time integrals
in theresultingflow equationto producethenonlinearal-
gebraicflow equations.Thereforethe flow equationcan
bewrittenas(Abou-Kassem,2007)

tn+1∫
tn

[
Txi−1/2

(pi−1−pi)
]
dt+

tn+1∫
tn

[
Txi+1/2

(pi+1−pi)
]
dt

+

tn+1∫
tn

qscidt =
Vbi

αc

(
ϕ

B

)′

i

(
pn+1
i − pni

)
. (5)
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This equationis rigorous and involves no assumptions
otherthanthevalidity of Darcy’s law to estimatethefluid
volumetricvelocitybetweengridblocki andits neighbor-
ing gridblock(i− 1) and(i+ 1).

5.2.1 Strengths/WeaknessesandObservationof
Equation(5)

The accumulationterm in the RHS of the flow equation
doestake into considerationthe variation of interblock
flow terms and production/injectionrates (source/sink
term)within a timestep.

A closeinspectionof the flow termson the LHS of
thediscretizedflow equationrevealsthat thesetermsare
nothingbut Darcy’s law describingvolumetricflow rates
at standardconditionsqsci±1/2

betweengridblock i and
its neighboringgridblock (i − 1) or (i + 1) in thex di-
rection; i.e., all the assumptionsbehindDarcy’s law are
beingincorporatedhere.However, it is a time-dependent
functionwithin thetime integral tn+1 andtn.

The interblockgeometricfactor [βc(kxAx)/(∆x)] is
a time-dependentfunctionwithin the time integralstn+1

andtn.
The pressure-dependentterm (µB)i±1/2 of transmis-

sibility usessomeaverageviscosityandFVF of thefluid
containedin blocki andneighboringblock(i+1) or some
weight at time integral tn+1 andtn. In otherwords,the
term(µB)i±1/2 is notafunctionof space,but it is afunc-
tion of timeasblockpressurechangeswith time.

The transmissibility factor Txi±1/2
betweenblock i

and its neighboringblock (i + 1) is a function of time
only. However, it dependson the time integral tn+1 and
tn.

Themainstrengthof theengineeringapproachlies in
beingcloseto the engineer’s thinking. It givesthe phys-
ical interpretationof the approximationsinvolved in the
forward, backward, and central differenceof the first-
ordertime derivative usedin the conventionalapproach.
In addition,thealgebraicequationscanbeeasilyattained
withoutgoingthroughtheseverity of theconventionalap-
proach.In reality, the developmentof a reservoir simu-
lator requiresthe appropriatenonlinearalgebraicequa-
tions for the processbeing simulated.The majority of
theavailablecommercialreservoir simulatorsweredevel-
opedwithoutevenlookingatanalysisof truncationerrors,
consistency, convergence,or stability. On theotherhand,
the scopeof bypassingthe PDEsmakesthe engineering
approachstrongerthan the presentapproachwhere the
above limitationsareabsent.

The nonlinearalgebraicequationsof any processin
any coordinatesystemcanbeobtainedin a rigorousway
by the engineeringapproachwithout going throughthe
severity of obtainingthe PDEsdescribingthe processin
spaceandtime for reservoir simulation(Abou-Kassemet
al., 2006).

The conventionalapproachderives the nonlinearal-
gebraicequationsby first deriving the PDEs, followed
by discretizingthe reservoir and finally discretizingthe
PDEs.On the otherhand,the engineeringapproachfirst
discretizesthereservoir, thenderivesthealgebraicequa-
tions with time integrals, and finally approximatesthe
time integralsto obtainthenonlinearalgebraicequations.

6. GUIDELINES TO MEET THE RESEACH
CHALLENGES

Themostimportantaspectof eliminatingthespuriousas-
sumptionsandconsiderationof theappropriateapproach
is thatit leavesopenthechoiceof multiplesolutions,gen-
eratinga setof cloudpointsratherthana single-pointso-
lution. In addition, a more accuraterangeof predicted
valueswill reducethe uncertaintyto a greatextent. In
the past,multiple solutionswere observed decadesago
but not with nonlinearsolvers (Islam and Nandakumar,
1986; 1990). Without nonlinear solvers, this amounts
to reducingthe issueinto an initial-value problem.For
petroleumengineeringapplications,multiple solutions
wereobserved asearly as the 1950sandwerecorrectly
dubbed“spurious”by thegroundbreakingwork of Buck-
ley and Leverett (1942). Thesemultiple solutions oc-
curredbecausethe capillary pressureterm wasdropped
from thegoverningequation.In orderto avoid this prob-
lem, thenotionof shockwasintroducedin placeof a re-
alistic transitionof the saturationprofile. Even thoughit
was recognizedthat the needfor introductionof shock
is eliminatedwith the introductionof the capillary term
decadesago,only recentlyhasit beensolvedwith a non-
linearsolver(Mustafizetal.,2008b).As elaboratedby Is-
lametal. (2009),thesesolutionswithout linearizationre-
vealedanumberof key observations,suchas(i) thereis a
wide rangeof operatingparametersfor which thenonlin-
earsolverspredictresultsremarkablydifferentfrom those
predictedby linearsolvers,(ii) thepossibilityof multiple
solutionsis inherentto thereservoir simulationproblems,
and(iii) linearizationof governingequationsis likely to
pervert subsequentresults,biasingthe decision-making
processirreversibly.

Recentstudiesshow that linearizedandnonlinearized
equationsproducedifferent results.If this linearization

Volume 15, Number 2, 2012



184 Hossain

is eliminated, the accuracy of the resultscan improve
asmuchas30% (HossainandIslam, 2010a).Futurere-
searchwill explore thepossibilityof introducingnonlin-
ear solvers in reservoir simulations.The existing simu-
lators (suchas Eclipse,etc.) and linear solvers are un-
ableto handlethenonlinearityandchaoticbehavior of the
naturalreservoir phenomena.Most importantly, recently
the memoryconceptwasintroducedfor the first time in
the petroleumindustry to capturethe continuousalter-
ation of reservoir rock and fluid properties(Hossainet
al., 2007;Hossainet al., 2008;HossainandIslam,2009;
Hossainet al., 2009b,2009c).This pioneeringconcept
can also be incorporatedto develop a new knowledge-
basedmodel which will capturethe naturalphenomena
of formation. The developmentof new governing flow
equationsthoroughlyaddressesin-depthunderstandingof
fluid flow in a heterogeneousreservoir andinteractionof
rock/fluid properties.Superiormathematicalandnumer-
ical techniqueshave beenrecentlydevelopedthat allow
oneto systematicallytrackmultiple solutionsinherentto
nonlinearequations(Mousavizadeganet al., 2007,2008;
Mustafizetal.,2008a;Mustafizetal.,2008b;Islametal.,
2009).This will help develop a knowledge-basedtech-
nique for producingthe numericalsimulationresultsin
theform of a clusterof points,ratherthana setof single-
point solutions.With this approach,the risk assessment
will bebasedonsciencethatdependson thedynamicsof
the reservoir andnot an arbitrarily setcoefficient that is
misleadingat the very least.The solutionschemeis ac-
curateand simple to implementbut is computationally
time-consuming.That is why this solutionschemeforms
anidealcasefor parallelcomputing,which is bothneces-
saryandcomplimentary. With parallelcomputing,a pro-
tocol is neededto establishtrackingfor multiplesolutions
with the speedof conventional reservoir simulatorsbut
with unprecedentedaccuracy. In summary, thecombina-
tion of memoryor continuoustime functionandtracking
of multiple solutionswill develop theprotocolof a truly
knowledge-basedsimulation(HossainandIslam,2010a).

As statedearlier, theresultsandsuccessesreportedby
Mousavizadegan et al. (2007,2008)andMustafizet al.
(2008a,2008b) in solving equationswithout lineariza-
tion promisethe future successof the engineeringap-
proach.EvenHossainetal. (2009a)showedthefuturere-
searchtrendon reservoir simulation,wheretheengineer-
ing approachhasbeenincorporatedto bypasstheassump-
tions.Theknowledge-basedapproachdevelopedby Hos-
sainandIslam(2010a)canbecoupledwith theengineer-
ing approachto developnew models.Thebenefitsof the
proposedresearcharetwofold. For a specificstudy, if the

resultsshow significantdifferencesbetweenthesolutions
of thelinearizedandnonlinearizedmodels,thestagewill
besetto seriouslyconsiderthenew approachin reservoir
simulation.If, however, theresultsshow insignificantdif-
ferencesfor a given rangeof parametricvalues,thenthe
proposedresearchreaffirmsthatthecurrentmethodof lin-
earizationof modelequationsis appropriatefor thegiven
rangeand,therefore,delineatesthe rangefor which fine
tuningof thecurrenttechniquesis necessary. This line of
computinghastremendousimplicationsonpetroleumen-
gineeringpracticesin particular, andfar-reachingimpact
onotherengineeringdisciplines.

7. CONCLUSIONS

In thisstudy, acritical review anddetailedcomparisonare
madebetweenconventionalandengineeringapproaches
for the developmentof a new reservoir simulator. The
strengthsandweaknessesof theengineeringapproachare
also recognized.The currentmisconceptionsand inher-
entassumptionsareidentifiedwith elaboratediscussions
thataredirectly or indirectly relatedto reservoir simula-
tion. Suchdistinctionwasnot possiblewith conventional
modeling techniques.Proposalsare madeto overcome
a numberof challengesencounteredduring modelingof
petroleumreservoirs basedon theengineeringapproach.
It is shown that with the engineeringapproach,results
would be significantlydifferent for mostof the solution
regime.This finding would help to determinea moreac-
curaterangeof risk factorsin petroleumreservoir man-
agement.Thisnew eraof reservoir simulatorswill opena
doorfor describingthenaturalphenomenain abetterway
andwith greaterunderstanding.
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