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Abstract 

 
This paper introduces mathematical models with memory to present the complex 
rheological phenomena combining the in situ shear rate and bulk rheology with 
fluid memory. The models are numerically solved and compared the results with 
established experimental data available in the literature. The new models 
showed excellent agreement with experimental results for the region where most 
existing models failed. The proposed models can be used in a number of 
applications, such as enhanced oil recovery (EOR), polymer manufacturing, etc. 
 
Keywords: Non-Newtonian fluid; shear rate; complex fluid rheology; non-Darcy flow; non-linear dynamics; 

chaos in porous media. 

 
 

1. INTRODUCTION 

The flow of aqueous polymeric fluids through porous media has been studied in the past mainly 
due to its importance in the areas of EOR. Past investigations focus on the flow of inelastic shear-
thinning fluids and more complex viscoelastic polymers. Even when the bulk rheology of the 
aqueous polymer solution is known, there is still an issue of how this relates to the in situ 
rheology of the fluid. Clearly, the internal geometry of the pore space in either a packed bed or a 
porous rock is far more complex than any regular rheumatic flow. Hence the apparent viscosity is 
really an aggregate or “upscaled” measure of viscous, elastic and extensional flow effects, and 
the matter of how this should be done has been of recent concern. For polymeric solutions, the 
apparent viscosity is a function of flow rate through the porous medium, and the flow rate is 
further correlated with the in situ shear rate within the porous medium. This flow rate may also be 
interrelated with the fluid memory in the pore network where mineral precipitation or other history 
of movement may delay the response of the in situ fluid. This delay can lead to restriction of the 
polymer flow through the pore throat. This paper attempts to eliminate these unsolved 
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complexities of the fluid flow in porous media. To do so, mathematical models with memory are 
introduced to present the complex rheological phenomena combining the in situ shear rate and 
bulk rheology with fluid memory. The models are numerically solved and compared the results 
with existing models by the established experimental data available in the literature. The models 
can be used in polymer flooding, reservoir simulation and reservoir characterization where 
pseudoplastic (shear-thinning) fluids are the main concern in porous media. 
 
The Newtonian viscosity model is the most commonly used one for the study of fluid flow in 
various applications. In principle, the Newtonian model implies that the viscosity is independent of 
shear rate.  Water, the most abundant fluid on earth, has been considered for centuries as an 
ideal example of a Newtonian fluid. Only recently, Li et al. [1] discovered that when water 
molecules are forced to move through a small gap (in nanoscale) of two solid surfaces 
(hydrophilic/wetting), its viscosity increases by a factor of 1000 to 10,000, resulting in a behavior 
similar to molasses. During their experiment on hydrophobic surfaces, they did not observe such 
an increase in viscosity. Their findings are in good agreement with the molecular dynamics 
simulation results that show a dramatically decreased mobility for sub-nanometer thick water films 
under hydrophilic confinement. They concluded that water has viscous and solid-like properties at 
its molecular level and is organized into layers. At the nanometer scale, water is a viscous fluid 
and could be a much better lubricant.  
 
This study received great attention from the general scientific community as well as the general 
public because of its potential applications to nano technology [2]. However, the fact that any fluid 
behaves differently under molecular constrains from larger scale has been known for some time. 
The slow-moving flow of a thin film of a liquid is an ubiquitous phenomenon. This flow exists in 
nature such as in lava flows, the linings of mammalian lungs, tear films in the eye, and in artificial 
instances such as microchip fabrication, tertiary oil recovery as well as in many coating processes 
[3]. Therefore, the natural phenomena, for which viscous fluid flow exists, are normally non-
Newtonian type of flow [3-4]. If the most well accepted Newtonian fluid, water exhibit viscous flow, 
it’s a matter of research to say that all fluids are non-Newtonian. As time progresses and our 
ability to measure with greater accuracy improves, the true nature of fluids is likely to be revealed 
as non-Newtonian. Even though numerous models for simulating non-Newtonian fluid behavior 
exist, there is a need to develop a theoretical model that is valid for an entire range of stress-
strain relationship.  
 
If viscosity diminishes as shear is increased, the fluid is said to exhibit shear thinning. This occurs 
in simple liquids as well as in complex mixtures such as foams, micelles, slurries, pastes, gels, 
polymer solutions, and granular flows [5]. The flow and displacement of non-Newtonian and 
complex fluids (such as polymer gels and surfactants) in porous media is an important subject. 
These have a variety of industrial applications. It is well known that polymeric materials, 
emulsions, foams, and gels exhibit non-Newtonian behavior, even at meso scale. For various 
industrial applications, ranging from paints, manufacturing and food processing to petroleum 
production, numerous non-Newtonian models have been proposed.  
 
Kondic et al. [6] studied the non-Newtonian fluid in a Hele-Shaw cell. They have used Darcy’s law 
whose viscosity depends upon the squared pressure gradient to a fluid model with shear-rate 
dependent viscosity. However, their derivation does not allow strong shear-thinning which is 
related to the appearance of slip layers in the flow. The influence of shear effects on the adhesive 
performance of a non-Newtonian fluid under tension has been studied by Miranda [7]. He used 
the modified Darcy’s law in developing a shear-rate model. His results show that, for a relatively 
small separation, the adhesion strength is considerably reduced if the fluid is shear thinning 
(thickening). Shear effects become negligible when large plate separation occurs.  Afanasiev et 
al. [8] studied the drag-out problem for shear-thinning liquids at variable inclination angles. They 
used the power-law, the Ellis and Carreau model as their viscosity model. They considered 
steady state solution and the dependence on the rheological parameters. However, many 
applications of polymeric liquids and suspension show nonlinear stress-strain relationships. A 
distinct viscosity regimes show up during shear stress when most polymer solutes are used under 
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shear-thinning conditions. The type of fluid (e.g. Newtonian or non-Newtonian) can be 
categorized based on the shear rate. It shows that polymeric fluid behaves as Newtonian at very 
low shear rates. As the shear rate increases the behavior starts to become nonlinear. When 
shear rate is further increased it moves into a regime where the viscosity can be modeled by a 
power-law relation. It is noted that the power-law model is only applicable at large shear rates, 
Ellis model is for low shear rate [8]. Therefore, their observation further consolidates the need to 
develop a model that allows for very high shear rates. 
 
Non-Newtonian fluids exhibit another particular phenomenon not observed in Newtonian fluids 
such as the negative wake behind a bubble are due to memory effects in stress relaxation [9]. 
Under shearing, a polymer solution may exhibit memory effects during a consequence of 
stretching of polymeric chains. Huang and Lin I [10] investigated the temporal memory and 
persistence time correlations of microstructural order fluctuations in quasi-two-dimensional dusty 
plasma liquids through directly monitoring particle positions. They noticed that persistence length 
of the ordered and the disordered microstates both follow power-law distribution for the cold 
liquid. They also identified that increasing thermal noise level deteriorates the memory and leads 
to the less correlated stretched exponential distribution of the persistent length. Even though the 
existence has long been recognized (e.g., thixotropic fluid) [11-13], few models have been 
proposed to include the memory effect. Even fewer models have been developed that is 
continuous in nature, mostly settling for good agreement within a narrow range of constraints. 
 
In the case of porous media flow, the problem is accentuated in the consideration of permeability 
variation with time.  The fluid memory can be defined as the change of viscosity and other 
pressure dependent properties over time whereas the memory of rock can be characterized as 
the alteration of permeability with time. Therefore, if permeability diminishes with time, the effect 
of fluid pressure at the boundary on the flow of fluid through the medium is delayed. The 
information of this effect over time in the fluid flow will continue if the medium (i.e. flowing fluid) 
holds a memory [14-17]. However, most of the current flow models in porous media have been 
developed for purely Newtonian and Non-Newtonian fluids where no model represents the fluid 
memory with the shear-thinning fluid models [18-29]. Most of the researchers have tried to relate 
the bulk properties of complex fluids to their behavior in a porous medium using a common 
approach, consisting of representing the medium by a bundle of parallel capillary tubes [27].     
 
The majority of complex fluids used in oil field applications are non-Newtonian polymeric solutions 
demonstrating shear-thinning (pseudoplastic) behavior in solution. The bulk macroscopic 
properties of these solutions, mainly their viscosity/shear rate dependency, are well understood 
and characterized using established models. Existing theoretical models as well as experimental 
findings are well established in the literature [18-29]. It is rather the numerical modeling that is 
incomplete [30]. Only recently, Hossain et al. attempted to model shear rate and viscosity of 
polymeric complex fluid as a function of time and other related bulk properties of fluid and media 
itself where memory has been incorporated to represent macroscopic and microscopic behavior 
of fluid and media in a more realistic way.  
 

2. EXISTING MODELS 

The two main polymers used in the oil industry for hydrocarbon recovery are synthetic 
polyacrylamide (in its partially hydrolyzed form, HPAM) and Xanthan biopolymer gum. Bulk 
properties measurement of polymeric solutions is a standard and reliable experimental 
procedure. Therefore, researcher’s efforts have been made to extend the laws of motion for 
purely Newtonian fluids (Darcy’s law) to rheologically complex ones using easily measurable 
properties such as the shear rate/viscosity behavior. A bundle of parallel capillary tubes approach 
has been used to measure the macroscopic and microscopic properties of porous media. This 
approach leads to the definition of an average radius which is dependent on macroscopic 
properties of the medium such as porosity, absolute permeability, and some measure of 
tortuosity. The available mathematical models (such as power law, Carreau, or Cross models) to 



M. Enamul Hossain, L. Lie & M. Rafiqul Islam 

International Journal of Engineering (IJE), Volume (3): Issue (5), December 2009                                461 

describe the fluid rheology have been developed to define viscosity and apparent shear rate from 
the use of the Darcy velocity [19, 20, 23, 24, 31-35]. Experimental results show that the shape of 
the apparent viscosity curve is similar to that of bulk shear rate. Most of experimental works had 
been performed by Xanthan biopolymers whose experimental results are available in the 
literature [19, 20, 24, 31, 33, 34, 35-39] where they tried to find the shape factor,    . For the 
porous media, Chauveteru’s form of the definition of porous media wall shear strain rate or in-situ 
shear rate is [18-23, 25, 26-29, 35, 37] 
 

       
     

    
                                                                 (1) 

 

In the above equation,     represents shape factor.  In the context of polymer flooding (part of 

enhanced oil recovery schemes), in-situ rheology depends on polymer type and concentration, 
residual oil saturation, core material and other related properties is addressed in the available 
literature [28, 33, 37, 39, 40]. A brief discussion has been outlined by Lopez [35]. The existence 
of a slip phenomenon in the Newtonian region at ultra low flow rates is confirmed and the degree 
of shift (the     factor) in the non-Newtonian region is quantified. It is shown that the adoption of 
rigorous and reproducible coreflood procedures is required to yield unambiguous data on in-situ 
polymer viscosity and polymer retention in real systems. Coombe et al. [41] analyzed the impact 
of the non-Newtonian flow characteristics of foam, polymers and emulsions. Balhoff and 
Thompson [42] modeled the flow of shear-thinning fluids, including power-law and Ellis fluids in 
packed bed using the network model. They also well defined and tried to highlight the existing 
models used for shear-thinning fluids. They pointed out that Eq. (1) has a generic form which 
depends on polymer type, medium structure and approach. 
 
There have been developed several constitutive equations in the past that capture the full bulk 
rheological behavior of pseudoplastic solutions [37]. To model the bulk rheology of the non-
Newtonian fluid, Escudier et al. [24] performed a set of experiments on Xanthan gum. Lopez [27, 
35] showed that Carreau-Yasuda, Cross and Truncated Power-law models behave almost same 
when they presents the bulk rheology (e.g. effective viscosity) of shear thinning fluid.  Therefore, 
Carreau-Yasuda model is considered in this study and is used to develop and analyze the 
memory model in bulk rheology. Carreau-Yasuda model may be written as [20, 21, 24, 27, 35]:  
 

          
          

            
 
  

                                       (2) 

 

3. MATHEMATICAL MODEL WITH FLUID MEMORY 

The exact form of the shear stress-shear rate (stress-stain) relationship depends on the nature of 
the polymeric solution. Therefore, recently, a question is always coming out about the effect of 
memory on rock/fluids in porous media when predicting oil flow outcomes. Hossain and Islam [30] 
have reviewed the existing complex fluid flow models with memory available in literature. None of 
them has focused the shear thinning fluid models which may couple with fluid memory. Recently 
Hossain et al. [16-17] have developed a model which represents a more realistic rheological 
behavior of fluid and media. They have developed a stress-strain relation coupling the 
macroscopic and microscopic properties with memory. They also did not consider the polymeric 
fluid properties in porous media. However, the conventional practice is to consider the Newtonian 
fluid flow equations as ideal models for making predictions. Even non-Newtonian models focus on 
what is immediately present and tangible in regard to fluid properties. This paper argues that the 
intangible dimension of time and other fluid and media properties can be coupled to demonstrate 
the more complex behavior of shear thinning fluids in porous media. 
 
In practical macroscopic point of view, several authors [29, 43, 44] have reported that the 
apparent viscosity of polymer solutions within various porous media are usually bead packs, sand 
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packs and outcrop sandstone rocks. A detail overview of the earlier works have been presented 
by the researchers [18, 19, 20, 26, 27] and summarized in the earlier section.  Referring to them, 
the apparent viscosity for the polymeric solutions can be defined from Darcy’s law as follows: 
 
 

       
   

 
 
  

 
                                                             (3) 

 

For polymeric solutions, the apparent viscosity      is a function of flow rate through the porous 

medium [29, 40], and the flow rate is further correlated with     , the in situ shear rate within the 

porous medium, which is expressed as Eq. (1). In this simple equation, however, it is not obvious 
why        should vary linearly with the Darcy velocity, due to the complexity of the internal flows 

within the porous medium. The central theoretical problem of in situ rheology is therefore to 
establish clearly how the local (microscopic or pore-scale) rheology in a single pore relates to the 
aggregated or average bulk property as expressed by the apparent viscosity discussed above. 
Hence it is the effect of this local behavior, mediated through the interconnected network of pores 
in the porous medium to the macroscopic scale that must be found. Therefore it is necessary to 
clarify how the local (microscopic or pore-scale) rheology relates to the average bulk rheology as 
expressed by the apparent viscosity. Some researchers [20, 27, 45] considered the local bulk 
rheology (e.g. Carreau model) for shear-thinning fluids and calculate the “upscaled” macroscopic 
apparent viscosity using a connected 2D network of cylindrical capillaries as an idealized porous 
media. Using these concept, Perrin et al. [29] showed that the average in situ shear rate in the 

network (which corresponds to     ) actually varied linearly with the flow velocity,  . We know 

that the complexity of the internal flows within the porous media leads to a non-linear behavior of 
shear rate with Darcy velocity [16, 17, 30]. 
 
To investigate the local phenomenology, we may introduce memory effect for the fluid complex 
rheological properties. In this regard, fluid precipitation of minerals and temperature may be 
considered. However, some fluids carry solid particles that may impede some of the pores. The 
precipitation and obstruction may reduce the pore size and thus decrease the permeability in 
time. Some fluid may have chemically reacting behavior with the medium which may enlarge the 
pore size. These phenomena let the researcher to think about the local mineralization and 
permeability changes which lead for a spatially variable pattern. Therefore, if permeability 
diminishes with time, the effect of fluid pressure at the boundary on the flow of fluid through the 
medium is delayed. The information of this effect over time in the fluid flow will continue when the 
medium (i.e. flowing fluid) holds a memory. 
 
Auriault and Boutin [46] pointed out that the macroscopic description is sensitive to the ratios 
between the different scales of the characteristic lengths of the pores, the fractures, and the 
macroscopic medium, respectively. They described the memory effect can exhibit in case of the 
ratio the characteristic lengths of the pores and the macroscopic medium. This memory is due to 
the seepage through the micropores. Under transient excitations, they concluded that the 
harmonic quasi-static excitations, with complex and frequency dependent effective coefficients in 
porous medium therefore display memory effects. They referred to this mechanism as the 
'viscoelastic property' of fluid saturated, cracked solids. Savins [43, 44] also acknowledged the 
effects of memory as a 'viscoelastic effects'. He mentioned the previous researchers who worked 
on the phenomenological theories of incompressible memory fluids.  
 
Hossain et al. [16] initiated a rate equation model to study the flow of these fluids with memory. 
Caputo [14-15] modified Darcy’s law by introducing the memory represented by a derivative of 
fractional order of differentiation which simulates the effect of a decrease of the permeability in 
time. If the fluid flows in x-direction, the mass flow rate equation may be written as (14-17, 30];  
 



M. Enamul Hossain, L. Lie & M. Rafiqul Islam 

International Journal of Engineering (IJE), Volume (3): Issue (5), December 2009                                463 

             
  

   
 
  

  
                                           (4) 

where   

 
  

   
         

 

       
          
 

 
 
 

  
          ,  with           

 
It is clear that the memory introduced in Eq. (4) to describe the flow of the fluid implies the use of 
two parameters, namely   and  . These two parameters are used instead of the permeability and 
viscosity in conventional Darcy’s law. In Eq. (4), pressure gradient is negative and this has a 
decreasing slop [16-17]. Therefore, Eq. (4) can be written for fluid velocity which is related to 
pressure gradient as;  
 

        
  

   
 
  

  
                                                     (5) 

 
where  
 

        
  

   
         

 

       
          
 

 
 
 

  
          , with           

 
Eq. (5) may be written as, 
 

   
 

       
          
 

 
 
   

    
                      (6) 

 
Substituting Eq. (6) in Eq. (1)  
 

       
   

    
 
 

       
          
 

 
 
   

    
                           (7)                                                                                                                           

  
The above mathematical model provides the effects of the polymer fluid and formation properties 
in one dimensional fluid flow with memory and this model may be extended to a more general 
case of 3-Dimensional flow for a heterogeneous and anisotropic formation. It should be 
mentioned here that the first part of the Eq. (7) is the apparent core properties; second part is the 
effects of fluid memory with time and the pressure gradient. The second part is in a form of 
convolution integral that shows the effect of the fluid memory during the flow process. This 

integral has two variable functions of           and           where the first one is a 

continuous changing function and second one is a fixed function. This means that           is 

an overlapping function on the other function,          in the mathematical point of view. 

These two functions depend on the space, time, pressure, and a dummy variable. 

 
Several workers [36, 47] used almost same expression to represent the apparent shear rate as 
an effective shear. Moreover, Savins [43, 44] refers this problem as “scale up”. Sorbie et al. [47] 
review some of the alternative approaches to this problem. In this study, we ignore this shifting or 
scale up problems due to a constant factor involvement. This will not affect the big picture of the 
effective or apparent viscosity model. Therefore, to analyze the memory effect in the shear-
thinning fluid viscosity, the model presented in Eq. (7) is applied in Eq. (2). Substituting Eq. (7) in 
Eq. (2)  
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                        (8)     

4. NUMERICAL SIMULATION 

To solve the convolution integral of Eqs. (7) and (8), a reservoir of length (L = 5000.0 m), width 
(         ) and height, (        ) have been considered. The porosity and permeability of 

the reservoir are 30% and                            (10 md to 135 md), respectively. The 
reservoir is completely sealed and produces at a constant rate where the initial pressure is 

               
(4000 psia). The fluid is assumed to be Xanthan gum, with the properties 

                    ,             . The initial production rate is         

           and the initial fluid velocity in the formation is                  . The fractional 

order of differentiation,                      and               have also been 

considered. The computations are carried out for               . The same input data has 
been used by Hossain et al. [16-17, 30] except the fluid properties. In solving this convolution 
integral with memory, trapezoidal method is used. All computation is carried out by Matlab 6.5. 
 

5. RESULTS AND DISCUSSION 

The results of the in situ or apparent shear rate and effective viscosity based on the model 
presented in Eqs. (7) and (8) can be obtained by solving these equations. These models are 
solved numerically. In this paper, we focused on the dependence of the shear rate on porosity, 
permeability, shape factor and flow velocity which is related to the effect of fluid memory and 
finding a numerical description for a sample reservoir.  
 

To solve the Eq. (7),           
 
and          are used in numerical computation [16, 

17, 20, 22, 27, 36, 45, 47]. In solving the proposed modified Carreau-Yasuda model presented in 

Eq. (8), the Xanthan gum fluid viscosities at low      and high shear rate       are considered 

as 13.2 pa-s and 0.00212 pa-s respectively [24]. The power-law index, n and the time constant,   
are taken as 0.689 and 60.7 s respectively [24]. Here, the diminishing permeability in the pore 
space and throat of the reservoir formation are varied within the range as mentioned before to 
considered fluid memory of the flowing shear thinning fluid. 

 
 5.1 Shear rate dependency on different parameters 

 

 5.1.1 Shear rate dependency on permeability for different   values 
Figure 1 presents the variation of in situ or apparent shear rate with permeability for different   

values. These are the nonlinear profiles for different   values. These curves show that as 
permeability increases, the in-situ shear rate increases slightly for a very tight reservoir. This 
trend reduces when   value increases. This indicates that when memory effect is dominant in a 
tight reservoir, it tries to restrict the fluid movement. However, as permeability increases, shear 
rate start to decrease up to a certain range of permeability values. The range is 45 mD – 55 mD. 

The fixed value depends on    value. After this transient permeability level, shear rate increases 
with the increase of permeability value. The whole characteristics and trend of the curves are 

same for all the   values. The memory of fluid has a great influence on in situ shear rate. For the 

same permeability value, the in situ shear rate decreases with the increase of   value at a range 

of up to 0.4 and after that it increases with the increase of   value. This behavior is a special 
characteristic of the fluid memory [16-17]. The magnitudes of the in situ shear rate variation are 

more dominant when fluid memory (  value) increases. Moreover, we already focused earlier 

that the variable permeability is one of the cause of fluid memory. The initial decrease and then 
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increase of shear rate variation with permeability indicates that fluid take some time or delay to 
move after feeling pressure or force to move. This delaying of fluid movement is nothing but a 
microscopic property of the viscoelastic fluid. This phenomenon is defined by fluid memory [14-
17, 30].  Therefore the fluid movement can be characterized by the memory effects. 

 

 

 

 5.1.2 Shear rate dependency on shape factor for different permeability 
The available literature [20, 22, 24, 27, 36] reported that the value of     lies in the range of 1.0 – 
14.1. This variation depends on the type of porous media. This may vary from 1.0 in regular 
unconsolidated packs up to 10.0 in consolidated sandstone [22]. The experimental results show 

that     is in the range of 1.1 – 2.5 for ballotini beads and 1.9 – 9.1 for sandstone cores [20]. 

Therefore, to analyze the dependency of in situ shear rate with    , it has been considered the 

value of     in the range of 1.0 – 15.0. 

 

Figure 2 shows the variation of apparent shear rate with shape factor,     for 

                         at a   value of 0.2. The in situ shear rate verses shape factor 

cure shows a linear relation that has an increasing trend with the increase of shape factor. The 
affects of shape factor on apparent shear rate is more sensitive at higher permeability where the 

range of variation of      
is more. On the other hand, it is less sensitive at lower permeability.  

 
FIGURE 1:  Variation of apparent shear rate with permeability of the porous media for              

 

 5.1.3 Shear rate dependency on shape factor for different porosity 
Figure 3 shows the variation of apparent shear rate with shape factor,     for different porosity of 

the formation at a   value of 0.2 in a semi log plotting. The present plotting trend of the cure 
shows a non-linear type however this is a complete linear plotting in a Cartesian graph paper.  
For a tight reservoir (low porosity), shear rate is much higher comparing with medium or highly 
porous media for the same shape factor. Shear rate increases with the increase of shape factor 
for all porosity. 
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 5.1.4 Shear rate dependency on flow velocity for different   values 
To investigate the effects of flow rate on shear rate with memory, porosity and permeability are 

considered as 30% and 70 mD respectively. Flow velocity, u is varied in the range of      
                        . 

 

 
FIGURE 2: Variation of apparent shear rate with shape factor for                   

 
Figures 4-7 present the variation of in situ shear rate with flow velocity for different   values. 
Shear rate decreases with the increase of flow rate at low velocity range. There is slide faster 

decrease in the range of velocity increment of                             . After this velocity 
range, shear rate increases faster with the increase of flow velocity which is an asymptotic 

variation. This trend continues until the velocity of                and again it starts to reduce 
after this velocity. The relationship between in situ shear rate and flow rate is nonlinear trend 
whereas Perrin et al. [29] showed that the average in situ shear rate varied linearly with the flow 
velocity. This non-linearity is only due to the memory effects on fluid flow behavior. Moreover, the 

shape and trend of the cures are similar for all the   values except the magnitude of the shear 

rate values which also leads to the existence of fluid memory on shear-thinning fluid. Here, shear 
rate increases with the increase of   values.   
 
Figure 8 presents the conventional in situ shear rate model (Eq. (1)) available in the literature. 

The nonlinear trend of the      curves (Figs. 4-7) are due to the memory dependency of flowing 

fluid which did not captured by the Perrin et al. [29] and other researchers. So, it can be 
concluded that fluid memory has an influence on the shear thinning fluid and microscopic 
rheological behavior of the fluid may be characterized by this memory effect.  
 

5.2 Comparison of proposed model with the conventional model based on flow 

velocity  
Figure 9 presents a semi log plotting for the variation of in situ shear rate with flow velocity for 
different   values to compare the proposed model and the conventional model. Here porosity and 
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permeability are considered as 30% and 70 mD respectively for both the model. It is clear that 
memory has a potential influence on the shear thinning fluid which may be characterized by the 

microscopic rheological property of the media and fluid. If we consider the memory effect,      

increases with the increase of   value. This indicates that at a very low   value, the memory 

effect is not very significant at higher flow rate.  
 

 
FIGURE 3: Variation of apparent shear rate with shape factor for              
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FIGURE 4: Variation of apparent shear rate with flow velocity for       

 

 
 

FIGURE 5: Variation of apparent shear rate with flow velocity for       

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
-4

10
-1

10
0

10
1

10
2

10
3

10
4

Flow  velocity (u
i
), ms

-1

A
pp

ar
en

t s
he

ar
 r

at
e 

(
. p

m
 )

, s
-1

 = 0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
-4

10
0

10
1

10
2

10
3

10
4

10
5

Flow  velocity (u
i
), ms

-1

A
pp

ar
en

t s
he

ar
 r

at
e 

(
. p

m
 )

, s
-1

 = 0.4



M. Enamul Hossain, L. Lie & M. Rafiqul Islam 

International Journal of Engineering (IJE), Volume (3): Issue (5), December 2009                                469 

 

 
 

FIGURE 6: Variation of apparent shear rate with flow velocity for       
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FIGURE 7: Variation of apparent shear rate with flow velocity for       
 

 
 

FIGURE 8: Variation of shear rate with flow velocity for the model presented in Eq. (1). 
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FIGURE 9: Variation of apparent shear rate with flow velocity for comparing the proposed model (Eq. (6)) 
and the model presented in (Eq. (1)).  

 
 

5.3 Effective viscosity dependency on shear rate for different   values 
Figures 10 – 13 present separately the variation of effective viscosity with shear rate in a log-log 
plotting for different   values. The trend and shape of the curves generated by the proposed 
model (Eq. (8)) are almost same except range of data towards upper-lower level and side by side 
in the direction of viscosity and shear rate respectively. It is interesting to note that the original 
shape and trend of the Carreau-Yasuda model (Eq. (2)) [20, 27, 36] is similar to that of the 
proposed modified model except the range and shifting of the data variation. This shifting may be 
characterized by adjusting the apparent and effective rheological properties or by “scaled up” as 

stated by Savins [43-44]. The data range and shifting range are different for different   values 

(Figs. 10 – 13). As   increases, the range of data expands in both for viscosity and shear rate 
direction. This simply means that the zero shear region, transition region, power law region and 
infinite shear region as stated by Lopez [27, 35] for a viscosity-shear rate cure are more visible as 
  increases. The ranges of these different regions are dependent fluid types used in polymer 
flooding. Therefore it may be concluded that the viscosity-shear rate curve regions are dependent 

on fluid memory and the regions are more dominant at higher fluid memory e.g. higher   value. 

The cures show that the viscosity variation is low at low shear rate and it turns to reduce with the 
increase of shear rate. As   increases, viscosity reduction turns to reduce with the increase of 
shear rate. This is the behavior of a viscoelastic fluid which is captured by fluid memory. 
Therefore, it may be concluded that the shear-thinning fluid has the memory when it tries to start 
move in porous media.   
 
 

 
FIGURE 10: Variation of Effective viscosity with apparent shear rate for       
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FIGURE 11: Variation of Effective viscosity with apparent shear rate for       
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FIGURE 12: Variation of Effective viscosity with apparent shear rate for       

 
 

FIGURE 13: Variation of Effective viscosity with apparent shear rate for       

 
 
 
 
 
 

Figure 14 shows the variation of effective viscosity verses shear rate for different   values in a 
log-log plotting. In this figure, it is clearer how the fluid memory plays a role to viscosity-shear rate 
relation. All data generated for different   values are overlapped. However the ranges of data 

vary with the increase of   value which is already explained earlier.   
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FIGURE 14: Variation of Effective viscosity with apparent shear rate for              

 

 5.4 Comparison of proposed viscosity model with Carreau-Yasuda model  
Figure 15 shows the variation of viscosity verses shear rate of the proposed model (Eq. (8)) for 
different   values to compare the Carreau-Yasuda model (Eq. (2)) in a log-log plotting.  All the 
data generated by solving these two models are overlapped with each other except the range of 
data variation. For the same conditions and input data, the proposed model gives the more 
information than Carreau-Yasuda model. The proposed model provides a wider range of data in 
both zero shear and infinite shear region. The existence of Carreau-Yasuda model is only in 

power-law region if we compare it with proposed model. It is also noted that all the   values data 

lie in the transition and power-law region which are very difficult to capture and explain. If   
increases, the data range extend to reach the other two regions, zero shear and infinite shear. 
Therefore it may be concluded that the proposed model is more appealing and represent able in 
defining the rheological properties of the shear-thinning fluid flow in porous media. 
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FIGURE 15: Comparison of proposed viscosity model with Carreau-Yasuda model. 

 

6. CONSLUSION  

In this study, two models are proposed to characterize the rheological behavior with memory for 
shear-thinning fluids. These models are validated with the available experimental data and also 
compared with currently used conventional models. The proposed models are effective in 
capturing physical phenomena.  In addition, they are coherent with existing numerical models.  
However, the proposed models capture a wider range of information, covering fluids that would 
not be tractable with existing models. The shear rate-flow velocity has a non-linear variation, 
which poses the intriguing question as to why conventional linear relationships do not hold. The 
answer lies within considerations of memory effects. In this paper, we focused on the 
dependence of the shear rate on porosity, permeability, shape factor and flow velocity which is 
related to the effect of fluid memory. Also considered is the viscosity dependency on shear rate. 
This study concludes that fluid memory has a strong influence on shear-thinning fluid flow 
behavior during the propagation of a shear-thinning fluid in porous media (such as polymer 
flooding in the EOR process). 
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8. NOMENCLATURE 

  = parameter in Carreau–Yasuda model, dimensionless  

  = cross sectional area of rock perpendicular to the flow of flowing fluid,    

  = initial reservoir permeability,    

  = length of a capillary or a core,   
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  = power-law exponent for Carreau–Yasuda model, dimensionless 

  = pressure of the system,      

    = differential pressure along a core or capillary of length  ,      

  =    = initial volumetric flow rate,          

    = fluid mass flow rate per unit area in x-direction,          

   = time,    
  = Darcy velocity      ),      

    = fluid velocity in porous media in the direction of   axis,     

   = fractional order of differentiation, dimensionless 

    = shape factor which is medium-dependent 

     = apparent shear rate within the porous medium,     

    = density at a reference pressure    ,       

   = porosity of fluid media,        

   = fluid dynamic viscosity,      

    = fluid dynamic viscosity at zero shear rate,      

    = fluid dynamic viscosity at infinite shear rate,      

   = time constant in Carreau–Yasuda model,   

  = ratio of the pseudopermeability of the medium with memory to fluid viscosity,               

  = a dummy variable for time i.e. real part in the plane of the integral,   
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