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ABSTRACT

Pattern geometries have been used extensively in Reservoir Engineering, to evaluate sweep efficiency and various
improved hydrocarbon recovery processes.

A curvilinear grid is generaily preferred to avoid the grid orientation problems associated with rectangular systems
as well as to handle anisotropy. ) ;

The method presented here caiculates a curvilinear grid for a one-cight (1/8) of a five-spot pattern. The symmetry of
pattern geometry is used to determine the remaining coordinates. . -

The conversion of dimensionless coordinates to actual ones is based on L, the half length of the five-spot pattern.
The curvilinear gird points discussed in this paper are located at the intersection of corresponding streamlines and iso-
potentials.

The point of intersection is determined numerically. The Newton-Raphson technique is used to solve the system of
equations describing the streamline and iso-potential functions. The spacing between iso-potential lines may be equal
or logarithmic spacing.

Introduction

The problem of gridding is widely discussed in the open literature. Aziz [1] gave an overview
which may be considered as the state of the art at the time of its publication. A more recent
statement on girding; albeit a brief one, may be found in Watts paper [2]. Sharpe 3] in a recent
publication dealt with the general gridding systems by analogy with radial elliptical and other
grids. Other authors [4,5] have recently presented gridding methods based on streamlines that
can be used for upscaling or basic reservoir simulation. The present work discusses specifically
a special purpose curvilinear grid system generations for pattern injection.

The program presented in this paper calculates (X,y) coordinates of grid points in a curvilinear
system. These grid points are the intersection of (M+1) streamlines with (N+1) iso-potential lines. -
Morel-Seytoux’s [6] equations describing the streamline functions and the equipotential functions
at any point are solved using Newton-Raphson technique to determine their point of intersection.
The detailed formulations to calculate these points for 1/8 of a 5-spot pattern are presented in the

following paragraphs.
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Formulation Of The Problem

A Fortran program has been developed to determine curvilinear grid systems for a pattern *
geometry. More specifically for a one-eight (1/8) of a five-spot pattern.

Given a set of streamlines (y 's) and iso-potentials (¢ 's), grid blocks are determined by the
intersection of the streamlines and iso-potentials as shown in Figure 8 of Reference [6].

The problem here is to find the x and y coordinates of each intersection away from discontinuities.
For a repeated five-spot pattern, the real iso-potential function ¢ (x,y). and the streamlines function
V (x,y) are reported by Morel-Seytoux [6] as : '

o 1 [1-CnPx Onfy

0 r‘"(“m——miy— ®
vy = L . Sny Dny Cnx

YY) = o (Snx Dnx Cny @)

Figure 1 is based on Figure 8 from Reference [6]. The distance AB indicated in Figure 1 is taken

to represent r,, or wellbore radius. The grid system is started at point B to avoid the discontinuity

at A. The iso-potential along arc BC is given by Equation (1). The streamline function of each
- streamtube cutting arc BC can be determined from Egquation (2).

REPEATCO 3-3POT

[ c u o u «“ G

Figure 1. Pattern Geometry Showing Streamlines and Isopotentials
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If the x, y coordinates of points Bl and B2, from figure 1, are known then ¢ (x,y) and y (x,y)
can be calculated from Equations (1) and (2), respectively. The problem here is to find the X, ¥
coordinates of the intersection point B3, that is given B1(x1, y1) and B2(x2. y2) find
B3(x3, ¥3), knowing that ¢ (x1, y1) = ¢ (x3, y3) and y (x2, y2) = y (x3, y3).

In general, if i is the i’th streamline or streamtube and j the j’th iso-potential line, the coordinates
x and v of the intersection between i and j can be determined by solving the following system of
equations :

v (-1, j) = v (i)

o3, j-1) = y(i)j)
This system of equations may be solved using the Newton-Raphson technique.

Mathematical Model

Equations (1) and (2) are rewritten such that :
Fi(x, y) = et= % [Cx_xzx + Cn?%] + Cn? Cn%-1 3)
F,(x,y) = tan [2n y(x,y)] Snx Dnx Cny - Sny Dny Cnx 4)

Let K, = e*®* Y and K, = tan [21 vy (x, y)] for convenienc:.
Let R(x) be the residual vector where
X = (xy) and R(X) = (F\(x,y), F, (x,y))
The solution to R(X) such that :
RX) = 0 (5)
Is obtained in two steps :
R(X¥)
RC)

1) Xkd»l - Xk -

Here XX is the value of X at the k’th iteration level and R’(X) is the Jacobian Matrix that is :

k
aR(X¥) -

R'(Xk) = axk

R(x*)

R (X“) @)

Let8X = X** - X* = -

or

R(X¥) = 8XR'(XY) ®)
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2) The second step of this procedure is to solve the linear system of equations depicted by
Equation (8) :

IFy) IFEY)
X ay Ax ‘ "Fl(xs y)
- = )
oF(xy) dRhKXY)
ox ay Ay -FZ x, Y)
The analytical derivatives of F,(x, y) and F,(x, y) with respect to x and y are given below :
éf-‘g—':ﬂ-)- =-2(K, + Cn?y) Cnx Snx Dnx (10)
Eg—’}-’-)- = -—2(K, + Cn?x) Cny Sny Dny (11
Q-F—"é-:—ﬁ =K, Cny Cnx (Dn’x - K, Sn’x) (12)
aF‘.’. (X, Y) ) { 2 ' 2
% = K, Snx Dnx Sny Dny + Cny Cnx (Kz Sn‘y - Dn‘y) 13)
From Equation (9), we have :
oF; (x,Y) oF (%, y)
e Ax+ = Ay = -R(xy) : (14)
dF, (X, y) doF, (x,y)
—alg ——’-ay—— 4y = -F,(x,y) ; (15)
After multiplying Equation (14) by ingx_’i'll and Equation (15) by QF%’-’Q and simplifying

one can solve for Ay first as follows :

JF, (3 oF.
—'—g—:—’y—)-Fz(x,y)-—-%;x’—}Q-Fl(x,y)]

Ay =
Y= ToR(vy) R(y) _dF(%y) dREY)
x oy dy = o

Ax is then computed from either Equation (14) or (15). For example :







