EXAMPLE CASING DESIGN

A 10 ³⁄₄ inch surface casing is to be set at 4500 ft with 10.6 ppg mud in the hoe. Design the casing to achieve minimum cost.

- (a) Do not include any section shorter than 1000 ft.
- (b) Ignore buoyancy effect on tension.
- (c) Ignore effect of tension on collapse.

Burst Design

Assume an injection pressure that is equivalent to 0.4 ppg greater than the fracture gradient and a safety factor of 1.15. Assume the fracture gradient at 4500f is 0.75 psi/ft. Assume the casing is filled with formation gas which has a gradient of -0.1 psi/ft.

Assume the external (backup pressure) outside the casing that resists burst is the normal pore pressure which has a gradient of 0.45 psi/ft.

Collapse Design

Assume a lost circulation zone below the shoe which has zero pore pressure. Assume a safety factor of (1.1).

Tension Design

Assume maximum tension is due to the weight of the casing. Assume a safety factor of 1.6.

SOLUTION

Start with burst.

Burst load at the shoe

 P_b = Fracture pressure + incremental injection pressure

- external pressure

$$= 0.75 \left(\frac{psi}{ft}\right) x \ 4500(ft) \\ + (0.052) x (0.4 \ ppg) x (4500 \ ft) \\ - 0.45 (psi/ft) x \ 4500(ft) = \\ = 3375 + 93.6 - 2025 = 1444 \ psi$$

Taking SF into consideration = 1444 x 1.15 = 1661 psi

Burst load at surface

 $P_b = 1444 - 0.1(psi/ft)x4500 - 0 = 994psi$

Taking SF into consideration = 994x1.15 = 1143 psi

Collapse Load

 P_{b} at surface = 0 - 0 = 0 psi

 P_c at shoe = 0.052 x10.6(ppg)x 4500 - 0 = 2481 psi

Taking SF into consideration = $2481 \times 1.1 = 2729$

After sketching the loads on the graph, we have the following selection:-

<u>Casing</u>	<u>Depth</u>	Length
H-40, 32.7#	0-1350	1350
J-55, 40.5#	1350-2600	1250
C-75, 51#	2600-4500	1900

Tension Design

WT = 32.7 x 1350 + 40.5 x (2600 - 1350)+ 51 x (4500 - 2600)= 44145 + 50625 + 96900 $=191670 \ lb$

Pipe body Yield Strength for H-40, 32.75 # from table 7.6 (page 320) is 367,000 lb

$$SF = \frac{367000}{191670} = 1.91 \rangle 1.6$$

Therefore the selected casing grade satisfies the design criteria.

Selection of Couplings

Start with short round coupling (STC):-

<u>Casing</u>	Depth	Coupling Type	Strength (1000)	<u>SF</u>
H-40, 32.7 #	1350	STC	205	1.07
J-55, 40.5#	2600	STC	420	
C-75, 51#	4500	STC	756	

For H-40, 32.7# STC joint strength = 205000 lb from table

$$SF = \frac{205000}{191670} = 1.07 \ \langle \ 1.6$$

Next select H-40, 40.5 #

 $Wt = 40.5 x 1350 = 54675 \ lb$

 $total Wt = 54676 + 50625 + 96900 = 202200 \ lb$

$$SF = \frac{314000}{202200} = 1.55 \ \langle \ 1.6$$

 $\therefore H - 40,40.5 \#$ is not suitable.

Next select J-55, 40.5#, joint strength from table = 420,000

 $Wt = 40.5 x 1350 = 54675 \ lb$

Total wt = 202200

$$SF = \frac{420,000}{202200} = 2.08 \ \rangle \ 1.6$$

 \therefore We select at the top section Casing type J-55, 40.5#, STC.

Final Selection

<u>Casing</u>	<u>Depth</u>	Coupling
J-55, 405#	2600	STC
C-75, 51#	4500	STC