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Data envelopment analysis (DEA) has become an increasingly popular method to measure perfor- 
mance for service firms with multiple sites. DEA is superior to many traditional methods for firms that 
have multiple goals. The promise of DEA is that the complex, multiobjective problem of performance 
measurement can be reduced to a single number. Unfortunately, the practice of DEA often belies the 
promise. Misconceptions concerning the purpose and implementation of DEA can cause DEA appli- 
cations to be less than successful. Here, the technique is explained, and a guide to the implementation 
of DEA is proposed, utilizing DEA studies of retail bank branches. 
(SERVICE OPERATIONS; DATA ENVELOPMENT ANALYSIS; PRODUCTIVITY) 

1. Introduction 

One distinguishing characteristic of service versus manufacturing firms is the number of 
physical sites that constitute a single firm. Multinational manufacturing giants in the largest 
manufacturing enterprises, such as the auto, steel, chemical, or paper industries, may have 
scores, perhaps a hundred or so manufacturing/assembly plants in a single firm. In contrast, 
the leaders in many service industries routinely have multiple hundreds or thousands of brick 
and mortar sites where services are created. The largest restaurant chain has over 20,000 
sites; the largest banks and retail stores have over 3,000. The leaders in lesser known 
industries, such as repair services, cleaning services, and personnel services, have multiple 
thousands of sites. 

The sheer volume and associated geographic dispersion of sites creates managerial 
difficulties. Unlike many centralized back-offices or large manufacturing plants, it is no 
longer possible to “manage by walking around.” Managerial “gut feel” and subjective 
performance measures cease to be useful when the evaluator is rarely physically present at 
the unit being evaluated. 

For these geographically disperse units, many of the seemingly objective performance mea- 
sures used by many firms also have severe drawbacks (Achabal, Heineke, and McIntyre 1984). 
Accounting profit, or the associated unit ROA or ROE, is a common output measure. However, 
individual unit profits can be highly dependent on decisions that are uncontrollable by the unit, 
such as pricing, product mix, and trade area competitive and economic factors (Kamakura, 
Lenartowicz, and Ratchfrordm 1996). Further, other outputs are also typically important, such as 
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market share, customer service, cost containment, or gross sales growth, among many others 
(Good 1984). Myopic focus on unit profitability can induce unwanted behavior. It can be a simple 
matter for a rarely seen, remote service unit to “brand shirk’ by having fewer personnel relative 
to other units of the firm, which can increase accounting profit of that unit but lower customer 
service levels, which could affect future system-wide sales. 

In this paper we focus on the retail banking industry as an example service industry with 
such problems. There is considerable debate in the banking practitioner literature as to both 
how to construct bank branch profitability statements and their worth in evaluating perfor- 
mance, with many practitioners disregarding a branch ROE or ROA as meaningless (Schultz and 
Chelst 1994; Pihl and Whitmyer 1994; Thygerson 199 1; Witzeling 199 1). Even if accounting 
profit could be accurately measured, branches within a given banking system have differing 
missions that would preclude considering profit alone (Sherman and Ladino 1995; Oral, 
Kettani, and Yolalan 1992). 

Even if the all the differing performance measures accurately assess the performance of a 
unit, distortions can arise in implementing those measures. Outputs are often assessed in one 
of three ways: comparing to unit goals, comparing with results from a prior time period, or 
by a gross comparison of outputs between units. All of these methods have serious flaws. 
Unit goals are frequently set by negotiation. Comparing results to negotiated goals can 
reward the good goal negotiators, rather than the good performers. Basing performance 
evaluation on prior time period results, for example, a goal of “last year plus lo%,” 
encourages “sandbagging,” or purposely not overly exceeding a goal in the current time 
period so that the next time period goal will not be as strenuous (noted empirically by Love11 
and Pastor 1997, p. 292). If comparisons between units are made merely on output levels 
alone, managers of units with superior locations will appear to be superior, regardless of 
actual ability. 

Another problem can arise in combining many disparate measures of success into an 
overall assessment. How much market share growth should be traded-off for each point of 
customer satisfaction? Should accounting profit constitute 30% or 50% of the overall 
evaluation score? 

Data envelopment analysis (DEA) is a technique that shows promise as a possible solution 
for many of the problems listed above. Formally, DEA is a linear programming technique for 
measuring the relative efficiency of decision making units (DMUS) where each DMU has a 
multitude of desired outputs or needed inputs. In practical terms, one use of DEA is as a 
measurement tool for multisite organizations when a single overall measure, such as ac- 
counting profit, is not sufficient. DEA combines numerous relevant outputs and inputs into a 
single number that represents productivity, or “efficiency.” 

DEA is a well-known and established technique among some researchers in operations 
research. Between the inception of DEA (Charnes, Cooper, and Rhodes 1978) and 1992, over 
470 articles were written concerning DEA (Seiford 1994), and the pace appears to have 
accelerated since that time. Yet, it is still sufficiently esoteric that it appears in few textbooks, 
and tutorials explaining the basics of the technique are still deemed necessary at academic 
conferences (Seiford and Cooper 1997). 

Here, we do not attempt to extend the methodology of DEA. Rather, a guide for practice is 
intended. We contend that DEA can be a highly useful tool, but that it is context sensitive. That 
is, the rules for model choice, variable choice, and results interpretation change depending 
upon managerial purpose. The purpose here is to generate a number of rules for practice that 
are often misunderstood or misapplied in applications found in the literature. 

We proceed as follows. The next section contains an introduction to the idea of DEA. This 
is followed by discussions of appropriate DEA formulations with respect to multiple corporate 
strategic goals and dissimilar unit scale. Then, the relationship of the specific managerial goal 
of a DEA analysis to results analysis and variable choice is discussed. 
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2. The Concept of DEA 

In general, the conditions required to use DEA are that a number of DMUS are attempting to 
accomplish roughly the same goals and that there is some “goal diversity.” That is, there is 
more than one desirable goal and the goals cannot be compared in a straightforward fashion. 
In a technical sense, DEA measures only efficiency or productivity. DEA was developed for use 
in the evaluation of nonprofit sector firms, but the use of DEA has been expanded in practice. 
DEA has been used in the for-profit sector to identify superior/inferior sites, to evaluate 
managerial performance, to allocate resources among sites, or to diagnose the determinants 
of successful/unsuccessful sites (Epstein and Henderson 1989). 

Early applications of DEA centered on multiple-site nonprofit organizations because of the 
multiple goals and goal diversity that exist in such environments. For example, the goals of 
an elementary school may include disparate elements such as student self-esteem in addition 
to reading and arithmetic ability (Charnes, Cooper, and Rhodes 1981). As discussed earlier, 
goal diversity also applies in the for-profit sector. Accordingly, DEA has been applied to 
for-profit activities such as nursing homes (Fizel and Nunnikhoven 1993), restaurants 
(Banker and Morey 1993), and insurance agencies (Mahajan 1991). 

Possibly the most prolific for-profit sector application of DEA has been in retail banking 
branch networks (hereafter referred to as “banking”). There have been at least 18 bank branch 
DEA studies in the academic literature (Table l), and there is some evidence that banking 
practitioners have started utilizing DEA as a routine performance measurement tool (Iida 
1991). These studies have used widely varying methods in their attempts to measure many 
different aspects of branch performance. Because of the variety of methods and number of 
studies concentrating on the same industry, subsequent examples will focus on banking. 

At heart, DEA is about measuring the productivity of a unit, where productivity is defined 
as the ratio of outputs produced to inputs consumed. Measuring productivity is often a simple 
matter for many individual jobs, but can become complex for groups with multiple goals. For 
example, if bank teller A handles 200 transactions per day, whereas teller B handles 250 
transactions, teller B is more productive, ceteris paribus. If those tellers handle different types 
of transactions, the raw data given is no longer sufficient. The transactions must be weighted 
according to the agreed standard time required per handling. If teller A’s 200 transactions 
were judged to require 8 standard hours, whereas teller B’s 250 transactions required only 7.5 
standard hours, teller A would be considered more productive. 

On a Decision Making Unit (DMU) level (where a DMU is typically a distinct physical site), 
however, evaluating productivity is not always as simple because of the multiple strategic 
directives that cannot be combined in a single measure. 

As an example of how DEA works, assume bank branches are to be evaluated on only two 
criteria: loans and deposits. Table 2 shows five potential levels of branch performance, which 
are reproduced graphically on Figure 1. Table 2 lists identical “inputs” of 100 for each branch 
and separate outputs of loans and deposits. Inputs can be construed, for example, as personnel 
or total expenses. Branches A, C, and E form the “efficient frontier” and have a correspond- 
ing efficiency rating of 1. That is, no other branches outperform them on both measures. 
Branch B is clearly not performing well, as it is dominated by branch C; that is, branch C 
performs better on both dimensions than branch B. The case of branch D, however, is less 
clear. No other branch dominates branch D on both dimensions. The strength of DEA lies in 
its ability to assess nondominated branches such as branch D. 

For all DMUS not on the efficient frontier, DEA creates a hypothetical comparison unit (HCU) 

that is a linear combination of efficient units. In this case, the HCU~ is composed of branches 
C and E and would represent a point of (25, 25) on Figure 1. DEA attempts to consider each 
DMU in the most positive manner possible: branch D is compared to HCU~, which is highly 
similar to itself. The efficiency measure can be interpreted geometrically: the distance 
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TABLE 1 

Categorization c$ Bank Branch DEA Studies 

Reference 

Efficiency 
Returns-to- Spurious Efficiency Units Ranked by Score 

Managerial Goal” Scaleb Potential’ Efficiency Scored Usedd 

Al-Faraj, Alidi, and Bu- Evaluation 
Bshait (1993) 

Athanassopoulos (1997) Resource allocation 

Drake and Howcroft 
(1994) 

Goikas (1991) 

Resource allocation 

Resource allocation 

Kamakura, Lenartowicz, Evaluation 
and Ratchfrordm (1996) 

Love11 and Pastor (1997) Evaluation 

Oral, Kettani, and Yolalan Resource allocation 
(1992) 

Oral and Yolalan (1990) Resource allocation 

Parkan (1987) 
Parkan (1994) 
Pastor ( 1994) 
Schaffnit, Rosen, and 

Paradi (1997) 
Sherman (1984) 
Sherman and Gold (1985) 

Sherman and Ladino 
(1995) 

Soteriou and Stavinides 
(1997) 

Vassiloglou and Goikas 
(1990) 

Zenios, Zenios, 
Agathocleous, Soteriou 
(1995) 

None 
None 
None 
Classification: 

resource allocation 
Classification 
Resource allocation: 

evaluation 
Resource allocation: 

classification 
Resource allocation 

Classification 

Resource allocation 

Constant Yes 

Variable Partial: multiple Yes, as one of 
models used many inputs 

Variable Yes Yes 

Variable No: homogeneous 
branch set used 

Variable Partial: 
homogeneous 
branch sets used 

Variable Yes 

Constant 

Constant 

Constant 
Both 
Variable 
Variable 

Constant 
Constant 

Partial: multiple 
models used 

Partial: multiple 
models used 

Yes 
Yes 
Yes 
Partial: multiple 

models used 
Yes 
Yes 

Constant Yes 

Not stated No: homogeneous 
branch set used 

Constant Yes 

Constant Partial: 
homogeneous 
branch sets used 

Yes 

Yes 

General ranking 
only 

General ranking 
only 

General ranking 
only 

No 
No 
No 
General ranking 

only 
No 
No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
No 
No 
Yes 

Yes 
Yes 

Yes 

Yes 

Yes 

Yes 

a Where “none” appears, it is based on contact with the authors. 
b A variable returns-to-scale model is preferred (Section 3.2). 
’ “Yes” represents the potential for the model formulation to allow inefficient units to appear efficient (Section 

3.1). 
d Efficiency scores of <l do not represent the actual distance to the efficient frontier for all models used here 

(Section 4.1.2). 

between the origin and branch D is 92% of the distance between the origin and HCU~. The HCU 

corresponding to branch B is (18.1, 30.2), leaving branch B with an efficiency of 83%. 
Note that branch A is deemed efficient, even though it has far fewer loans than branch C 

and only minimally larger deposits. Even more extreme, a branch with $1 more in loans than 
branch A and a total of $0 deposits would also be efficient. In more advanced formulations 
of DEA, the basic DEA formulation can be altered to exclude branches such as A from the 
efficient set (Charnes, Cooper, Lewin, and Seiford 1994). 

As the number of dimensions increases, a dominant relationship, such as that between 
branches B and C, becomes less likely. Consequently, direct comparisons become less useful, 
and the need to use DEA to find HCUS increases. Further, once two dimensions is exceeded, the 
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TABLE 2 

DEA Example Problem Data 

Branch Inputs Loans Deposits Efficiency 

A 100 $10 $31 1 
B 100 15 25 0.83 
C 100 20 30 1 
D 100 23 23 0.92 
E 100 30 20 1 

intuition and graphical analysis that guide the example above fail and the data reduction 
afforded by DEA becomes more valuable. 

The original DEA model of Charnes, Cooper, and Rhodes (1978), denoted as the CCR model, 
can be posited as follows. Let the observed data be given as 

yj,, = the measured units of output j = 1, 2, . . . , m, forDMun = 1, 2,. . . , N 

and 

xin = the measured units of input i = 1, 2, . . . , r forDMUn= 1,2,...,N. 

Let E, denote the efficiency of DMU k. E, is the optimal objective function value for the 
following mathematical program: 

s.t., 

Deposits 

Ej”=I UjYj, 

-=l 
CisI ZliXin - 

forn = 1, 2,. . . , NDMUS, 

uj > 0 for j = 1, 2, . . . , m outputs, 

(1) 

(2) 

(3) 

5 
0 5 10 15 20 25 30 35 

Loans 
FIGURE 1. DEA Example Problem Graph. 
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vi > 0 fori= 1,2, . . . ,rinputs, (4) 

where uj and vi are the relative weights attached to output j and input i, respectively. 
The fractional linear program (l)-(4) can be solved as an LP by means of the following 

transformation. This transformation arbitrarily constrains the weighted sum of the inputs to 
unity and maximizes the outputs that can be obtained. 

m  

Max c ujyjk 

j=l 

(5) 

s.t., 

0 ~ -~ Ujyj, + ~ ViXin 

j=l i=l 
for n = 1, 2, . . . , N DMUS, (6) 

1 = i vi& weighted sum of inputs set to unity, (7) 
i=l 

Uj > 0 forj = 1, 2, . . . , m outputs, (8) 

vi > 0 fori= 1,2 ,..., rinputs. (9) 

Efficiency is defined as the ratio of outpuk to inputs. The objective is to find a set of 
weights that will give the DMU evaluated the highest possible efficiency, subject to the 
constraint that no DMU efficiency can exceed one. These free ranging weights are the 
mathematical expression of goal diversity and are to be contrasted with performance criteria 
that express a rigid formula for evaluation. A potential criticism of DEA is that DEA allows 
weights on outputs or inputs that are too free ranging. That is, that DEA will deem efficient 
any DMU that excels on only one of many outputs and does not have an appropriate balance 
of outputs. This potential problem can be corrected in many ways, such as the incorporation 
of maximum weights on outputs (Roll and Golany 1993) or by implementing upper and/or 
lower bounds for the ratio of the weights (Thompson, Singleton, Thrall, and Smith 1986). 

The efficiencies listed on Table 2 are the result of 5 separate iterations of (5)-(9), one for 
each of the 5 units. Naturally, the relative weight assigned to loans is heaviest for branch A, 
while the relative weight assigned to deposits is heaviest for branch E. 

It should be noted that (5)-(9) represent only the original DEA model. Numerous extensions 
of this basic model exist (Chames, Cooper, Lewin, and Seiford 1994). 

3. Selecting an Appropriate DEA Formulation 

This section concerns issues in model selection, while the following section is dedicated 
to results analysis. There are a number of varieties of the basic DEA model, as well as many 
differing methods of employing DEA models. We first consider a problem with model 
structuring relating to the variety of strategic outputs a firm may have and then consider the 
problems that large variations in unit size can have regarding the type of DEA model used. 

3.1. Multiple Strategic Outputs and Spwious ESficiency 

Typically, a multisite service firm desires strategic consistency among DMUS. Customers 
may visit a DMU because they assume that each DMU will represent the same corporate 
philosophy. However, within an organization it is not unusual for DMUS to focus on different 
goals because of local demographic factors or their position within the firm. For example, an 
upscale department store chain may also have a chain of discount stores where off-season or 
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unfashionable merchandise is sold. The discount stores have different standards for display, 
customer service, employee mix, etc., and one would expect them to have qualitatively 
different outputs and inputs than regular stores. 

Retail banking is a prime example of an industry where DMUS have differing goals. 
Researchers agree that a difference in focus occurs in different branches of the same 
bank-though there is disagreement on the nature of the conflict. Chase, Northcraft, and 
Wolf (1984) indicate that two conflicting missions exist: “fast service” and “relationship 
banking.” Ryan (1993) delineates some specific branch missions, such as attracting merchant 
deposits versus consumers. Zenios, Zenios, Agathocleous, and Soteriou (1995) characterize 
three strategic emphases of Bank of Cyprus branches based on location: coastal branches 
focus on the cash transactions demanded by the tourist trade, urban branches focus on 
commercial accounts, and rural branches are presumably for personal accounts. The rela- 
tionship between branch mission and location is also noted by Sherman and Ladino (1995), 
where sample branch types are said to include urban, suburban, and shopping mall, each with 
a differing mix of services provided. Kamakura, Lenartowicz, and Ratchfrordm (1996) used 
a clusterwise translog cost function to determine five different general branch types-which 
agreed with the managerial perception of five such types. 

The differences in strategic goals is important since branches often cannot pursue these 
goals simultaneously; they generally have to focus to be successful. For example, the 
relationship between the loan generation and transaction processing abilities of bank 
branches has been found to be “not highly correlated” (Oral, Kettani, and Yolalan 1992, p. 
173). Service quality and productivity have been found to be negatively correlated in retail 
banking (Roth and Jackson 1995). 

A modeling challenge is generated by the existence of differing strategic foci. In addition 
to the traditional model (l)-(4), consider the following, 

A, = the sets of related outputs and inputs, forj = 1, . . . , s, 

i.e., those outputs in A, can be considered to be generated by the set of inputs in A,. The sets 
A, are nonexclusive and often overlapping. For example, the set of inputs (tellers, floor 
space) are used to produce the set of outputs (transactions processed}, and the overlapping 
set of inputs {loan officers, floor space} are used to produce the outputs {loans generated}. 

Unfortunately, a mismatched ratio may cause a poorly performing branch to be deemed 
efficient, resulting in what we term “spurious efficiency.” This is not a term found in the 
literature, so some explanation is required. 

For some set A,, the ratio 2 ujyjkIE uixik = 1, where yjk E A,, xik @ A,. may solve 
(l)-(4). For example, consider a poorly performing branch that focuses on transaction 
processing. Since loan origination is not the strategic branch focus, there is only one loan 
officer in the branch. Let us say the branch performs poorly on both transaction processing 
and loan origination. However, this branch appears efficient because the ratio of transactions 
processed to loan officers is the best in the network. An appropriate formulation would 
restrict (l)-(4) to the ratios of related outputs and inputs. Let E;f. equal the efficiency of DMU 

k with respect to the set of related outputs and inputs A,. For a specific DMU k, E;I is the 
optimal objective function value for the following mathematical program: 

Maximize .%I = x’i;A, uixik 

s.t.. 

fern = 1,2, . . ..NDMU& 
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uj > 0 forj E A, 

Uj = 0 forjpd, 

uj > 0 

q = 0 

for i E A, 

for i @A, 

Efficiency for DMU k is determined as 

Ek = max (Ei). 

A justification of maximization, rather than minimization or averaging in (10) involves the basic 
tenets of DEA: a DMU should be judged in its best possible light. In this case, the maximum L$ 
should be associated with the yj E s that form the strategic focus of the branch. Note that instead 
of the traditional one LP needed to determine efficiency for each DMU, this approach requires S LPS. 

In plain language, units should be segregated according to strategic direction and a 
different model constructed for each group. This is not a point that is new in a theoretical 
sense. From the inception of DEA it has been understood that it should be applied to only like 
units. However, the practical application of this tenet has fallen short of the theoretical goal. 
None of the 18 studies listed in Table 1 adopt this approach strictly. The spirit of many DEA 

applications may be best exemplified by Schaffnit, Rosen, and Paradi (1997, p. 278), who 
noted four basic strategic groups of branches in their study, but combined all of them in the 
same model, stating that “an intrinsic feature of DEA is that . . . each relatively inefficient 
branch will be automatically compared to its peer group: it is the set of efficient branches with 
the most similar mixes of inputs and outputs.” This is true for strategic outputs, but it ignores 
the units for whom some of the outputs or inputs are not strategic. For example, all the 
branches that have a strategic imperative to sell loans will have higher loans sold/loan officer 
ratios than other branches, and those branches that are meant to service deposit transactions 
will have higher deposit balances/teller ratios than other branches. But, a DEA model that 
combines all branches has the ability to “mix and match” these strategic inputs and outputs, 
such as basing a portion of efficiency on the loans sold/teller ratio. 

A few studies have partially implemented this idea. Athanassopolous (1997), Oral and 
Yololan (1990), Oral, Kettani, and Yolalan (1992), and Schaffnit, Rosen, and Paradi (1997) 
construct two different models, but apply them to all branches regardless of branch specialty. 
Alternatively, Kamakura, Lenartowicz, and Ratchfrordm (1996) and Zenios, Zenios, Ag- 
athocleous, and Soteriou (1995) segregate branches into five and seven differing clusters, 
respectively, but still use only one model. 

Some researchers have addressed this problem by selecting a homogeneous group of branches 
for study. Soteriou and Stavinides (1997) and Goikas (1991) both studied a small subset of 
branches of a bank that operates in the same markets and has the same strategic direction. 

3.2. Variation in Unit Size 

A strategic imperative in most multisite industries is to maintain a uniform DMU size. The 
uniform size facilitates cost reduction through, for example, reduced architectural design and 
building costs and reduced variation in equipment sizes. Uniform “cookie cutter” DMUS allow 
for easier personnel training and movement. Further, uniform DMUS may be desired in order 
to present a consistent appearance to the customer. 

For many services, however, there exist extreme differences in unit size. In retailing, some 
firms have both regular stores and “superstores” that are vastly different in size. In the 
supermarket industry there is a move toward larger stores. The average new supermarket 
built by Safeway is twice the size of the stores built a decade ago (Safeway 1996). This is 
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also true in banking. Branches within the same bank can differ by one or two orders of 
magnitude in assets managed or employees (see data in Al-Faraj, Alidi, and Bu-Bshait 1993; 
Sherman and Ladino 1995). 

This size difference has an important effect on model choice. The original CCR model 
assumes constant returns-to-scale, but it has been shown that there are generally increasing 
returns-to-scale for bank branches (e.g., Zardkoohi and Kolari 1994; Drake and Howcroft 
1994), though decreasing returns have also been found for very large branches (e.g., Giokas 
1991). Consequently, the smallest branches would be deemed inefficient in a traditional DEA 

formulation even if they were performing at an efficient level for their size. For example, 
Al-Faraj, Alidi, and Bu-Bshait (1993) found that the only inefficient branches in the system 
studied were the three smallest, based on the number of accounts. Three other studies cited 
also use the CCR model. Taken literally, this signals management that only large branches are 
efficient and small branches should be enlarged. Of course, enlarging a small branch serving 
a small population base would be imprudent. 

Variations on the CCR model allow for different returns to scale characterizations (such as 
Banker, Chames, and Cooper 1984; Seiford and Thrall 1990) and should be used in any 
practical DEA study where scale economies are an issue. Despite the existence of these models 
many researchers are unaware of them. As stated by Vassiloglou and Goikas (1990, p. 594), 
“(b)y construction, DEA assumes that [DMUS] do not benefit from economies of scale.” 

Although it is best to use a variable returns-to-scale model when mixing unit sizes, some 
researchers have attacked this problem in a different manner. Zenios, Zenios, Agathocleous, 
and Soteriou (1995), Oral and Yololan (1990), and Oral, Kettani, and Yolalan (1992) use a 
constant returns-to-scale model, but segregate the branches by size first and performed their 
analyses only a groups of branches of similar size. 

4. Managerial Goals 

Although DEA technically measures only productivity, DEA can and has been used for many 
different managerial objectives (Epstein and Henderson 1989). In the banking environment, 
DEA has been applied to the general managerial problems of evaluation, resource allocation, 
and classification. Evaluation includes the performance evaluation of managerial personnel 
and front-line workers. We also include the evaluation of potential sites for new branches and 
branch closures in this category. Resource allocation decisions include decisions about 
personnel additions/deletions and budgeted expenditures on other noninterest expenses, such 
as supplies and maintenance. Classification entails the identification of branches for nonfi- 
nancial managerial recognition, use as training facilities, and the establishment of personnel 
policies, such as pay grades or designation for further study. We argue that the form a DEA 

model should take depends upon the managerial goal of the study. 
Table 1 lists banking DEA studies in conjunction with the specific managerial objectives 

pursued. The remainder of this section analyzes the relative merits of DEA versus the standard 
techniques and discusses the alterations of the basic DEA model that must be accomplished for 
each type of use. 

4.1. Evaluation 

Managerial evaluation for promotion and compensation and evaluation of physical sites for 
expansion have two important commonalities from a modeling perspective. Both forms of 
evaluation require explicit consideration of uncontrollable variables and an assessment as to 
the degree of inefficiency. 

4.1.1. UNCONTROLLABLE VARIABLES. Variables are deemed “uncontrollable” in the sense that 
branch management cannot affect their level, e.g., population located within a two-mile radius of 
the branch, average age, income, or other demographic characteristic of this population, distance 
to a major highway, and competitive density. Consider the role of uncontrollable variables in the 
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three distinct tasks of evaluation of the strength of branch management, site selection, and the 
identification of branches as candidates for closure. In evaluating the strength of management at 
a particular site, including uncontrollable variables in the DEA appropriately adjusts for their 
impact on the production of outputs. In the case of site selection, management is concerned with 
determining the relative impact of uncontrollable variables so that the opportunity for unit 
effectiveness is maximized even-if unit management is only average. Conversely, for unit closure, 
uncontrollable variables should not be considered, just results. We argue that while it may be 
possible to use DEA for these tasks, the basic DEA formulation must be altered and that the results 
analysis is more complex than is typically assumed. 

The relative advantages of DEA versus regression for discerning the effects of an uncon- 
trollable variable have been known since an early time in the DEA literature. In the first 
application of DEA, schools in the Texas, U.S.A., school system were divided into those who 
instituted a management program known as “Program Follow Through” versus a control 
group, and DEA was used to determine program effectiveness by comparing the best practice 
frontier, rather than comparing average performance through regression (Charnes, Cooper, 
and Rhodes 1981). DEA has the capability to determine what can be done given good 
management and a set of resources. 

The predominant method used for discerning the relative advantages of uncontrollable 
variables is regression. Regression has been used in site selection for bank branches (Doyle, 
Fenwick, and Savage 1979), as well as the related service sector site selection problem for 
hotels (Kimes and Fitzsimmons 1990). Although DEA has been used for site selection in some 
environments (Thompson, Singleton, Thrall, and Smith 1986), this approach would be 
problematic for the multiple uncontrollable variables involved in site and personnel evalu- 
ation in a large branch network. 

In the case of selecting candidate DMUS for closure, imagine an extremely well-managed 
bank branch with a poor set of uncontrollable variables. Would such a branch be passed over 
for closure on the grounds that, “they do so well-considering they are robbed weekly”? 
Similar arguments apply to personnel evaluation: the questions of “how good is this person?’ 
and “do we need a person in this position?’ require different methodologies. 

4.1.2. EFFICIENCY RATINGS AS SUCCESS MEASURES. One approach for dealing with uncontrol- 
lable variables is problematic and speaks to the heart of the difficulties in using DEA for 
evaluative purposes. Epstein and Henderson (1989) suggest a two-stage approach where the 
first stage consists of uncontrollable variables used as inputs. In the second stage, regression 
analysis is undertaken with the first stage efficiency scores as the dependent variable and the 
uncontrollable variables as the independent variables. 

This technique makes the implicit assumption that DEA efficiency scores can somehow 
provide a ratio ordering of DMUS. Unfortunately, the relative value of efficiency scores cannot 
be used reliably for such purposes. 

It has long been noted that the DEA efficiency scores do not provide a rank ordering of DMUS 
when the efficiency scores relate to different reference sets, which is nearly always the case 
for large systems in practice. Comparing the efficiency scores of DMUS that relate to different 
reference sets essentially compares apples to oranges. Further, it is often incorrectly assumed 
that efficiency scores can be directly interpreted as to the reduction in inputs or increase in 
outputs possible from an inefficient DMU. This stems from the idea of DEA providing “radial” 
efficiency, that is, all inefficiencies are forced to be an equiproportionate overuse/under- 
achievement of inputs/outputs. One manifestation of this, seen in three papers cited in exhibit 
1, is to assume an efficiency score of (Y < 1 means that outputs (inputs) must be increased 
(decreased) by a percentage of [ 1 - a] or l/(~ to reach the efficient frontier, which is not true. 
More correctly, the reference set is used to construct the HCU to which the actual DMU outputs 
and inputs are compared to determine the increase in outputs or decrease in inputs needed to 
bring the DMU into the efficient set (Drake and Howcroft 1994; Oral, Kettani, and Yolalan 
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TABLE 3 

Comparison of DMlJ Ineficiency by Model Type 

Input 1 
Rent 

Input 2 
FTES 

Input 3 
Supplies output 1 output 2 output 3 output 4 

Sherman 
and Gold 

Haag and 
Jaska 

Frei and 
Harker 

-7.00 -7.00 -7.00 N/A N/A N/A N/A 

-3.00 -3.00 -3.00 +9.00 +5.00 +5.00 +3.00 

-1.41 -0.59 - 17.06 +0.27 +0.14 +Es.oo +0.09 

Values are expressed in percentages. All models compare the inefficiency of branch no. 7 (Sherman and Gold, 
1985). N/A, not applicable. 

1992; Oral and Yolalan 1990; Parkan 1987; Sherman and Gold 1985; Sherman and Ladino 
1995). The comparison of the HCU to the DMU in question may yield far different values of 
increase (decrease) than l/a. As a detailed example of such a calculation, we refer the reader 
to Sherman and Gold (1985, pp. 307-309). 

Unfortunately, none of the studies listed in Table 1 use a method that allows efficiency 
scores to accurately assess the distance from a DMU to the efficient frontier. Consequently, 
both of these relationships between the efficiency score and the distance to the efficient 
frontier discussed in the previous paragraph can be improved upon significantly. This is 
because the traditional DEA model often chooses a reference set that is not always the closest 
reference set on the efficient frontier from the DMU, just one which maximizes the radial 
efficiency (Parkan 1994, p. 206). That is, the closest point on the efficient frontier that 
intersects with a ray from the origin through the DMU data point. In Figure 1, the efficiency 
of DMU B { 15,25} is judged to have an efficiency of 0.83 because it is compared to point HCUE 
( 18.1,30.2}. The closest point to the efficient frontier for DMU B is actually { 15, 30.5). These 
differences can be more extreme for efficient frontiers of different shapes: 

Further, by nature of the LP conversion, traditional DEA models must be either output or 
input oriented. This causes DEA models to choose a DMU reference set that is most similar to 
the DMU on the orientation chosen, rather than similar to the combined DMU inputs and outputs 
(Parkan 1994, p. 213). In fact this choice is forcing the projection onto the frontier to move 
along either the input or output dimensions but not both (Frei and Harker 1995). Conse- 
quently, the reference set given by the model output may not represent the shortest distance 
to the efficient frontier. Haag and Jaska (1995) attempted to ameliorate this shortcoming by 
using a shortest projection technique that moves to the efficient frontier in both the input and 
output space. Unfortunately, their projection is the shortest projection to a single facet on the 
frontier and not necessarily the shortest projection to the entire frontier. 

To illustrate the vastly different implications that can come from the various DEA-based 
models, we compare the methods of Sherman and Gold (1985), Haag and Jaska (1995), and 
Frei and Harker (1995) (Table 3), although it should be noted that other methods exist. 
Sherman and Gold used the additive, input-oriented, constant returns-to-scale DEA model to 
determine the efficiency of 14 bank branches. Three inputs and four outputs were used. The 
reference set for each DMU is determined by each DMU constraint with a non-zero dual price. 
For branch 7, Sherman and Gold determined that specific input decreases of 22%, 22%, and 
35% were required to the three inputs (while holding outputs constant) to make the branch 
efficient. Haag and Jaska used an additive, variable returns-to-scale model that is neither 
input nor output oriented to show that decreases of 3% to each input and increases of 9%, 5%, 
5%, and 3% to each output would make the branch efficient. These are obviously vastly 
different conclusions and it is important to understand the cause of these differences. Some 
of the difference can be explained by the returns-to-scale assumptions. Using Sherman and 



DATA ENVELOPMENT ANALYSIS OF MULTIPLE SITES 275 

Gold’s methodology under a variable returns-to-scale assumption shows that a reduction of 
inputs of 7%, 7%, and 7% is required to make this branch efficient. (The identical input 
reduction percentages are not coincidental. The variable returns-to-scale model used reveals 
a uniform percentage differential to the closest facet on the frontier.) This is much closer to 
Haag and Jaska’s recommendation, but is still significantly different because of the ability of 
the Haag and Jaska method to simultaneously move inputs and outputs. Unless there is an 
explicit restriction to hold outputs or inputs constant, the ability to adjust both simultaneously 
is superior in terms of determining what a branch would look like if efficient. 

However, the Haag and Jaska method determines the shortest distance from a given DMU 
to its associated facet. Although it accurately determines the shortest projection onto a facet 
on the frontier, there is no assurance that this is the shortest projection to the entire frontier. 
In fact, in the case of the Sherman and Gold data, this projection is not the closest projection. 
If the shortest projection to the entire frontier is computed using the methodology of Frei and 
Harker, then branch 7 would need reductions of the inputs of 1.41%, 0.59%, and 17.06%, 
while simultaneously increasing the outputs by 0.27%, 0.14%, 8.00%, and 0.09%. 

This example shows that the choice of DEA model and the implication of that choice are serious 
in terms of managerial implications. Rather than requiring a slight decrease (3%) in rent, FTES and 
supplies and simultaneously requiring outputs to increase between 3% and 9%, the shortest 
projection onto the frontier shows that by concentrating on reducing supplies significantly, 
efficiency can be achieved without altering the other inputs and only moderately altering Output 
3. The different recommendations that arise here highlight the importance of the appropriate 
reference set for an inefficient DMU. If a reference set is meant to compare against those ~h4us on 
the frontier that most closely resemble the inefficient DMU, then, without compelling reasons to 
restrict any of the dimensions, the reference point should be the shortest projection. 

4.1.3. EFFICIENCY RATINGS AND UNIT PROFITABILITY. A separate probleminthe interpretation 
of efficiency scores can occur when there exists an appropriate trade-off function between 
outputs, which is unknown. For example, it may be argued that there is a quantifiable dollar 
value to the bank for each point on a customer satisfaction scale and a quantifiable dollar 
value for each loan originated. These values exist, but are unknown. If these dollar values 
were known, branch profitability statements would be superior to DEA. Since the values are 
not known, DEA is useful. In such a case of existing but unknown profit functions, however, 
the efficiency scores can provide misleading information. 

While it is always desirable to become more efficient, i.e., to produce more of any output 
given the same level of inputs or to produce the same level of output using fewer inputs, it 
is not true that every efficient DMU is per se better than every inefficient DMU. In fact, it is 
entirely possible for an inefficient DMU to be superior to an efficient DMU. Consider the 
hypothetical production function illustrated in Figure 2 where one input, X, is used in the 
production of a single output, y, and profit, z, is the overriding objective. Point P, is the only 
efficient point under the CCR model (it has the highest output-to-input ratio). When variable 
returns to scale are considered, both P, and P, are also efficient. 

The DEA technique measures efficiency, defined as producing the greatest ratio of outputs 
to inputs under some most favorable weighting, but firms are concerned with profit maxi- 
mization. In classic microeconomic, theory, this means producing up to the point at which 
marginal cost equals marginal return (marginal profit is zero) and not at the point of 
maximum productivity. Suppose that the input cost and output price are given by ci , c2 > 0. 
The dashed lines in Figure 2 indicate lines of equal profit with z0 < Z, < z2 < zs. Inefficient 
DMU P, is more profitable than efficient DMU P, with DMU P, being the most profitable. 
Efficiency is not identical to profitability. 

Considered in isolation, the basic DEA model requires extensive modification to provide 
accurate data and would seem a poor choice for evaluative purposes. However, to see the 
benefits of DEA in this area, it must be viewed in comparison to the alternatives discussed 
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output 
(units of product) 

/ P3 

Input 
(e.g., labor) 

I--- lsoprofit Lines 
z=c2y - c7x 
c2, c7 >o 

FIGURE 2. Efficiency and Profitability. 

earlier. DEA does not encourage the dilution of current results to get an easier goal in the next 
accounting period, so it does not unduly reward poor performers and penalize better 
performers. DEA reduces a potentially large amount of data to a single number. To get such 
a single number without using DEA, performance on multiple goals are often combined into 
a single metric through a set weighting scheme across all units. This provides a classic benefit 
of DEA. Any arbitrary set weighting scheme may punish those units that excel in a particular 
strategic area and provide value to the firm. DEA has the ability to allow each unit to choose 
those weights that make it perform most favorably. Thus, there is no predetermined weight- 
ing scheme necessary, only the identification of the evaluation criteria. 

4.2. Resource Allocation 

When the issue is where to direct marginal increases of resources, DEA can provide some 
guidance, but the theoretical underpinnings of DEA must be considered. There are two cases 
depending on the characterization of returns to scale. Further, DEA provides no guidance as 
to the suitability of deploying incremental resources to inefficient units-an idea that may 
seem counterintuitive and suboptimal-but one that is not precluded by theory. 
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In determining where to deploy additional resources, management seeks to maximize the 
incremental return of outputs for the given incremental increase in inputs. In economic terms, 
managers seek to deploy incremental resources at DMUS with the highest levels of marginal 
productivity. DEA assesses the relative position of a given DMU with respect to the em$ically 
derived efficient production frontier. DMUS located on the production frontier are rated 
efficient. Being rated efficient does not ensure a high rate of marginal productivity. It is 
entirely possible that a unit operating under an inferior production function may yet have the 
highest marginal productivity. 

In the case where constant returns to scale prevail (as is the case with the CCR model), the 
situation is more clear. Here, average productivity is the same as marginal productivity. DEA 

identifies DMUS with the highest levels of average productivity as efficient. Deployment of 
additional resources should be considered only for efficient DMUS. 

The most common use of the DEA banking studies cited is for resource allocation. Empirical 
evidence suggests that efficient branches should be considered for resource additions. Indeed, 
the inefficient branches may have appropriate levels of personnel, while efficient DMUS are 
most in need of increased resources. Consider the area of personnel resources. DMUS with 
appropriate staffing levels may be deemed inefficient, while those DMUS that are understaffed 
will be deemed efficient. The reason that this occurs is due in part to the nature of queuing 
systems and in part to the nature of DEA. 

Queuing theory reveals an inherently nonlinear relationship between customer service 
(e.g., waiting times) and personnel utilization. In order to achieve reasonable levels of 
customer service, some idle time must be tolerated. Or put another way, the most efficient 
queuing systems (in terms of both DEA and server utilization) offer poor service. Empirical 
banking studies have found this negative correlation between productivity and service quality 
in practice (Roth and Jackson 1995). Understaffed branches (those with very high personnel 
utilization) will be deemed DEA efficient due to the high number of transactions processed per 
worker. This will be the case even if measures of customer service are included as an output. 
The DEA will simply place more weight on the output dimension of transactions processed and 
relatively less on the dimension of customer service. 

Oral, Kettani, and Yolalan (1992) found that efficient branches required additional re- 
sources. They conducted their DEA study along with a time-and-motion study. Of the 11 
branches deemed most efficient by DEA (10 with efficiency = l), nine were found to have a 
shortage of personnel according to the results of the time-and-motion study. 

An appropriate method for determining personnel needs in a service firm consists of a 
queuing study supplemented by a tour scheduling algorithm similar to Buffa, Cosgrove, and 
Lute (1976). This involves determining the customer arrival pattern by time or day, day of 
week, etc., and calculating the personnel requirements by multiplying the transaction mix by 
the standard transaction times derived from a time and motion study. After personnel 
requirements are established in accordance with service standards through queuing analysis, 
personnel are assigned to shifts by tour scheduling. For large operations such as telephone 
call centers or bank check processing centers, this is cost effective, but it is prohibitively 
expensive to undertake for typical bank branches. 

An inefficient DEA rating is not necessarily an indication of over-capacity, as DEA inputs 
cannot encompass the typical reason for an apparent employee excess: nonuniform customer 
arrival rates during the day and the need to build in idle time to ensure an appropriate level 
of customer service. Sherman and Gold (1985, p. 309) note that a discussion with.manage- 
ment resolved that “inefficiency [ratings are] due to clustering of customer transactions.” 
Banks that have greater variation in their customer arrival profiles require a greater ratio of 
employees to transactions. However, this should not be interpreted as license to ignore DEA 

results for inefficient banks. Rather, the point is that DEA, although useful, should not 
necessarily be used as a prescription for action but rather a component of the analysis. 
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4.3. Classijkation 

Perhaps the most appropriate use of DEA is merely establishing the efficient set versus the 
inefficient set. Classifying those units that are efficient from the inefficient separates them for 
further study. Specifically, the efficient units may have a use in employee training (Sherman 
and Ladino 1995), which is especially useful for the many service firms that have large 
franchised networks. It is useful and common to have those who are liaisons between 
franchise owners and management to have specific experience in the operations of the firm. 
This experience is gained at the company owned units that are deemed to be good exemplars 
of practice-which can be determined by DEA. 

Merely identifying good units can aid in corporate-wide continuous improvement. With 
the limited resources available for extensive operational audits, the small set of efficient 
branches can be examined more closely for the staffing, layout, management style, compet- 
itive conditions, and demographics, that form the underlying basis for their success. In this 
manner DEA becomes “part of a continuous process of information generation and under- 
standing” (Vassiloglou and Giokas 1990). 

A caveat is necessary when using DEA for classification. Because DEA determines efficiency 
scores by comparing DMUS to extreme points, it is more susceptible to errors in the data than 
more traditional data analysis techniques such as regression. For example, in analyzing data 
with regressionan error by an order of magnitude in a single data point could potentially 
skew the results but will not likely bias the entire results. The check for robustness is in the 
removal of the errant data point and a comparison of the results. Certainly the results will be 
different but, especially for larger data sets, the tendencies will likely be unchanged. 
However, in DEA an error to a single DMU, by either mis-measurement or data entry, can quite 
conceivable bias the entire analysis by causing a DMU to be efficient and dominate most other 
DMUS. By removing this one DMU, especially one that was mistakenly in most reference sets, 
the results could drastically change. 

The composition of the set of efficient DMUS can be sensitive to small errors or randomness in 
the data (Metters, Vargas, and Whybark 1995). In general, DEA assumes that there are no random 
fluctuations, so that any deviation from the efficient frontier is inefficiency (Berger, Hancock, and 
Humphrey 1993). Charnes, Cooper, Lewin, Morey, and Rosseau (1985) allow for variation in a 
single variable. Charnes and Neralic (1990) allow for variation in multiple variables for a single 
DMU. Traditional LP sensitivity analysis is of limited use for DEA sensitivity analysis even in these 
simple cases. They correspond to allowing variation in both the coefficient matrix, as well as the 
vector of right hand side coefficients. The method of Thompson, Dharmapala, and Thrall(1994) 
allows for simultaneous variation of all variables for the CCR model. This method is conservative 
in its estimation of the range of variation for which a DMU will remain efficient. The actual range 
may indeed be much larger. This method is also limited to the CCR model, which assumes constant 
returns to scale. Otherwise, chance-constrained DEA (Land, Lowell, and Thore 1993) or general 
global sensitivity analysis (Wagner 1995) represent additional alternatives. These methods, 
however, require specification of the probability distributions of the input and output measures. 
In the case of chance-constrained DEA, however, the mathematical programming model is no 
longer solvable as an LP. In the case of global sensitivity analysis, an extensive simulation analysis 
is required. 

Metters, Vargas, and Whybark (1995) address the robustness of DEA classification in an ad 
hoc but intuitively appealing fashion by strategically perturbing the data and performing 
additional DEA runs. For efficient DMUS, these perturbations involve decreasing outputs and 
increasing inputs slightly and vice versa for the inefficient DMUS within the range of 
measurement error. DEA is performed on the perturbed data. Results are assessed as robust if 
the composition of the efficient and inefficient sets remains relatively unchanged. This 
approach has the advantage of being easy to implement and interpret. 
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5. Summary 

The purpose of this manuscript is to provide some practical guidelines for the application of 
DEA in assessing performance within a firm. The promise of DEA is that the difficult, cumbersome 
task of performance evaluation of geographically dispersed units can be reduced to a single 
number. A number of specific rules are suggested here that appear to be violated in practice: 

1. Model selection 
la. Avoid spurious efficiency. Units with different strategic emphases should be in 

separate models. 
lb. Use variable returns-to-scale models when modeling units of largely varying size. 

2. Results analysis 
2a. DEA is more effectively used in efficient unit identification than in performance 

evaluation and resource allocation. 
2b. When used in personnel evaluation, uncontrollable variables should be considered 

and specific efficiency values do not constitute a ranking. 
2c. When used for unit closure, uncontrollable variables should not be considered. 
2d. When used for resource allocation, the efficient units require scrutiny, rather than 

the inefficient units. 
2e. Efficient does not necessarily mean effective. If true goal diversity does not exist, 

inefficient units may be better than efficient units (Figure 2). 
2f. DEA is the start of analysis, not the end. 

Violating these rules each carries a potential “penalty.” If care is not taken to avoid 
spurious efficiency (rule la), then potentially inefficient DMUS will be ranked by a DEA model 
as efficient, or the degree of inefficiency of a DMU can be understated and it may be compared 
to an improper reference set of DMUS not sharing the same strategic goals. If a constant 
returns-to-scale model (rule 1 b) is used when a variable returns model is needed, then there 
will be distortions of efficiency ratings for the largest and smallest units. For example, all 
large units may be classified as efficient, even though they are poorly run. 

Applying DEA results to effect pay raises or allocate resources is far riskier than using it to 
merely to identify efficient units (rule 2a). At the extreme, managers can easily manipulate DEA 

results by focusing on only one output to the exclusion of others, or by intentionally using less of 
a single resource, thereby artificially pushing themselves to the efficient frontier. If DEA is used in 
personnel evaluation, uncontrollable variables must be considered, or else a manager might 
continue to get substantial (poor) pay increases just for being a branch manager in a desirable 
(undesirable) location (rule 2b). Alternatively, when evaluating the worth of units, rather than 
managers, the reverse is true: a poor unit should not be kept open and a good unit closed just 
because the manager of the poor unit is heroic and causes a smaller loss than forecast (rule 2~). 

When applying DEA to provide resources the reverse of the traditional logic holds: the 
efficient DMUS are those that require attention, as they may be efficient because they may be 
stretching resources beyond the limit and may be able to use more (rule 2d). 

DEA should only be used under conditions of true ambivalence among outputs. If this is not 
true, inefficient DMUS may actually be the best performers (rule 2e). Finally, DEA is a useful 
tool, but not one that should ordinarily be used in isolation (rule 2f). It is typically necessary 
to augment DEA with queuing or industrial engineering studies, cost accounting analyses, etc. 

Some of these rules have been noted in previous DEA studies. But, the rules for applying 
DEA have been fragmented throughout the literature. Consequently, applications continue to 
lag behind theory.. Given a set of rules to apply, it is hoped that applications can converge on 
a consistent and correct implementation. 
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