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ABSTRACT. An analysis of the propagation of thermoelastic waves in a homogenous,
anisotropic, thermally conducting plate has been presented in the context of the general-
ized (L-S) theory of thermoelasticity. Three different methods are used in this analysis:
two of them are exact and the third is a semi-analytic finite element method (SAFE). In
our exact analysis, two different approaches are used. The first one, which is applicable
to transversely isotropic plate, is based on introducing displacement potential functions,
whereas in the second approach, which is applicable to any triclinic material, we rewrite
the governing equations and boundary conditions in a matrix form. Finally, in the SAFE
method, the plate is discretized along its thickness using N parallel, homogeneous layers,
which are perfectly bonded together. Frequency spectrums are obtained using the three
methods and are shown to agree well with each other. Numerical calculations have been
presented for a silicon nitride (Si3N4) plate. However, the methods can be used for other
materials as well.

INTRODUCTION

Most materials undergo appreciable changes of volume when subjected to variations
of the temperature. If thermal expansions or contractions are not freely admitted,
temperature variations give rise to thermal stresses. Conversely, a change of volume
is accompanied by a change of the temperature. When a given element is compressed
or dilated, these volume changes are accompanied by heating and cooling, respectively.
The study of the influence of the temperature of an elastic solid upon the distribution
of stress and strain, and of the inverse effect of the deformation upon the temperature
distribution is the subject of thermoelasticity [1].

Little work has been reported on thermoelastic waves in anisotropic plates. The
main focus of our work will be focused on the laser-generated waves in thermoelastic
anisotropic plate. As mentioned above, the technique of laser-generated waves has
potential application to noncontact and nondestructive evaluation and characterization
of sheet materials in industry. It was demonstrated that the thickness of and moduli of
thin plates can be measured experimentally using laser-generated waves [2]. In the first
part of our work, dispersion relations for thermoelastic anisotropic plate will be studied.
Then, transient responses of a plate heated by a laser pulse will be analyzed. The study
is carried out in the context of Lord-Shulman (L-S) theory of thermoelasticity using
single relaxation time.
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THEORETICAL FORMULATIONS

We consider an infinite homogeneous transversely isotropic thermally conducting
elastic plate at a uniform temperature T0 in the undisturbed state having a thickness
H see Figure (1). The motion is assumed to take place in three dimensions (x, y, z).
The displacements in the x, y, and z directions are u, v and w, respectively.

Exact Analysis

In the absence of body forces and internal heat source, the generalized (L-S) ther-
moelasticity governing equations are:

c11u,xx + c12v,xy + c12w,xz + c55 (u,yy + v,xy) + c55 (u,zz + w,xz) − βxxT,x = ρü (1)

c55 (u,xy + v,xx) + c12u,xy + c22v,yy + c23w,yz + c44 (v,zz + w,yz) − βyyT,y = ρv̈ (2)

c55 (u,xz + w,xx) + c44 (v,yz + w,yy) + c12u,xz + c23v,yz + c22w,zz − βyyT,z = ρẅ (3)

KxxT,xx + KyyT,yy + KyyT,zz − ρCE

(

Ṫ + τ0T̈
)

= T0 [βxx (u̇,x + τ0ü,x)

+βyy (v̇,y + τ0v̈,y) + βyy (ẇ,z + τ0ẅ,z)] (4)

Note that Eq. (4) reduces to the classical coupled thermoelasticity equation for heat
conduction if τ0 = 0.

First Approach

The displacement can be written in terms of three potential functions as in Buchwald
[3] in the form

u =
∂Θ

∂x
(5)

v =
∂Φ

∂y
+

∂Ψ

∂z
(6)

w =
∂Φ

∂z
−

∂Ψ

∂y
(7)

H

x

yz

FIGURE 1. Geometry of the problem.
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Eliminating the displacements from the equations of motion produces

[

c2
∂2

∂x2

+ c5∇
2 −

∂2

∂t2

]

∇2Ψ = 0 (8)

δ
∂2

∂x2
∇2Φ +

[

c2∇
2 +

∂2

∂x2
−

∂2

∂t2

]

∂2Θ

∂x2
−

∂2T

∂x2
= 0 (9)

δ
∂2

∂x2
∇2Θ +

[

c3∇
2 + c2

∂2

∂x2
−

∂2

∂t2

]

∇2Φ − β∇2T = 0 (10)

ε

[

∂2

∂x2

(

Θ̇ + τ0Θ̈
)

+ β∇2
(

Φ̇ + τ0Φ̈
)

]

−
∂2T

∂x2
− K∇2T +

(

Ṫ + τ0T̈
)

= 0 (11)

The above equations are in nondimensional form with

c1 = c12

c11

, c2 = c55

c11

, c3 = c22

c11

, c4 = c23

c11

,

c5 = c44

c11

, δ = c1 + c2, β =
βyy

βxx
, K =

Kyy

Kxx
,

τ ∗
0 = v2

x

kx
τ0, ε = β2

xxT0

ρ2CEv2
x
. ∇2 = ∂2

∂z2 + ∂2

∂y2

where vx =
√

c11/ρ is the velocity of compressional waves, kx = Kxx/ρCE is the thermal
diffusivity in the x-direction, and ε is the thermoelastic coupling constant. Generally,
this constant is small for most materials [4].

It can be noted that the first equation is decoupled from others. Since we are
interested in propagating waves in the plane of x,y, potentials and temperature are
assumed to be harmonic along these directions. By substitution of assumed harmonic
potentials into Eqs. (8-11), and solving for the potentials, we get the displacement and
temperature and hence, eventually stresses and temperature gradient.

The boundary conditions are that stresses and temperature gradient on the surfaces
of the plate should vanish. Hence, we demand that,

T,z = σzz = σzx = σzy = 0 (12)

Using boundary conditions (12) in the resulting stresses and temperature gradient yields
eight equations involving a generalized column vector. In order for the eight boundary
conditions to be satisfied simultaneously, the determinant of the resulting algebraic
system of equations must vanish. This gives an equation for the frequency of the
guided wave for a given wavenumber which is the dispersion relation.

Second Approach

For an infinite plate one can apply Fourier transformation in space and time domains
to the governing equations to get the following eigenvalue problem,

[A] S,z = [B] S, (13)

where S,z = dS/dz and S (z) =
[

û v̂ ŵ T̂ σ̂zx σ̂yz σ̂zz T̂,z

]T
. The general so-

lution can be obtained by determining the eigenvalues and the eigenvectors of Eq.
(13).Here S is the displacement-temperature-traction vector and matrices A and B are
defined as,
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-1

1 _
. ~K

(14)

-1

: . ,2— t j;

-1

-ik -
—iekr -if3er

(15)

where r = iuj + r^uj2.
The general solution to Eq. (13) can be written as

(16)

where Q is the resulting eigenvectors matrix from Eq. (13), C are generalized coeffi-
cients, and E is a diagonal matrix,

^ = Diag[elslz,elS2Z,elszz,els*z,elsl(H-z\ (17)

where isp, (p = 1,2,3,4) are the resulting eigenvalues of the characteristics equation
(13), with Irn(sp) > 0. The first four elements of Eq. (17) represent the wave prop-
agation along the positive z—axis, while the last four elements represent the wave
propagation along the negative z—axis.

The boundary conditions are that tractions and temperature gradient in the z-
direction on the surfaces of the plate should vanish. Applying these boundary conditions
yields the dispersion relation for the infinite plate.

Finite Element Method

The plate is divided into TV parallel, homogeneous, and anisotropic layers, which are
perfectly bonded together. A global rectangular coordinate system (X, Y, Z) is adopted
such that X and Y axes lie in the mid-plane of the plate, and Z—axis parallel to the
thickness direction of the plate. To analyze the guided wave propagation in such an
infinite plate, we discretize the thickness of the plate using three-noded bar elements,
each of which has associated with it a local coordinate axes (x, y, 0), which are parallel
to the global coordinate axes.

Two sets of conventional FEM shape functions are introduced to approximate the
displacement, and temperature fields on the element level.

u(x,y,z,t) =
T(x,y,z,t) =

(18)
(19)
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where Nodal displacements and temperatures are stored in the two vectors u
e and θe,

respectively. Using generalized linear thermoelasticity the strain tensor and tempera-
ture vector is derived from the kinematic equations,

ǫ = D1u
e
,x + D2u

e
,y + D3u

e (20)

T
′ = B1T

e
,x + B2T

e
,y + B3T

e (21)

where B1,B2,B3,D1,D2, and D3 are matrices containing the shape functions and their
derivatives.

Considering the body force f
e, the variational form of the thermoelasticity can be

written in the following form

t1
∫

t0

∫

V

(

δǫT σ − δT′T
KT

′ − δT′T (qi + τ0q̇i)
)

dV dt =

t1
∫

t0

∫

V

δuT (f − ρü) dV dt (22)

Substituting the assumed displacement and temperature into the variational form Eq.
(22) eventually leads to the following:

H1V̈ + H2V̈,x + H3V̈,y + H4V̇,x + H5V̇,y + H6V̇ + H7V,xx + H8V,xy

+ H9V,yy + H10V,x + H11V,y + H12V = 0 (23)

where the matrices Hi are global matrices and V is the column vector of assembled
nodal displacements and temperatures.

For a wave propagating in the XY -plane, we take the Fourier transform with respect
to x, y and t to get:

[

ω2
H1 + iω2kxH2 + iω2kyH3 − ωkxH4 − ωkyH5 + iωH6 + k2

xH7

+ kxkyH8 + k2
yH9 − ikxH10 − ikyH11 − H12

]

V̂ = 0 (24)

where ω is the circular frequency and kx and ky are the wavenumbers in the X and
Y directions. For wave propagating in arbitrary direction in the xy plane making an
angle θ with X-axis, i.e., kx = k cos θ, and ky = k sin θ, Eq. (24) is written as,

(

k2
M + kC + K

)

V̂ = 0 (25)

where M, C, and K are functions of Hi, ω and the propagation angle.
Solving the eigenvalue problem represented by Eq.(25) will determine the dispersion

for guided thermoelastic waves in infinite plates.

Transient Response to Laser Pulse

Solving the homogeneous equation (Eq. 25) will yield the dispersion relation for
elastic guided waves in infinite plates. In order to get the transient response to a laser
pulse, one should rewrite Eq. (25) including the forcing term which is Q-switched laser
pulse,

[A]V = k[B]V + P , (26)

where,

A =

[

0 K3 − ω2
M

K3 − ω2
M K2

]

, B =

[

K3 − ω2
M 0

0 K1

]

,
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and

V =
[

Û kÛ
]T

, P =
[

F̂ 0
]T

.

Using modal expansion, one can expand the eigenvector V in terms of the right-handed
eigenvector φm as,

V =
2M
∑

m=1

V̄mφm. (27)

For the sake of brevity, some steps are omitted to get finally,

V =
2M
∑

m=1

ψT
mP

(km − k)Bm

φm. (28)

In terms of the lower and upper eigenvectors, the derived displacement vector, in
the wavenumber-frequency domain, is simplified as,

Û (k, ω) =
2M
∑

m=1

kmψT
muF̂

(km − k)Bm

φmu. (29)

We evaluate the displacement in the space-frequency domain by using the inverse
Fourier transform as,

Ũ(ξ; ω) =
1

2π

2M
∑

m=1

∞
∫

−∞

kmψT
muF̂

(km − k)Bm

φmue
ikξdk, (30)

where, ξ is the wave propagation direction. Numerical evaluation of Eq. (30), having
singularities at the poles (k = km), is carried out using Cauchy’s residue theorem,

Ũ (ξ; ω) = −i
M

∑

m=1

kmψT
muF̂

Bm

φmue
ikmξ. (31)

To obtain the time-domain response, inverse transform of Eq. (31) needs to be
carried out numerically. The time domain displacement U (ξ, t) can be expressed as

U (ξ, t) =
1

2π

∞
∫

−∞

Ũ (ξ; ω)F (ω)eiωtdω. (32)

RESULTS AND DISCUSSION

With the view of illustrating the numerical results obtained by methods presented
in the preceding sections, the material chosen for the plate is silicon nitride (Si3N4).

Numerical results are presented in the form of 3-D view of frequency spectrum.
These are obtained by keeping ω real and letting k to be complex. In order to find the
solutions of the characteristic equation (12) of the exact analysis, Muller’s method is
used to solve it as an analytic complex function. The relations between the frequency
and the wavenumber expressed by the characteristic equation yield an infinite number
of branches for an infinite number of elastic and thermal modes. Figure 2 shows a 3-D
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FIGURE 2. Frequency spectrum (exact).
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FIGURE 3. Frequency spectrum (SAFE).

view of the frequency spectrum using the exact approach. Elastic modes resemble those
of isothermal case. Similar to the isothermal case, a complex branch is seen (Figure
2) originating from the minimum point on the second longitudinal mode. Moreover,
note that 0th-order elastic modes propagate at all frequencies, but the higher order
modes have cutoff frequencies below which they are evanescent. Since the propagation
direction is along a principle direction, it is seen that the SH modes are uncoupled from
the other two modes. This is evidenced by the intersection of the SH wave curves with
those for the S and A waves.

The first thermal mode shows a similar behavior as the lowest elastic modes; how-
ever, it shows very high attenuation compared to elastic modes. Other thermal modes
originate with higher imaginary values of wavenumbers and eventually approach the
first thermal mode.

Frequency spectrum was also computed by the semi-analytic finite element method
(SAFE) and graphically shown in Figure 3. Excellent agreement between FEM and
analytic solution results is observed by comparing Figure 3 with Figure 2. Convergent
results of FEM analysis can be attained by relatively small number of elements (10
elements) indicating that the FEM is a powerful and efficient technique for analyzing
thermoelastic problems. Another advantage is the ease with which layered plates can
be considered.

Figures 4 and 5 show the transient response to the laser pulse at two different
locations. At early time, the mode S0 arrives at the observation point, followed later
by the dispersive A0 mode.

CONCLUSIONS

Propagation of guided thermoelastic waves in a homogeneous, transversely isotropic,
thermally conducting plate was investigated within the framework of the generalized
theory of thermoelasticity proposed by Lord and Shulman. This theory includes a
thermal relaxation time in the heat conduction equation in order to model the finite
speed of the thermal wave. Three different methods were used to model the guided
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FIGURE 4. Transient response at x = 100H.
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FIGURE 5. Transient response at x = 200H.

wave dispersion. These include: an exact analysis incorporating two different solution
approaches and a semi-analytic finite element (SAFE) method. The results obtained
by these methods were found to agree very well.

The results show that both elastic and thermal modes are attenuated, the thermal
mode exhibit much larger attenuation than the elastic modes. The attenuation of the
former is quite small. The results agree with previous observations by Hawwa and
Nayfeh [5].

Finally, the transient responses due to a laser pulse were numerically calculated. The
results show that the lowest antisymmetric mode dominates, demonstrating clearly it
dispersive nature.

While this paper dealt with the modal dispersion of guided waves (exact and FEM),
and the transient response of a plate due to a laser pulse using FEM approach, an exact
analysis of transient response will be reported in a subsequent paper.
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