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LASER-GENERATED THERMOELASTIC WAVES IN AN
ANISOTROPIC INFINITE PLATE: FEM ANALYSIS

Hussain M. Al-Qahtani and Subhendu K. Datta
Department of Mechanical Engineering, University of Colorado,
Boulder, Colorado, USA

Osama M. Mukdadi
Department of Pediatric Cardiology, The Children’s Hospital,
Denver, Colorado, USA

In recent years, the study of thermoelastic waves generated by focused laser beams has been

undertaken by several researchers because the technique provides a means for noncontact

generation of ultrasonic waves. Laser-generated ultrasonic waves have diverse applications

ranging from material characterization to nondestructive testing of defects. Transient ultra-

sonic guided waves generated in an anisotropic infinite plate by a pulsed laser beam are

investigated in this study. A semi-analytical finite element method (SAFEM) is adopted

for this purpose. In this method, the plate is divided into parallel layers through its thickness

and the displacement and temperature in each layer are approximated by quadratic polyno-

mials in the thickness direction (z). They are assumed to be continuous functions of time

and in-plane cartesian coordinates (x, y). Transient response is calculated using Fourier

transformations in time and space variables (x, y). The analysis technique is applicable

to a generally anisotropic plate. Results for dispersion of guided waves and transient

displacement in infinite silicon nitride (Si3N4) plates are presented. Numerical results show

that for the assumed form of heat deposition by the laser mainly the lowest Lamb modes,

namely, the lowest symmetric (S0) and antisymmetric (A0) modes, are excited. They

also show that the transient response is dominated by the antisymmetric mode A0, which

shows characteristic dispersion. This study provides a quantitative model for laser-generated

thermoelastic waves in an anisotropic plate and can be used for nondestructive evaluation.

Keywords: Laser; Thermoelastic; Lamb wave; Anisotropy; Plate

INTRODUCTION

Since ultrasonic guided elastic waves propagate long distances in structures,
they provide an efficient means of characterization of anisotropic properties of
engineering structures, such as elastic and thermal properties. Guided waves can also
be used for material characterization of layered and composite structures. The other
important application of ultrasonic waves is in defect detection. Presence and size of
various defects and discontinuities such as cracks, inclusions, and porosity can be
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precisely measured. Furthermore, ultrasonic waves can be used to measure dimen-
sional properties. For instance, plate thickness can be accurately measured by the
‘‘time-of-flight’’ of ultrasonic waves.

A laser beam focused on a small region of the surface of a plate (or other struc-
ture) generates thermal and elastic waves in the plate. Such waves generated by a
pulsed laser operating in the thermoelastic regime are highly suitable for noncontact
nondestructive evaluation. The laser source can be operated away from hot, corros-
ive, or other hazardous environment [1].

In 1963, White [2] demonstrated that ultrasonic waves can be generated by irra-
diating a surface by laser beam. Since then, significant work has been done on the
modeling and experiment of laser ultrasonics. It was shown by Sontag and Tam
[3] that Lamb waves can be generated and detected by laser techniques. They studied
Lamb waves in silicon wafers. Their work was extended by Hutchins et al. [4] for the
determination of the thickness of metal sheets. Dewhurst et al. [5] used a pulsed laser
to generate both symmetric and antisymmetric Lamb waves. These waves were opti-
cally detected with a laser interferometer, and the sheet thickness was determined
with great accuracy.

In contrast with the abundant theoretical and experimental studies of laser-gen-
erated bulk waves, studies of Lamb waves in plates are mostly experimental. Among
the limited theoretical studies is that of Spicer et al. [6], who investigated Lamb waves
in a thin isotropic plate using Laplace-Hankel transforms. Normal mode technique
was used by Weaver and Pao [7] to study the isothermal displacement generated by
a point load applied to a plate. More recently, the same method, also known as the
method of eigenfunction expansion, has been used by several researchers [8–10].

The objective of this work is to present an analysis of dynamic thermoelastic
wave propagation in an anisotropic plate. An earlier study by Arias and Achenbach
[11] on transient response of an isotropic half-space suggests that such an analysis
should consider the coupled thermoelastic problem including the spatial distribution
of the heat generated by a pulsed laser. This article treats this thermoelastic problem
for a plate. In this, a thermal relaxation time is included in the heat conduction
equation so that the thermal wave speed is finite. As in Arias and Achenbach [11],
a line-focused laser source is considered.

A semi-analytical finite element method (SAFEM) is adopted to model the
guided waves generated in infinite anisotropic plates. The plate is divided into several
parallel sublayers, within each of which the temperature and displacement are
approximated by quadratic polynomials in the thickness coordinate ðzÞ, and they
are assumed to be continuous functions of time and the planar coordinates ðx; yÞ.
Then, the system of homogeneous equation of motion and heat conduction leads
to an algebraic eigenvalue problem for the determination of the wave numbers of
guided waves at a fixed frequency. This has been reported in an earlier work [12].
Once the wave number-frequency equation (the dispersion equation) is solved, the
transient response is obtained by using Fourier transform. The transient response
thus obtained is in the wave number-frequency domain. The response in the
space-time domain is then obtained by numerically evaluating the double inverse
Fourier transforms. Cauchy’s residue theorem is used to first express the wave
number integral as a sum of the modal contributions at a given frequency. Then,
a fast Fourier transform leads to the time response.

1100 H. M. AL-QAHTANI ET AL.
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The article is organized in the following manner. Theoretical formulations are
presented first, followed by numerical results and discussion. The article concludes
with some remarks and suggestions for future work.

MATHEMATICAL FORMULATION

We consider an infinite homogeneous transversely isotropic thermally conduct-
ing elastic plate at a uniform temperature T0 in the undisturbed state having a thick-
nessH (see Figure 1). The displacement and temperature are assumed to be functions
of x, y, z, and t. The displacement in the x, y, and z directions are denoted by u, v,
and w, respectively.

The heat conduction equation is assumed to be governed by the Lord-Shulman
(L-S) theory of thermoelasticity containing a single relaxation time [13]. The
governing equations may be summarized as follows:

(1) Equations for momentum and heat conduction, respectively, are

rij; j þ fi ¼ q€uui in X ð1Þ

qT0 _ggþQ ¼ �qk;k in X ð2Þ

Figure 1 Geometry of the problem.

LASER-GENERATED THERMOELASTIC WAVES 1101
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(2) Constitutive and kinematic equations:

rij ¼ cijklEkl � bijT ð3Þ

qi þ s0 _qqi ¼ �KijT ;j ð4Þ

q _gg ¼ b_EEþ qCE

T0

_TT ð5Þ

Eij ¼
1

2
ðui; j þ uj;iÞ ð6Þ

Note that Fourier law of heat conduction has been modified to account for the
finite speed of the thermal wave by introducing the relaxation time s0.

(3) Initial and boundary conditions:

rijnj ¼ 0 in Cr ð7Þ

qini ¼ 0 in Cq ð8Þ

ui ¼ 0 at t ¼ 0 ð9Þ

_uui ¼ 0 at t ¼ 0 ð10Þ

The physical variables and material constants appearing in the above equations
are:

A comma ð; iÞ and the superposed dot (�) represents a partial derivative with
respect to the cartesian coordinate xi and the time, respectively.

The plate is divided into N parallel, homogeneous, and perfectly bonded aniso-
tropic layers. A global rectangular coordinate system ðX ;Y ;ZÞ is used such that X
and Y axes lie in the mid-plane of the plate, and the Z axis is parallel to the thickness
direction of the plate (see Figure 2). In each layer, a system of local coordinate axes
ðx; y; zÞ that are parallel to the global ðX ; Y ; ZÞ axes is chosen.

rij stress tensor

Kij coefficients of thermal conductivity

bij thermal coefficients

qi heat flux

s0 thermal relaxation time

CE specific heat at constant deformation

Q heat source

X domain

nj outward unit normal

Eij components of strain tensor

cijkl elastic constants

T temperature perturbation

q mass density

g entropy density

T0 reference temperature

f mechanical body force

Cr;q stress and thermal boundaries

t time

1102 H. M. AL-QAHTANI ET AL.
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Two sets of shape functions are introduced to approximate the displacement
and temperature in each layer, namely,

uðx; y; z; tÞ ¼ Ne
1ðzÞueðx; y; tÞ ð11Þ

Tðx; y; z; tÞ ¼ Ne
2ðzÞTeðx; y; tÞ ð12Þ

where

Ne
1 ¼

N1 0 0 N2 0 0 N3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3

24 35 ð13Þ

and

NeT

2 ¼ fN1 N2 N3g ð14Þ
Nodal displacements and temperatures are stored in the two vectors ue and Te,
respectively. Using generalized linear thermoelasticity, the strain tensor and
temperature vector are derived from the kinematic equations

E ¼ D1u
e
;x þ D2u

e
;y þD3u

e ð15Þ

T0 ¼ B1T
e
;x þ B2T

e
;y þ B3T

e ð16Þ

where B1, B2, B3, D1, D2, and D3 are defined in the appendix and T0 is the tempera-
ture gradient.

Taking the variation of Eqs. (15)–(16), we obtain

dE ¼ D1du
e
x þ D2du

e
y þ D3du

e ð17Þ

dT0 ¼ B1dT
e
;x þ B2dT

e
;y þ B3dT

e ð18Þ

The variational principle for the thermoelastic problem can be written (using
vector notation) in the following form:Z t1

t0

Z
V

ðdETr� dT0TKT0 � dT0T ðqþ s0 _qqÞÞdV dt ¼
Z t1

t0

Z
V

duT ðf � q€uuÞdV dt ð19Þ

Figure 2 Discretization of the plate across the thickness.

LASER-GENERATED THERMOELASTIC WAVES 1103
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Substituting the constitutive relations (Eqs. (3–6)) into Eq. (19), the following equa-
tions are obtained:Z t1

t0

Z
V

dETrdV dt ¼
Z t1

t0

Z
V

dETðCE� bTÞdV dt

¼
Z t1

t0

Z
V

½ðdueT
;x D

T
1 þ dueT

;y D
T
2 þ dueTDT

3 ÞCðD1du
e
;x þ D2du

e
;y þ DT

3 du
eÞ

� ðueT
;x D

T
1 þ ueT

;x D
T
2 þ ueTDT

3 ÞbNeT
2 Te�dV dt

¼
Z t1

t0

Z
y

Z
x

dueT �ke11u
e
;xx � ke12u

e
;xy � ke13u

e
;x � ke21u

e
;xy � ke22u

e
;yy � ke23u

e
;y þ ke31u

e
;x

h
þ ke32u

e
;y þ ke33u

e
;yy þ kem01T

e
;x þ kem02T

e
;y � kem03T

e
;x

i
dx dy dt ð20Þ

where the element matrices appearing in the last equation are defined in the appen-
dix. The second term on the left-hand side of Eq. (19) can be written asZ t1

t0

Z
V

dðTeT Þ0KðTeÞ0dV dt ¼
Z t1

t0

Z
V

ðdTeT
;x B

T
1 þ dTeT

;y B
T
2 þ dTeTBT

3 ÞK

� ðB1T
e
;x þ B2T

e
;y þ B3T

eÞdVdt

¼
Z t1

t0

Z
y

Z
x

dTeT ðge11Te
;xx þ ge22T

e
;yy � ge33T

eÞdx dy dt ð21Þ

where g11, g22, and g33 are defined by

ge11 ¼
Z
z

BT
1 KB1dz; ge22 ¼

Z
z

BT
2 KB2dz; ge33 ¼

Z
z

BT
3 KB3dz

The third term on the left-hand side of Eq. (19) isZ t1

t0

Z
V

dðTeT Þ0ðqþ s0 _qqÞdV dt

¼ �
Z t1

t0

Z
V

dTeT ðq0 þ s0 _q0q0ÞdV dt

¼
Z t1

t0

Z
V

dTeT ðT0q _ggþ s0T0q€ggþQþ s0 _QQÞdV dt

¼
Z t1

t0

Z
y

Z
x

dTeT ½ðfe1 _uue
;x þ fe2 _uu

e
;y þ fe3 _uu

e þme
hh
_TTÞ

þ s0ðf1€uue
;x þ f2€uu

e
;y þ f3€uu

e þme
hh
€TTþQthÞ�dx dy dt ð22Þ

where q0 ¼ qi;i; Qth is the thermal load, and

me
hh ¼

Z
z

Ne
2qN

eT
2 dz; fe1 ¼

Z
z

T0N
e
2bD1dz;

1104 H. M. AL-QAHTANI ET AL.
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fe2 ¼
Z
z

T0N
e
2bD2dz; fe3 ¼

Z
z

T0N
e
2bD3dz

The right-hand side of Eq. (19) is written asZ t1

t0

Z
V

duTðf � q€uuÞdV dt ¼
Z t1

t0

Z
V

dueTNeT
1 ðf � qNe

1€uu
eÞdV dt

¼
Z t1

t0

Z
y

Z
x

dueT ðfe�me€uueÞdx dy dt ð23Þ

where

fe ¼
Z
z

NeT
1 fdz; m ¼

Z
z

qNeT
1 Ne

1dz

Equating the coefficient of due in Eq. (19) to zero yields

ke11u
e
;xx þ ke12u

e
;xy þ ke13u

e
;x þ ke21u

e
;xy þ ke22u

e
;yy þ ke23u

e
;y � ke31u

e
;x

� ke32u
e
;y � ke33u

e � kem01T
e
;x � kem02T

e
;y þ kem03T

e �me€uue ¼ fe ð24Þ

Similarly, equating the coefficient of dTe in Eq. (19) yields

s0m
e
hh
€TT
e þme

hh
_TT
e þ s0f

e
1€uu

e
;x þ s0f

e
2€uu

e
;y þ s0f

e
3€uu

e þ fe1 _uu
e
;x þ fe2 _uu

e
;y

þ fe3 _uu
e � ge11T

e
;xx � ge22T

e
;yy þ ge33T

e ¼ Qe ð25Þ

The last two equations (Eq. (24) and Eq. (25)) are written in vector form as

½�M 0� €uue

€TT
e

� �
þ ½K11 0�

ue
;xx

Te
;xx

� �
þ ½K12 þ K21 0�

ue
;xy

Te
;xy

� �
þ ½K13 � K31 �Km01�

ue
;x

Te
;x

� �
þ ½K22 0�

ue
;yy

Te
;yy

� �
þ ½K23 � K32 �Km02� ue

;yT
e
;y

� �
þ ½�K33 Km03�

ue

Te

� �
¼ fe ð26Þ

and

½s0F3 s0Fhh�
€uue

€TT
e

� �
þ ½s0F1 0�

€uue
;x

€TT
e

;x

( )
þ ½s0F2 0�

€uue
;y

€TT
e

;y

( )

þ ½F1 0�
_uue
;x

_TT
e

;x

( )
þ ½F2 0�

_uue
;y

_TT
e

;y

( )

þ ½F3 Mhh�
_uue

_TT
e

� �
þ ½0 �G11�

ue
;xx

Te
;xx

� �
þ ½0�G22�

ue
;yy

Te
;yy

� �
þ ½0�G33�

ue

Te

� �
¼ Qe ð27Þ

LASER-GENERATED THERMOELASTIC WAVES 1105
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We assemble the element matrices into the global matrices in the standard
manner to obtain the global governing equation as

H1
€VV þH2

€VV;x þH3
€VV;y þH4

_VV;x þH5
_VV;y þH6

_VV þH7V;xx þH8V;xy

þH9V;yy þH10V;x þH11V;y þH12V ¼ F ð28Þ

where the matrices Hi are defined in the appendix and V is the column vector of
assembled nodal displacements and temperatures. In this work, only thermal load
is considered. Thus, the vector F represents the assembled nodal thermal load.

For a wave propagating in the XY plane, we take the Fourier transform of
V(X, Y, t) as

bVVðkx; ky;xÞ ¼ Z 1

�1

Z 1

�1

Z 1

�1
VðX ;Y ; tÞeiðkxXþkyY�xtÞdX dY dt ð29Þ

Taking the Fourier transform of Eq. (28) and inserting the load vector, the following
equation is obtained:

½x2H1 þ ix2kxH2 þ ix2kyH3 � xkxH4 � xkyH5 þ ixH6 þ k2xH7

þ kxkyH8 þ k2yH9 � ikxH10 � ikyH11 �H12�bVV ¼ bFF ð30Þ

where x is the circular frequency and kx and ky are the wave numbers in the X and Y
directions, respectively. For a wave propagating in the x-y plane and making an
angle h with the X axis, we have kx ¼ k cos h and ky ¼ k sin h. Then, Eq. (30) can
be written as

ðk2Mþ kCþ KÞbVV ¼ bFF ð31Þ

where k is the wave number in the propagation direction, and

M ¼ �cos2 hH7 � cos h sin hH8 � sin2 hH9 ð32Þ

C ¼ �ix2 cos hH2 � ix2 sin hH3 þ x cos hH4 þ x sin hH5

þ i cos hH10 þ i sin hH11 ð33Þ

K ¼ �x2H1 � ixH6 þH12 ð34Þ

If the load bFF is set equal to zero, then Eq. (31) leads to the eigenvalue problem
for finding the wave numbers k of the guided wave modes at a given frequency.

TRANSIENT RESPONSE

In order get the response due to the transient laser thermal load, one can
rewrite the equation including the forcing term in the form (see, e.g., Mukdadi
and Datta [14] and Liu and Achenbach [15]):

½A�V ¼ k½B�V þ P ð35Þ

1106 H. M. AL-QAHTANI ET AL.
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where

A ¼ 0 I
�K �C

� �
; B ¼ I 0

0 M

� �
; k ¼ ik

and

V ¼ bUUkbUUh iT
; P ¼ bFF 0

h iT
The right and left eigenvectors, /R

m and /L
m, of the homogeneous form of Eq.

(35) satisfy the equations

½A � kmB�/R
m ¼ 0; /L

m½A � kmB� ¼ 0 ð36Þ

They satisfy the bi-orthogonality conditions

/L
mB/

R
m ¼ diagðBÞ; /L

mA/
R
m ¼ diagðkmBÞ ð37Þ

Rewriting the right and left eigenvectors as

/R
m ¼ /R

mu

/R
ml

� �
¼ /R

mu

k/R
mu

� �
and /L

m ¼ ½/L
mu /L

ml � ¼ ½/L
mu k/L

mu� ð38Þ

and substituting Eqs. (38) in Eqs. (37), the bi-orthogonality conditions may be
written as

/L
muK/R

nu þ kmkn/
L
muM/R

nu ¼ dmnBn ð39aÞ

ðkm þ knÞ/L
muK/R

nu þ kmkn/
L
muC/

R
nu ¼ dmnknBn ð39bÞ

Now, the eigenvector V can be expanded in terms of the right eigenvectors /R
m as

V ¼
X2M
m¼1

Vm/
R
m ð40Þ

To determine the generalized expansion coefficients Vm in the above equation, we
substitute expansion (40) in Eq. (35). The resulting equation is

½A � kB�
X2M
m¼1

Vm/
R
m ¼ P ð41Þ

Multiplying Eq. (41) by the left eigenvectors /L
n , one obtains

X2M
n¼1

X2M
m¼1

½Vm/
L
nA/

R
m � kVm/

L
nB/

R
m� ¼

X2M
n¼1

/L
nP ð42Þ

LASER-GENERATED THERMOELASTIC WAVES 1107
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Now, using the bi-orthogonality conditions (37), the above equation may be simpli-
fied to give

X2M
n¼1

X2M
m¼1

½Vmdmnðkm � kÞB� ¼
X2M
n¼1

/L
nP ð43Þ

Solving Eq. (43), one gets

Vm ¼ /L
mP

ðkm � kÞBm

where

Bm ¼ dmnBmn

Equation (40) can then be written as

V ¼
X2M
m¼1

/L
mP

ðkm � kÞBm
/R
m ð44Þ

Now, using Eq. (38), the vector bUU can be expressed as

bUUðk;xÞ ¼
X2M
m¼1

km/
L
mu
bFF

ðkm � kÞBm
/R
mu ð45Þ

Taking the inverse Fourier transform of Eq. (45) we obtain

eUUðn;xÞ ¼ 1

2p

X2M
m¼1

Z 1

�1

km/
L
mu

bFF
ðkm � kÞBm

/R
mue

�kndk ð46Þ

where n is the space coordinate in the wave propagation direction. The integral in
Eq. (46) is evaluated by using Cauchy’s residue theorem. Thus, it is found that

eUUðn;xÞ ¼ �i
XM
m¼1

km/
L
mu
bFF

Bm
/R
mue

�kmn ð47Þ

To obtain the time-domain response, the inverse Fourier transform of Eq. (47)
with respect to x has to be evaluated numerically. Note that U(n, t) is given by

Uðn; tÞ ¼ 1

2p

Z 1

�1
eUUðn;xÞeixtdx ð48Þ

The integral in Eq. (48) has to be evaluated numerically. For dispersive modes,
however, difficulties of such integration may occur at the cutoff frequencies (k ¼ 0)

1108 H. M. AL-QAHTANI ET AL.
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and at (x ¼ 0). To circumvent these numerical difficulties, x is taken to be complex
with a small imaginary part. Thus, Eq. (48) is modified to the form

Uðn; tÞ ¼ egt

2p

Z 1

�1
eUUðn;x� igÞeixtdx ð49Þ

NUMERICAL RESULTS AND DISCUSSION

In this section, we present some representative results obtained by the method
described in the previous section. For this purpose, the heat input due to the laser
pulse is taken to be given by

Q ¼ I0 f ðtÞgðxÞhðzÞ ð50Þ

where I0 is the energy absorbed. The temporal profile f(t) is assumed to be of the
form

f ðtÞ ¼ t

t20
exp

�t

t0

� �
ð51Þ

Here t0 is the pulse rise time. The pulse is also assumed to have a Gaussian spatial
profile in x, i.e.,

gðxÞ ¼ 1

2pa2
exp

�x2

a2

� �
ð52Þ

where a is the beam radius. In addition, the depth dependence of Q, which is given by
h(z), is taken as

hðzÞ ¼ ce�cz ð53Þ

Once Green’s function due to Q ¼ I0 f(t)h(z)d(x) is obtained, one can compute the
response due to the general form of Q given by Eq. (50) as

rðxÞ ¼
Z 1

�1
RðnÞgðn� x0Þdn ð54Þ

where R is Green’s function and x0 is the coordinate of observation point. The
variation of Q along the thickness is modeled by the consistent nodal load
representation:

he ¼
Z
z

Ne
2 hðzÞdz ð55Þ

A schematic representation of the pulse is shown in Figure 3 and the frequency
spectrum of f(t) is depicted in Figure 4.

The method outlined above is applicable to any monoclinic thermoelastic
plate. Here, numerical results are presented for a silicon nitride (Si3N4) plate for

LASER-GENERATED THERMOELASTIC WAVES 1109
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Figure 3 Temporal and spatial profile of the pulse.

Figure 4 Frequency spectrum of f(t); x� is the nondimensional frequency (x� ¼ xH=vx).

1110 H. M. AL-QAHTANI ET AL.



D
ow

nl
oa

de
d 

By
: [

Ki
ng

 F
ah

d 
U

ni
ve

rs
ity

 o
f P

et
ro

le
um

 a
nd

 M
in

er
al

s]
 A

t: 
14

:1
6 

20
 M

ay
 2

00
7 

illustration purposes. The elastic, geometric, and thermal parameters used for the
numerical calculations are listed in Table 1.

As stated previously, the homogeneous solution of Eq. (31) yields the disper-
sion relation of the thermoelastic plate. The dispersion curves for the first few
modes have been computed and represented graphically in the form of a 3-D plot
in Figure 5. These are obtained by keeping x real and letting k be complex. The
imaginary part of k is a measure of the attenuation of the amplitude with x. Note
that 0th-order modes propagate at all frequencies, but the higher order modes have
cutoff frequencies below which they are evanescent. Similar to the isothermal case, a
complex branch is seen to originate from the minimum point of the S1 branch.
Thermal modes are seen to have high attenuation.

As seen in Figure 4, the frequency spectrum of the pulse is limited to low
frequencies (0 < x� < 1:5). In this range, primarily the S0 and A0 modes are excited.
Figure 6 shows transient normal displacement on the x-axis at a source-to-receiver
distance of 100 H. The laser is assumed to be focused along the line of the y-axis.
The S0 mode is seen to arrive at the observation point first. This is followed later
by the A0 mode, which is highly dispersive in the frequency range considered. In this
case, there is no coupling between SH mode and the S and A modes. So, no SH
modes are excited.

Next, the normal displacement was computed at another location, x ¼ 200H,
and is shown in Figure 7. Again, the antisymmetric mode (A0) dominates, while the
symmetric mode is a short-lived event. Moreover, the characteristic dispersion of the
antisymmetric mode is clearly seen.

The nondimensional group velocities of the modes propagating along the sym-
metry direction were computed. These are shown in Figure 8. In the figure,
C�

g ¼ Cg=vx and x� ¼ xH=vx, where vx ¼
ffiffiffiffiffiffiffiffiffiffiffi
c11=q

p
¼ 13:39 km=s. In Figures 6 and

7, the S0 mode with a group velocity of 0.96 vx has arrival times of 0.77 and 1.54
microseconds at x ¼ 100H and x ¼ 200H, respectively. Later, the high-frequency
components of the A0 mode arrive with a group velocity of 0.44 vx. Accordingly,
the arrival times of the high-frequency components of the A0 mode are 1.70 and
3.39 microseconds at x ¼ 100H and x ¼ 200H, respectively. The low-frequency
components of the A0 mode arrive later with much larger amplitude.

In order to see the difference between the response due to the Gaussian spatial
distribution g(x) and that due to dðxÞ, the normal displacements were calculated at
x ¼ 100H and x ¼ 200H when g(x) ¼ d(x) and are shown respectively in Figures 9
and 10 for the two locations. Comparison of the waveforms shown in Figures 6 and
7 with those in Figures 9 and 10 demonstrates the smoothing effect of the Gaussian
distribution of the source. It is seen that when the radius of the Gaussian beam goes
to zero the high-frequency part of the A0 mode is excited strongly.

The SAFEM method can be used to investigate wave propagation along any
arbitrary direction in the plane of the plate. For this purpose, transient response
and group velocities were calculated for two more directions of propagation,
namely, h ¼ 45� and h ¼ 90�. Figures 11 and 12 show the transient response for
propagation along h ¼ 45� at x ¼ 100H and x ¼ 200H, respectively. These figures
show clearly the effect of the anisotropy of the plate. The group velocities of the
modes propagating in this direction (Figure 13) are different in many ways than
for propagation along the symmetry direction. First, the SH modes are now

LASER-GENERATED THERMOELASTIC WAVES 1111
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Table 1 Parameters used in the analysis

Quantity Units Numerical value

q Kg=m3 3.20� 103

c11 N=m2 5.74� 1011

c12 N=m2 1.27� 1011

c22 N=m2 4.33� 1011

c23 N=m2 1.95� 1011

c55 N=m2 1.08� 1011

T0
�K 296

bxx N=m2 �K 3.22� 106

byy N=m2 �K 2.71� 106

CE J=Kg �K 0.67� 103

Kxx W=m �K 55.4

Kyy W=m �K 43.5

t0 ns 8

s0 s 1.44� 10�13

a mm 100

H mm 0.1

c m�1 1� 105

Figure 5 Dispersion curves for guided modes for propagation along the symmetry direction (x-axis)

(x� ¼ xH=vx and k� ¼ kH).

1112 H. M. AL-QAHTANI ET AL.
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Figure 6 Normal displacement of the plate for propagation along the symmetry direction (h ¼ 0�) at

x ¼ 100H.

Figure 7 Normal displacement of the plate for propagation along the symmetry direction (h ¼ 0�) at

x ¼ 200H.

LASER-GENERATED THERMOELASTIC WAVES 1113
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Figure 8 Group velocities of first few modes of propagation along the symmetry direction (h ¼ 0�).

Figure 9 Normal displacement of the plate for propagation along the symmetry direction (h ¼ 0�) at

x ¼ 100H when the spatial distribution of the laser pulse is d(x).

1114 H. M. AL-QAHTANI ET AL.
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Figure 10 Normal displacement of the plate for propagation along the symmetry direction (h ¼ 0�) at
x ¼ 200H. The spatial distribution of the pulse is the same as in Figure 9.

Figure 11 Normal displacement of the plate for propagation along h ¼ 45� at x ¼ 100H.

LASER-GENERATED THERMOELASTIC WAVES 1115
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Figure 12 Normal displacement of the plate for propagation along h ¼ 45� at x ¼ 200H.

Figure 13 Group velocities of the first few modes of propagation along h ¼ 45�.

1116 H. M. AL-QAHTANI ET AL.
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Figure 14 Normal displacement of the plate for propagation along h ¼ 90� at x ¼ 100H.

Figure 15 Normal displacement of the plate for propagation along h ¼ 90� at x ¼ 200H.

LASER-GENERATED THERMOELASTIC WAVES 1117
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Figure 16 Group velocities of the first few modes of propagation along h ¼ 90�.

Figure 17 Normal displacement of the plate for three different relaxation times, s01 ¼ 0, s02 ¼ 1.44� 10�13

s, and s03 ¼ 8� 10�9 s at x ¼ 100H.
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coupled to S and A modes. Note that they are uncoupled for propagation in the
symmetry direction. In addition, the group velocities of the S0 and SH0 modes
are lower. It is interesting to note that the A0 mode has similar features for propa-
gation in both 0� and 45� directions. Also, the arrival times of the modes are dif-
ferent now. In this case, the group velocities of the S0 and A0 modes are,
respectively, 0.81 vx and 0.44 vx (see Figure 13). These correspond to arrival times
of 0.92 and 1.70 microseconds at x ¼ 100H and 1.84 and 3.39 microseconds
at x ¼ 200H, respectively. It is seen that the S0 mode is more dispersive in this
direction. This is clearly seen when the observation point is at x ¼ 200H (see
Figure 12).

Next, transient waveforms and group velocities were computed for h ¼ 90�.
Figures 14 and 15 depict the transient response at the two locations (x ¼ 100H
and 200H). As noted earlier, the waveforms in this direction are different owing
to the anisotropy of the plate. The S0 mode is slower in this direction with a group
velocity of 0.78 vx. The high-frequency components of the A0 has a group velocity
of 0.45 vx (see Figure 16). Consequently, the arrival times of both modes at
x ¼ 100H are, respectively, 0.97 and 1.66 microseconds. They are 1.94 and 3.32
microseconds at x ¼ 200H. The S0 mode is more dispersive in this direction. This
can be seen in the transient response at larger distance (Figure 15). As in the case
of propagation along the symmetry direction, the SH modes are now decoupled
from other modes.

Finally, in order to examine the effect of the relaxation time on the transient
responses of the plate, normal displacements of the plate were computed for three
different relaxation times for propagation along the x-axis. These are shown in
Figure 17. It is seen that the transient response is not sensitive to the changes
in the relaxation time. Thus, both classical (s0 ¼ 0) and hyperbolic (s 6¼ 0) heat
equations give indistinguishable results for Lamb wave propagation in the plate.

CONCLUSION

Propagation of guided thermoelastic waves in a homogeneous, transversely
isotropic, thermally conducting plate was investigated. The dispersion curves and
the transient waveforms of Lamb waves in silicon nitride (Si3N4) were numerically
computed. The results show that thermal modes are much more attenuated than
elastic modes. Transient waveforms of Lamb waves indicate that the laser pulse
primarily excites the lowest two modes (antisymmetric (A0) and symmetric (S0)),
where the antisymmetric mode dominates the response. The transient response
shows strong dispersion that is characteristic of the A0 mode. Moreover, it is shown
that when the laser beam radius is small the high-frequency components of the A0

mode are excited strongly. Of particular interest is the observation that the transient
response of the plate is insensitive to the changes in the relaxation time.

The results presented here agree with previous experimental (Sontag and Tam
[3], Dewhurst et al. [5], Pierce et al. [16]) and theoretical works (e.g., Spicer et al. [6],
Cheng and Berthelot [10]). Work is underway to obtain exact solutions to the
problem discussed here for some limiting cases and compare the results with those
presented here.

LASER-GENERATED THERMOELASTIC WAVES 1119
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APPENDIX: FINITE-ELEMENT MATRICES

B1 ¼
N1 N2 N3

� � �
� � �

24 35; B2 ¼
� � �
N1 N2 N3

� � �

24 35; B3 ¼
� � �
� � �

N1;z N2;z N3;z

24 35

D1 ¼

N1 � � N2 � � N3 � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � N1 � � N2 � � N3

� N1 � � N2 � � N3 �

2666666664

3777777775
;

D2 ¼

� � � � � � � � �
� N1 � � N2 � � N3 �
� � � � � � � � �
� � N1 � � N2 � � N3

� � � � � � � � �
N1 � � N2 � � N3 � �

2666666664

3777777775

D3 ¼

� � � � � � � � �
� � � � � � � � �
� � N1;z � � N2;z � � N3;z

� N1;z � � N2;z � � N3;z �
N1;z � � N2;z � � N3;z � �
� � � � � � � � �

26666664

37777775

ke11 ¼
Z
z

DT
1 CD1dz; ke12 ¼

Z
z

DT
1 CD2dz;

ke13 ¼
Z
z

DT
1 CD3dz; ke21 ¼

Z
z

DT
2 CD1dz;

ke22 ¼
Z
z

DT
2 CD2dz; ke23 ¼

Z
z

DT
2 CD3dz;

ke31 ¼
Z
z

DT
3 CD1dz; ke32 ¼

Z
z

DT
3 CD2dz;

ke33 ¼
Z
z

DT
3 CD3dz; kem01 ¼

Z
z

DT
1 CbN

eT
2 dz;
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kem02 ¼
Z
z

DT
2 CbN

eT
2 dz; kem03 ¼

Z
z

DT
3 CbN

eT
2 dz

H1 ¼
�M ..

.
0

� � � � � � � � �
s0F3

..

.
s0Mhh

2664
3775 H2 ¼

0 ..
.

0
� � � � � � � � �
s0F1

..

.
0

2664
3775

H3 ¼
0 ..

.
0

� � � � � � � � �
s0F2

..

.
0

2664
3775 H4 ¼

0 ..
.

0
� � � � � � � � �
F1

..

.
0

2664
3775

H5 ¼
0 ..

.
0

� � � � � � � � �
F2

..

.
0

2664
3775 H6 ¼

0 ..
.

0
� � � � � � � � �
F3

..

.
Mhh

2664
3775

H7 ¼
K11

..

.
0

� � � � � � � � �
0 ..

.
�G11

2664
3775 H8 ¼

K12 þ K21
..
.

0
� � � � � � � � �
0 ..

.
0

2664
3775

H9 ¼
K22

..

.
0

� � � � � � � � �
0 ..

.
�G22

2664
3775 H10 ¼

K13 � K31
..
.

�Km01

� � � � � � � � �
0 ..

.
0

2664
3775

H11 ¼
K23 � K32

..

.
�Km02

� � � � � � � � �
0 ..

.
0

2664
3775 H12 ¼

�K33
..
.

�Km03

� � � � � � � � �
0 ..

.
G33

2664
3775
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