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3333....1111 INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

Mathematical Modeling and response analysis of mechanical systems are the subjects 

of this chapter. 

3333....2222 MECHANICAL ELEMENTSMECHANICAL ELEMENTSMECHANICAL ELEMENTSMECHANICAL ELEMENTS    
 

Any mechanical system consists of mechanical elements. There are three types of 

basic elements in mechanical systems:  

 

� Inertia elements 

� Spring elements 

� Dampers elements 

 

Inertia Elements.Inertia Elements.Inertia Elements.Inertia Elements. Mass and moment of inertia. Inertia may be 

defined as the change in force (torque) required to make a unit change in 

acceleration (angular acceleration). That is, 

 

=
2

change in force N
inertia (mass) or kg

change in acceleration m/s
 

 

=
2

change in torque N-m
inertia (moment of inertia) or kg

change in ang. accel. rad/s
 

 

Spring ElementsSpring ElementsSpring ElementsSpring Elements.... A linear spring is a mechanical element that can 

be deformed by external force or torque such that the deformation is directly 

proportional to the force or torque applied to the element. 

 

Translational SpringsTranslational SpringsTranslational SpringsTranslational Springs    

 

For translational motion, (Fig 3-1(a)), the force that arises in the spring is 
proportional to x  and is given by 

 

 F k x=  (3-1) 

where x  is the elongation of the spring and k  is a proportionality constant called 

the spring constant and has units of [force/displacement]=[N/m] in SI units. 
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At point P , the spring force F  acts opposite to the direction of the force F  applied 

at point P . 

 

2x

1 2X x x+ −

f

X

X x+

1X x+

P
fPQ

f

 
 

Figure 3-1 (a) One end of the spring is deflected; (b) both ends of the spring are 

deflected. (X  is the natural length of the spring) 

 

 

Figure 3-1(b) shows the case where both ends P  and Q  of the spring are 

deflected due to the forces f  applied at each end. The net elongation of the spring 

is 1 2x x− . The force acting in the spring is then  

 

 ( )1 2F k x x= −  (3-2) 

 

Notice that the displacement 1X x+  and 2x  of the ends of the spring are measured 

relative to the same reference frame.  

 

Practical ExamplesPractical ExamplesPractical ExamplesPractical Examples....    

 

Pictures of various types of real-world springs are found below.  

  

 



ME 413 Systems Dynamics & Control    Chapter Three: Mechanical Systems  

 

 

3/31 
 

Torsional SpringsTorsional SpringsTorsional SpringsTorsional Springs    

 

Consider the torsional spring shown in Figure 3-2 (a), where one end is fixed 
and a torque τ  is applied to the other end. The angular displacement of the free 

end is θ . The torque T  in the torsional spring is  

 

 TT k θ=  (3-3) 

 

where θ  is the angular displacement and Tk  is the spring constant for 

torsional spring and has units of [Torque/angular displacement]=[N-m/rad] in SI 

units. 

 

τ

θ

τ
1θ

2θ

τ
 

Figure 3-2 (a) A torque τ  is applied at one end of torsional spring, and the other 

end is fixed; (b) a torque τ  is applied at one end, and a torque τ , in 

the opposite direction, is applied at the other end. 

 

 

At the free end, this torque acts in the torsional spring in the direction opposite to 
that of the applied torque τ . 

 

 For the torsional spring shown in Figure 3-2(b), torques equal in magnitude 

but opposite in direction, are applied to the ends of the spring. In this case, the 

torque T  acting in the torsional spring is 

 

 ( )1 2TT k θ θ= −  (3-4) 

 

At each end, the spring acts in the direction opposite to that of the applied torque at 

that end. 

 

For linear springs, the spring constant k  may be defined as follows 

 

=

=

�������

�������

for translational spring

for torsional spring

change in force N
spring constant  

change in displacement of spring m

change in torque
spring constant  

change in angular displacement of spri
T

k

k
N-m

ng rad

 

 

Spring constants indicate stiffness; a large value of k  or Tk  corresponds to a 

hard spring, a small value of k  or Tk  to a soft spring. The reciprocal of the spring 
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constant k  is called compliance or mechanical capacitance C . Thus 1C k= . 

Compliance or mechanical capacitance indicates the softness of the spring. 

 
Practical Examples.Practical Examples.Practical Examples.Practical Examples.    

 

Pictures of various types of real-world springs are found below.  

 

    

 
Practical spring versus ideal spring.Practical spring versus ideal spring.Practical spring versus ideal spring.Practical spring versus ideal spring. Figure 3-3 shows the force 

displacement characteristic curves for linear and nonlinear springs. 

 

• All practical springs have inertia 

and damping. 

 

• An ideal spring has neither mass 

nor damping (internal friction) 

and will obey the linear force 

displacement law. 

 

F

x
o

 
Figure 3-3 Force-displacement 

characteristic curves for linear and 

nonlinear springs. 

 
Damper Elements.Damper Elements.Damper Elements.Damper Elements. A damper is a mechanical element that dissipates 

energy in the form of heat instead of storing it. Figure 3-4(a) shows a schematic 

diagram of a translational damper, or a dashpot that consists of a piston and an-oil-

filled cylinder. Any relative motion between the piston rod and the cylinder is resisted 

by oil because oil must flow around the piston (or through orifices provided in the 

piston) from one side to the other.  
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f τ
1θ�2θ�

τ
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f
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Figure 3-4 (a) Translational damper; (b) torsional (or rotational) damper. 

 

 

   Translational DamperTranslational DamperTranslational DamperTranslational Damper    

 

In Fig 3-4(a), the forces applied at the ends of translation damper are on the 

same line and are of equal magnitude, but opposite in direction. The velocities of the 

ends of the damper are 1x�  and 2x� . Velocities 1x�  and 2x�  are taken relative to the 

same frame of reference.  

 

In the damper, the damping force F  that arises in it is proportional to the 

velocity differences 1 2x x−� �  of the ends, or  

 

 ( )1 2F b x x bx= − =� � �  (3-5) 

 

where 1 2x x x= −� � �  and the proportionality constant b  relating the damping force F  

to the velocity difference x�  is called the viscous friction coefficient or viscous 

friction constant. The dimension of b  is [force/Velocity] = [N/m-s] in SI units. 

 

   Torsional DamperTorsional DamperTorsional DamperTorsional Damper    

 
For the torsional damper shown in Figure 3-4(b), the torques τ  applied to 

the ends of the damper are of equal magnitude, but opposite in direction. The 

angular velocities of the ends of the damper are 1θ�  and 2θ�  and they are taken 

relative to the same frame of reference. The damping torque T  that arises in the 

damper is proportional to the angular velocity differences 1 2θ θ−� �  of the ends, or 

 

 ( )1 2T TT b bθ θ θ= − =� � �  (3-6) 

 

where, analogous to the translation case, 1 2θ θ θ= −� � �  and the proportionality 

constant Tb  relating the damping torque T  to the angular velocity difference θ�  is 
called the viscous friction coefficient or viscous friction constant. The 

dimension  of b  is [torque/angular velocity] = [N-m/rad] in SI units. 
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 A damper is an element that provides resistance in mechanical motion, and, 

as such, its effect on the dynamic behavior of a mechanical system is similar to that 

of an electrical resistor on the dynamic behavior of an electrical system. 

Consequently, a damper is often referred to as a mechanical resistance element 

and the viscous friction coefficient as the mechanical resistance. 

 

Practical Examples.Practical Examples.Practical Examples.Practical Examples.    

Pictures of various examples of real-world dampers are found below. 

   

 

Practical damper versus ideal Practical damper versus ideal Practical damper versus ideal Practical damper versus ideal damperdamperdamperdamper    

 

• All practical dampers produce inertia and spring effects. 

• An ideal damper is massless and springless, dissipates all energy, and obeys 

the linear force-velocity law (or linear torque-angular velocity law). 

 

 

Nonlinear friction.Nonlinear friction.Nonlinear friction.Nonlinear friction. Friction that obeys a linear law is called linear 

friction, whereas friction that does not is described as nonlinear. Examples of 

nonlinear friction include static friction, sliding friction, and square-law friction. 

Square law-friction occurs when a solid body moves in a fluid medium. Figure 3-5 

shows a characteristic curve for square-law friction.  

 

 
Figure 3-5 Characteristic curve for square-law friction. 
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3333....3333 MMMMATHEMATIATHEMATIATHEMATIATHEMATICCCCAL AL AL AL MODELING OF SIMPLE MODELING OF SIMPLE MODELING OF SIMPLE MODELING OF SIMPLE 

MECHANICAL SYSTEMSMECHANICAL SYSTEMSMECHANICAL SYSTEMSMECHANICAL SYSTEMS    
 

A mathematical model of any mechanical system can be developed by applying 

Newton’s laws to the system. 

 

Rigid body.Rigid body.Rigid body.Rigid body. When any real body is accelerated , internal elastic 

deflections are always present. If these internal deflections are negligibly small 

relative to the gross motion of the entire body, the body is called rigid body. Thus, 

a rigid body does not deform. 

 

Newton’s laws.Newton’s laws.Newton’s laws.Newton’s laws.  

 

Newton’s first law:Newton’s first law:Newton’s first law:Newton’s first law:    (Conservation of Momentum)  

 

The total momentum of a mechanical system is constant in the absence of 

external forces. Momentum is the product of mass m  and velocity v , or m v , for 

translational or linear motion. For rotational motion, momentum is the product of 

moment of inertia J  and angular velocity ω , or Jω , and is called angular 

momentum. 

 

Newton’s second law:Newton’s second law:Newton’s second law:Newton’s second law:     

 

Translational motion:Translational motion:Translational motion:Translational motion: If a force is acting on rigid body 

through the center of mass in a given direction, the acceleration of the rigid body in 

the same direction is directly proportional to the force acting on it and is inversely 

proportional to the mass of the body. That is, 

 

force
acceleration = 

mass
 

 or 

 

(((( )))) (((( ))))mass acceleration  = force  

 

 Suppose that forces are acting on a body of mass m . If ∑∑∑∑F  is the sum of all 

forces acting on a mass m  through the center of mass in a given direction, then 

 

 F m a=∑  (3-7) 

 
where a  is the resulting absolute acceleration in that direction. The line of action of 

the force acting on a body must pass through the center of mass of the body. 

Otherwise, rotational motion will also be involved. 

 

Rotational motion.Rotational motion.Rotational motion.Rotational motion. For a rigid body in pure rotation 

about a fixed axis, Newton’s second law states that 

 

(((( )))) (((( ))))moment of inertia angular acceleration  = torque  
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 or 

 

 T J α=∑  (3-8) 

 

where ∑∑∑∑T  is the sum of all torques acting about a given axis, J  is the moment of 

inertia of a body about that axis, and α  is the angular acceleration of the body.  

 

 

Newton’s third law.Newton’s third law.Newton’s third law.Newton’s third law. It is concerned with action and reaction 

and states that every action is always opposed by an equal reaction. 

 

Torque or moment of force.Torque or moment of force.Torque or moment of force.Torque or moment of force. Torque, or moment of force, is 

defined as any cause that tends to produce a change in the rotational motion of a 

body in which it acts. Torque is the product of a force and the perpendicular distance 

from a point of rotation to the line of action of the force.  

 

[[[[ ]]]] [[[[ ]]]]= × == × == × == × =        Torque force distance N-m  in SI units 

 

Moments of inertia.Moments of inertia.Moments of inertia.Moments of inertia. The moment of inertia J  of a rigid body about an 

axis is defined by 

 

 J r dm2==== ∫∫∫∫  (3-9) 

 

Where dm  is an element of mass, r  is the distance from axis to dm , and integration 

is performed over the body. In considering moments of inertia, we assume that the 

rotating body is perfectly rigid. Physically, the moment of inertia of a body is a 

measure of the resistance of the body to angular acceleration. 

 
Figure 3-6  Moment of inertia 

 

 

Parallel axis theorem.Parallel axis theorem.Parallel axis theorem.Parallel axis theorem. Sometimes it is necessary to calculate the 

moment of inertia of a homogeneous rigid body about an axis other than its 

geometrical axis.  
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C

C’

X

X’

R

 
Figure 3-7  Homogeneous cylinder rolling on a flat surface 

 

 

As an example to that, consider the system shown in Figure 3-7, where a cylinder of 

mass m and a radius R rolls on a flat surface. The moment of inertia of the cylinder 

is about axis CC’ is 

 

21

2
cJ m R=  

The moment of inertia xJ of the cylinder about axis xx’ is  

 

2 2 2 21 3

2 2
x cJ J m R m R m R m R= + = + =  

 

Forced response and natural response.Forced response and natural response.Forced response and natural response.Forced response and natural response. The behavior 

determined by a forcing function is called a forced response, and that due initial 

conditions is called natural response. The period between initiation of a response and 

the ending is referred to as the transient period. After the response has become 

negligibly small, conditions are said to have reached a steady state.  

 

 
 

Figure 3-8  Transient and steady state response 

 

 

ParalleParalleParalleParallel and Series Springs Elements.l and Series Springs Elements.l and Series Springs Elements.l and Series Springs Elements. In many 

applications, multiple spring elements are used, and in such cases we must obtain 

the equivalent spring constant of the combined elements.  
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Parallel Springs.Parallel Springs.Parallel Springs.Parallel Springs.  For the springs in parallel, Figure 

3-9, the equivalent spring  constant eqk  is obtained from the relation 

 

F

1k

2k

x

F

e qk x

 
 

Figure 3-9  Parallel spring elements 

 

 

( )1 2 1 2 eqF k x k x k k x k x= + = + =  

where 

 

 ( )1 2 for parallel springseqk k k= +  (3-9) 

 
This formula can be extended to n  springs connected side-by-side as follows: 

 ( )
1

for parallel springs
n

eq i
i

k k
=

=∑  (3-10) 

 
Series Springs.Series Springs.Series Springs.Series Springs. For the springs in series, Figure 3-10, the force in 

each spring is the same. Thus 

 

F

xy

1k 2k

F
e qk

 
Figure 3-10  Series spring elements 

 

 

( )1 2,F k y F k x y= = −  

 

Eliminating from these two equations yields 

 

2

1

F
F k x

k

 
= − 

 
 

or 

2 2 1 2
2 2

1 1 1

k k k k
F k x F k x F F F

k k k

 +
= − ⇒ = + =  

 
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or 

1 2 2 1

2 1 1 2

1 2

1

1 1

eqk

k k k k
x F F x x

k k k k
k k

 
    +

= ⇔ = =     
+      + 

 �����

 

where 

 

 ( )
1 2

1 1 1
= + for series springs

eqk k k
 (3-11) 

 
which can be extended to the case of n  springs connected end-to-end as follows 

 ( )
1

1 1

=

=∑ for series springs
n

ieq ik k
 (3-12) 

 

 

Free Vibration without damping.Free Vibration without damping.Free Vibration without damping.Free Vibration without damping.    

 

Consider the mass spring system shown in Figure 3-11. The equation of motion can 

be given by 

 

0m x k x+ =��  

or 

20 0n

k
x x x x

m
ω+ = ⇒ + =�� ��  

where 

n

k

m
ω =  

is the natural frequency of the system and is 

expressed in rad/s. 

Taking LT of both sides of the above equation where 

( )0x x=
�
 and ( )0x x=

�
� �  gives 

k

m

( )x t
 

Figure 3-11  Mass Spring 

System 

( ) ( ) ( )
[ ]

( )2 20 0 0ω− − + =

��

�
����������� n

L x

s X s sx x X s  

rearrange to get 

 

( )
complex c

2 2

onjugates

, Remember poles are ω
ω

+
= ⇒ = ±

+

� �
�

�����n

n

sx x
X s s j

s
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2 2 2 2
( )

ω

ω ω ω
= +

+ +

�

�

�
n

n n n

x s
X s x

s s
 

and the response ( )x t  is given by 

 

( ) ( ) ( )sin cosn n

n

x
x t t x tω ω

ω
= +�

�

�
 

 

It is clear that the response ( )x t  consists of a sine and cosine terms and depends 

on the values of the initial conditions x
�
 and x

�
� . Periodic motion such that described 

by the above equation is called simple harmonic motion.  

 

planes −

Re

Im

nω

nω−

t

slope x=
�
�

Period
2

n

T
π

ω
= =

( )x t

 
 

Figure 3-12 Free response of a simple harmonic motion and pole location on the s-plane 

 

if ( )0 0,x x= =
�

� �   

( ) ( )cos nx t x tω=
�

 

 

The period T  is the time required for a periodic motion to repeat itself. In the 

present case, 

 

2 2
Period  seconds

n

T
k

m

π π

ω
= =   

 

The frequency f of a periodic motion is the number of cycles per second (cps), and 

the standard unit of frequency is the Hertz (Hz); that is 1 Hz is 1 cps. In the present 

case, 
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1

2
Frequency Hz

k

mf
T π

= =  

 

The undamped natural frequency nω  is the frequency in the free vibration of a 

system having no damping. If the natural frequency is measured in Hz or in cps, it is 

denoted by nf . If it is measured in rad/sec, it is denoted by nω . In the present 

system, 

2 rad/secn n

k
f

m
ω π= =  

 

Rotational System.Rotational System.Rotational System.Rotational System. Rotor mounted in bearings is shown in figure 3-

13 below. The moment of inertia of the rotor about the axis of rotation is J . Friction 

in the bearings is viscous friction and that no external torque is applied to the rotor. 

 

b

ω

J

ω

bω
J

 
Figure 3-13 Rotor mounted in bearings and its FBD. 

 

 

Apply Newton’s second law for a system in rotation  

 

M J Jθ ω= =∑ �� �  

 

( )0 / 0ω ω ω ω+ = ⇒ + =� �J b b J  

or 

( )
1

0
/

ω ω+ =�
J b

 

Define the time constant ( )/J bτ = , the previous equation can be written in the 

form 

( )
1

0, 0ω ω ω ω
τ

+ = =
�

�  

 

which represents the equation of motion as well as the mathematical model of the 

system shown. It represents a first order system. To find the response ( )tω , take 

LT of both sides of the previous equation. 
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( ) ( )
[ ]

( )
[ ]
�

1
0 0

LL

s s s

ωω

ω
τ

   
   Ω − + Ω =
   
    �

�������
 

 

( )
1

s s ω
τ

 
+ Ω = 

 
�
   ⇒  ( )

( )1

ω

τ
Ω =

+

�s
s

 

where the denominator ( )1 τ+s  is known as the characteristic polynomial and the 

equation ( )1 0τ+ =s  is called the characteristic equation.  

Taking inverse LT of the above equation will give the expression of ( )tω  

 

( ) ( ) ( )/ 1/τ αω ω ω ω
− − −= = =

� � �

b J t t t
t e e e  

 

It is clear that the angular velocity decreases exponentially as shown in the figure 

below. Since 
( )/

lim 0;
t

t
e

τ−

→∞
=  then for such decaying system, it is convenient to 

depict the response in terms of a time constant.  

 

0 5 10 15 20
0

0.5

1.5

time (t)

ω
(t

)

Free response of a rotor bearing system

α=0.5

α=0.7

α=1

α=0

α=2

α=5

α=10

α=0.2

ωωωω
o

 

Figure 3-14 Graph of 
αω −

�

te  for ranges of α . 
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A time constant is that value of time that makes the exponent equal to -1. For this 

system, time constant /J bτ = . When t τ= , the exponent factor is 

( ) ( )/ / 1 0.368 36.8 %
t

e e e
τ τ τ− − −= = = =  

 

This means that when time constant τ= , the time response is reduced to 36.8 %  

of its final value. We also have  

( )

( )

time constant/

0.37

4 0.02

J bτ

ω τ ω

ω τ ω

= =

=

=

�

�

 

τ 2τ 3τ 4τ

0.37ω
�

0.02ω
�

( )tω

ω
�

5τ

t

( )b J t

o eω
−

 
Figure 3-15 Curve of angular velocity ω  versus time t for the rotor shown in Figure 3-13. 

 

 

http://www.sciences.univ-nantes.fr/physique/perso/gtulloue/equadiff/equadiff.html 

 

SpringSpringSpringSpring----MassMassMassMass----Damper System.Damper System.Damper System.Damper System. Consider the simple mechanical system 

shown involving viscous damping. Obtain the mathematical model of the system 

shown. 

m

( )x t

k
b

m

+ x

�b x k x

 
Figure 3-16  Mass -Spring –Damper System and the FBD. 
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i) The FBD is shown in the figure 3-16. 

ii) Apply Newton’s second law of motion to a system in translation: 

 

F mx

bx k x mx

=

− − =

∑ ��

� ��
 

or 

Free Vibration of a second order syste0 m+ ⇒+ =�� �m x bx k x  

 

If in SI units 0 1 0 4 4. kg, . N/m-s, and N/mm b k= = = , the above differential 

equation  becomes 

 

0.1 0.4 4 0 4 40 0+ + = ⇒ + + =�� � �� �x x x x x x  

 

To obtain the free response ( )x t , assume ( )0x x=
�
 and ( )0 0.=�x  By writing the 

Laplace transform of ( )x t  as ( ) ( )L x t X s=   , we obtain Laplace transform of 

both sides of the given equation  

 

( ) ( ) ( )

( )

( ) ( )

( )

( )

( )

2 0 0 4 0 40 0

         

 − − + − + =       
���

�
������� ����������������

L x t L x tL x t

s X s s x x sX s x X s  

 

Substitute in the transformed equation ( )0x x=
�
 and ( )0 0,=�x  and rearrange, we 

obtain 

 

( ) [ ]2 4 40 4 + + = +  � �
s s X s sx x  

or solving for ( )X s  yields 

( )
( ) ( )

2

Characteristic poly

2

nomial

4 4

4 4

4 4 00

+ +
= =

++ ++

� �

�

�����

sx x s

s s
X s x

s s
 

Which can be written as  

( )
( ) ( )

2

Characteristic polynomial

4

4 40+

+
= =

+
� �����

X s

sx s

s
G s  

 

where ( )G s  is referred to as the transfer function that gives the relationship 

between the input 
�

x  and the output ( )X s . ( )G s  can be shown graphically as: 

 



ME 413 Systems Dynamics & Control    Chapter Three: Mechanical Systems  

 

 

17/31 
 

Transfer function

���������

( )
2

C haracte ristic  po lynom ial

4 4 0

4

+

+

+�����s s

s

( )X s�
x

Input

�������
Output

�������

 
 

Figure 3-17  Transfer function between input and output. 

 

 

iii) It is clear that the characteristic equation of the system is 
2 4 40 0+ + =s s  and 

has complex conjugates roots. 

 

( )

( )
2

22 2 2

2

4 40 4 4 36 2 6 0

+

+ + = + + + = + + =�����
s

s s s s s  

The roots of the above equation are therefore complex conjugate poles given by 

 

1 2and2 6 62= + = −− −s sj j  

 

iv) The expression of ( )X s  can be written now as: 

 

( )
( ) ( )

( )

( )

( ) ( )

( )

( ) ( )

2 2 2 22 2 2

2 22 2

4 2 2 2 2

2 6 2 6

1 6

3

2 6

2

2 6 2 6

4 40

+ + + +
= = = +

+ + + + + +

+
= +

+ + +

+ +

+

� � � �
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s
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v) Solving for ( ) ( )1−=   x t L X s  yields  

 

( ) 2 21
cos sin

3
6 6

− − 
= + 

 
�

t t
x t x e t e t  
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Figure 3-18  Free Vibration of the mass-spring-damper system described by 

4 40 0+ + =�� �x x x with initial conditions  ( )0x x=
�
 and ( )0 0,=�x . 
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Figure 3-18  Free Vibration of the mass-spring-damper system described by 

4 40 0+ + =�� �x x x with initial conditions  ( )0x x=
�
 and ( )0 0,=�x . 
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Remark: The expression of ( ) ( )cos sinω ω+a t b t  can be written in terms of 

( )cos ωt  or ( )sin ωt , that is 

( ) ( ) ( ) ( )2 2

2 2 2 2
cos sin cos cosω ω ω ω

 
+ = + + 

+ + 

a b
a t b t a b t t

a b a b
 

Define ψ  such that 

1

2 2 2 2
cos and sin tanψ ψ ψ −  

= = ⇒ =  
 + +

a b b

aa b a b
 

Therefore 

 

( ) ( ) ( ) ( )( )2 2cos sin cos cos sin sinω ω ψ ω ψ ω+ = + +a t b t a b t t  

 

Using the identity 

 

( ) ( ) ( )cos cos cos sin sinω ψ ω ψ ω ψ− = +t t t  

 

Therfore, 

( ) ( ) ( )2 2cos sin cosω ω ω ψ+ = + −a t b t a b t  

or 

( ) ( ) ( )2 2cos sin sinω ω ω ϕ+ = + +a t b t a b t  

Where 

1

2 2 2 2
sin and sin tanϕ ϕ ϕ −  

= = ⇒ =  
 + +

a b a

ba b a b
 

Therefore, 

( ) ( )210
sin6 71.56

3

−= + �

�

t
x t x e t  

 

3333....4444 WORK ENERGY, AND POWWORK ENERGY, AND POWWORK ENERGY, AND POWWORK ENERGY, AND POWERERERER        
 

Work.Work.Work.Work. The work done in a mathematical system is the product of a 

force and a distance (or a torque and the angular displacement) through which the 

force is exerted with both force and distance measured in the same direction. 

 

d

F

W F d=

d
F

cosW F d θ=

θ

 
Figure 3-19 Work done by a force  
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The units of work in SI units are : 

 

[[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]work force distance N-m Joule J= × = = == × = = == × = = == × = = =  . 

 

The work done by a spring is given by: 

 

�
2

0

1

2
d

x

F

W k x x k x= =∫  

 

l x+

FF

l

k

 
 

Figure 3-19 Work done by a spring. 

 

 

Energy.Energy.Energy.Energy. Energy can be defined as ability to do work. Energy can be 

found in many different forms and can be converted from one form to another. For 

instance, an electric motor converts electrical energy into mechanical energy, a 

battery converts chemical energy into electrical energy, and so forth. 

 

According to the law of conservation of energy, energy can be neither created 

nor destroyed. This means that the increase in the total energy within a system is 

equal to the net energy input to the system. So if there is no energy input, there is 

no change in the total energy of the system. 

 

Potential Energy.Potential Energy.Potential Energy.Potential Energy. The Energy that a body possesses because of its 

position is called potential energy.  

• In mechanical systems, only mass and spring can store potential 

energy. 

• The change in the potential energy stored in a system equals the work 

required to change the system’s configuration.  

• Potential energy is always measured with reference to some chosen 

level and is relative to that level.  

 

 

F

m

m gh
x

 
 

Figure 3-20 Potential energy 
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Refer to Figure 3-20, the potential energy, U of a mass m  is given by: 

0

d
x

U mg x mgh= =∫  

For a translational spring, the potential energy U (sometimes called strain energy 

which is potential energy that is due to elastic deformations) is: 

2

0 0

1

2
d d

x x

U F x k x x k x= = =∫ ∫  

If the initial and final values of x  are 1x  and 2x , respectively, then 

2 2

1 1

2 2

2 1

1 1

2 2
Change  in potential  energy d d

x x

x x

U F x k x x k x k x∆ = = = −∫ ∫  

 

Similarly, for a torsional spring 

 

2 2

1 1

2 2

2 1

1 1

2 2
Change  in potential  energy d dT T TU T k x k k

θ θ

θ θ

θ θ θ θ∆ = = = −∫ ∫  

 
Kinetic Energy.Kinetic Energy.Kinetic Energy.Kinetic Energy.  Only inertia elements can store kinetic energy in 

mechanical systems. 

 

2

2

1

2

1

2

(Translation)

Kinetic energy

(Rotation)

=

mv

T

Jθ




= 



�

 

 

The change in kinetic energy of the mass is equal to the work done on it by 

an applied force as the mass accelerates or decelerates. Thus, the change in kinetic 

energy T  of a mass m  moving in a straight line is 

 

2 2

1 1

2 2 2

1 1 1

2 2

2 1

1 1

2 2

Change in kinetic energy
d

 d d
d

d d d

x t

x t

t t v

t t v

x
T W F x F t

t

F v t mv v t mv v

mv mv

∆ = ∆ = =

= = =

= −

∫ ∫

∫ ∫ ∫�  

The change in kinetic energy of a moment of inertia in pure rotation at 

angular velocity θ�  is  
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2 2

2 1

1 1

2 2
Change in kinetic energy T J Jθ θ∆ = −� �  

 

 

Dissipated Energy.Dissipated Energy.Dissipated Energy.Dissipated Energy. Consider the damper shown in Figure 3-21 in 

which one end is fixed and the other end is moved from  1x  to 2x . The dissipated 

energy W∆  in the damper is equal to the net work done on it: 

 

�

2 2 2 2

1 1 1 1

2d
d d d d

d

x x t t

x x t tF

x
W F x bx x b x t b x t

t
∆ = = = =∫ ∫ ∫ ∫� � �  

 

1x
2x

x

b
 

 

Figure 3-20 Damper. 

 

 

Power.Power.Power.Power. Power is the time rate of doing work. That is, 

 

d
Power

d

W
P

t
= =  

where dW  denotes work done during time interval dt .  

In SI units, the work done is measured in Newton-meters and the time in seconds. 

The unit of power is :  

 

[[[[ ]]]] [[[[ ]]]]
N-m Joule

Power Watt W
s s

        
= = = == = = == = = == = = =                 

 . 

 

 

Passsive Elements.Passsive Elements.Passsive Elements.Passsive Elements. Non-energy producing element. They can only 

store energy, not generate it such as springs and masses. 

 

 

Active Elements.Active Elements.Active Elements.Active Elements. Energy producing elements such as external 

forces and torques. 

 

 

Energy Method fEnergy Method fEnergy Method fEnergy Method for Deriving Equations of Motion.or Deriving Equations of Motion.or Deriving Equations of Motion.or Deriving Equations of Motion. Equations 

of motion are derive from the fact that the total energy of a system remains the 

same if no energy enters or leaves the system. 
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Conservative Systems.Conservative Systems.Conservative Systems.Conservative Systems. Systems that do not involve friction 

(damping) are called conservative systems. 

 

( ) �
Net work done on the 

Change in the total energy system by external forces

T U W∆ + = ∆
�����

 

 

If no external energy enters the system ( 0W∆ = , no work done by external 

forces) then 

 

( ) 0T U∆ + =  

or 

 

( ) constantT U+ =  

 

 

An Energy Method for Determining NatAn Energy Method for Determining NatAn Energy Method for Determining NatAn Energy Method for Determining Natural Frequencies.ural Frequencies.ural Frequencies.ural Frequencies.

 The natural frequency of a conservative system can be obtained from a 

consideration of the kinetic energy and the potential energy of the system. Let us 

assume that we choose the datum line so that the potential energy at the equilibrium 

state is zero. Then in such a conservative system, the maximum kinetic energy 

equals the maximum potential energy , or 

 

max maxT U=  

 

Solved Problems.Solved Problems.Solved Problems.Solved Problems. 

 

Example 3-5 Page 80 (Textbook) 

 

Consider the system shown in the Figure shown. The displacement x  is 

measured from the equilibrium position. 

The Kinetic energy is:  
21

2
T mx= �  

The potential energy is:  
21

2
U k x=  

The total energy of the system is  
2 21 1

2 2
T U mx k x+ = +�  

k

m

x
 

 

The change in the total energy is  

Conservation of energy only  

for conservative systems  

(No friction or damping) 
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( )

( )

2 21 1
0

2 2

1 1
2 2 0

2 2

0

d d

d d
T U mx k x

t t

mxx k xx

x mx k x

 
+ = + = 

 

= × × + × × =

= + =

�

��� �

� ��

 

Since x� is not zero then we should have 

0mx k x+ =��  

or 

20 0n

k
x x x x

m
ω+ = ⇒ + =�� ��  

where 

n

k

m
ω =  

 

is the natural frequency of the system and is expressed in rad/s. Another way of finding the 

natural frequency of the system is to assume a displacement of the form  

 

sinω=
n

x A t  

 

Where A is the amplitude of vibration. Consequently, 

 

( )

( )

22 2 2

22 2

1 1

2 2

1 1

2 2

cos

sin

n

n

T mx m A t

U k x k A t

ω ω

ω

= =

= =

�

 

 

Hence the maximum values of T  and U  are given by 

 

2 2 21 1

2 2
max max,nT m A U k Aω= =  

Since max maxT U= , we have  

2 2 21 1

2 2
nm A k Aω =  

From which 

n

k

m
ω =  
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TABLE 1.TABLE 1.TABLE 1.TABLE 1.    Summary of elements involved in linear mechanical systemsSummary of elements involved in linear mechanical systemsSummary of elements involved in linear mechanical systemsSummary of elements involved in linear mechanical systems    

 

Translation Rotation

Spring k

FF
1

x
2

x

kxxxkF =−= )(
21

k
T T

2
θ1θ

θθθ kkT =−= )(
21

Inertia

Damper b

FF

1
x� 2

x�

xbxxbF ��� =−= )(
21

b

T T

2θ�1θ�

θθθ ��� bbT =−= )(
21

Element

m
1

F

x

2
F

3
F

4
F

∑ = amF
T

θJ

∑ = αJT

 
 

 

PROCEDURE 

 

The motion of mechanical elements can be described in various dimensions as translational, 

rotational, or combination of both. The equations governing the motion of mechanical 

systems are often formulated from Newton’s law of motion. 

 
1. Construct a model for the system containing interconnecting elements. 

2. Draw the free-body diagram. 

3. Write equations of motion of all forces acting on the free body diagram. For 

translational motion, the equation of motion is Equation (1), and for rotational 

motion, Equation (2) is used. 


