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CHAPTER 3
MECHANICAL SYSTEMS

A. BAZOUNE

3.1

3.2

INTRODUCTION

Mathematical Modeling and response analysis of mechanical systems are the subjects
of this chapter.

MECHANICAL ELEMENTS

Any mechanical system consists of mechanical elements. There are three types of
basic elements in mechanical systems:

> Inertia elements
> Spring elements
> Dampers elements

INERTIA ELEMENTS. Mass and moment of inertia. Inertia may be

defined as the change in force (torque) required to make a unit change in
acceleration (angular acceleration). That is,

) ) change in force N
inertia (mass) = - or kg
change in acceleration m/s

change in torque N-m
inertia (moment of inertia) = 5 ;! or kg

change in ang. accel. rad/s’

SPRING ELEMENTS. A linear spring is a mechanical element that can
be deformed by external force or torque such that the deformation is directly
proportional to the force or torque applied to the element.

TRANSLATIONAL SPRINGS

For translational motion, (Fig 3-1(a)), the force that arises in the spring is
proportional to X and is given by

F=kx (3-1)

where X is the elongation of the spring and k is a proportionality constant called
the spring constant and has units of [force/displacement]=[N/m] in SI units.

1/31



]|

L

4

ME 413 Systems Dynamics & Control

Chapter Three: Mechanical Systems
At point P, the spring force F acts opposite to the direction of the force F applied
at point P.

Vs 7
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X+x4>J

(£
Figure 3-1

(a) One end of the spring is deflected; (b) both ends of the spring are
deflected. (X is the natural length of the spring)

Figure 3-1(b) shows the case where both ends P and Q of the spring are

deflected due to the forces f applied at each end. The net elongation of the spring
is X, —X, . The force acting in the spring is then

F=k(x,—x,) (3-2)
Notice that the displacement X + X, and X, of the ends of the spring are measured
relative to the same reference frame.

PRACTICAL EXAMPLES.

Pictures of various types of real-world springs are found below.
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TORSIONAL SPRINGS

Consider the torsional spring shown in Figure 3-2 (a), where one end is fixed
and a torque T is applied to the other end. The angular displacement of the free

endis @. The torque T in the torsional spring is

T=k 6 (3-3)

where @ is the angular displacement and kT is the spring constant for

torsional spring and has units of [Torque/angular displacement]=[N-m/rad] in SI
units.

—0C cC—0C

Figure 3-2 (a) A torque 7 is applied at one end of torsional spring, and the other
end is fixed; (b) a torque T is applied at one end, and a torque 7, in
the opposite direction, is applied at the other end.

At the free end, this torque acts in the torsional spring in the direction opposite to
that of the applied torque 7.

For the torsional spring shown in Figure 3-2(b), torques equal in magnitude
but opposite in direction, are applied to the ends of the spring. In this case, the

torque T acting in the torsional spring is
T=k (6-6,) (3-4)

At each end, the spring acts in the direction opposite to that of the applied torque at
that end.

For linear springs, the spring constant k may be defined as follows

_ change in force N
spring constant k = —
b ~ change in displacement of spring m
for translational spring
_ change in torque N-m
spring constant k., =
- ~ change in angular displacement of spring  rad

for torsional spring

Spring constants indicate stiffness; a large value of k or kT corresponds to a

hard spring, a small value of k or kT to a soft spring. The reciprocal of the spring
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constant k is called compliance or mechanical capacitance C. Thus C:1/k.
Compliance or mechanical capacitance indicates the softness of the spring.

PRACTICAL EXAMPLES.

Pictures of various types of real-world springs are found below.

PRACTICAL SPRING VERSUS IDEAL SPRING. Figure 3-3 shows the force
displacement characteristic curves for linear and nonlinear springs.

e All practical springs have inertia F
and damping. A

Nonlinear Spring
(Hard Spring)
e An ideal spring has neither mass

nor damping (internal friction)
and will obey the linear force
displacement law.

Linear Spring

Nonlinear Spring
(Soft Spring)

.
-

Figure 3-3 Force-displacement
characteristic curves for linear and
nonlinear springs.

DAMPER ELEMENTS. A damper is a mechanical element that dissipates
energy in the form of heat instead of storing it. Figure 3-4(a) shows a schematic
diagram of a translational damper, or a dashpot that consists of a piston and an-oil-
filled cylinder. Any relative motion between the piston rod and the cylinder is resisted
by oil because oil must flow around the piston (or through orifices provided in the
piston) from one side to the other.

A
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fe ifxlf C((wz I_!
T

Figure 3-4 (a) Translational damper; (b) torsional (or rotational) damper.

TRANSLATIONAL DAMPER

In Fig 3-4(a), the forces applied at the ends of translation damper are on the
same line and are of equaI magnltude but opp05|te in direction. The velocities of the

ends of the damper are xl and x2 Velocities x1 and x2 are taken relative to the
same frame of reference.

In the damper, the damping force F that arises in it is proportional to the
velocity differences 5C1 —J'CZ of the ends, or

F=b(x —x,)=0bx (3-5)

where X =X, —X, and the proportionality constant D relating the damping force F

to the velocity difference X is called the viscous friction coefficient or viscous
friction constant. The dimension of D is [force/Velocity] = [N/m-s] in SI units.

TORSIONAL DAMPER

For the torsional damper shown in Figure 3-4(b), the torques 7 applied to
the ends of the damper are of equal magnitude, but opposite in direction. The
angular velocities of the ends of the damper are 91 and 92 and they are taken
relative to the same frame of reference. The damping torque T that arises in the

damper is proportional to the angular velocity differences 91 — 92 of the ends, or
T=b,(6,-6,)=b.6 (3-6)

where, analogous to the translation case, 9291—92 and the proportionality

constant bT relating the damping torque T to the angular velocity difference O is
called the viscous friction coefficient or viscous friction constant. The
dimension of D is [torque/angular velocity] = [N-m/rad] in SI units.
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of an electrical resistor on the dynamic behavior of an electrical system.
Consequently, a damper is often referred to as a mechanical resistance element
and the viscous friction coefficient as the mechanical resistance.

PRACTICAL EXAMPLES.

Pictures of various examples of real-world dampers are found below.

PRACTICAL DAMPER VERSUS IDEAL DAMPER

e All practical dampers produce inertia and spring effects.
e An ideal damper is massless and springless, dissipates all energy, and obeys
the linear force-velocity law (or linear torque-angular velocity law).

NONLINEAR FRICTION. Friction that obeys a linear law is called linear
friction, whereas friction that does not is described as nonlinear. Examples of
nonlinear friction include static friction, sliding friction, and square-law friction.
Square law-friction occurs when a solid body moves in a fluid medium. Figure 3-5
shows a characteristic curve for square-law friction.

Force A

Velocit;

Figure 3-5 Characteristic curve for square-law friction.
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N
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A damper is an element that provides resistance in mechanical motion, and,
as such, its effect on the dynamic behavior of a mechanical system is similar to that
6/31
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3.3 MATHEMATICAL MODELING OF SIMPLE
MECHANICAL SYSTEMS

A mathematical model of any mechanical system can be developed by applying
Newton’s laws to the system.

RIGID BODY. When any real body is accelerated , internal elastic

deflections are always present. If these internal deflections are negligibly small
relative to the gross motion of the entire body, the body is called rigid body. Thus,
a rigid body does not deform.

NEWTON’S LAWS.
NEWTON'’S FIRST LAW: (Conservation of Momentum)

The total momentum of a mechanical system is constant in the absence of
external forces. Momentum is the product of mass M and velocity U, or M 0, for

translational or linear motion. For rotational motion, momentum is the product of
moment of inertia ] and angular velocity @, or ](0, and is called angular
momentum.

NEWTON’S SECOND LAW:

TRANSLATIONAL MOTION: If a force is acting on rigid body
through the center of mass in a given direction, the acceleration of the rigid body in
the same direction is directly proportional to the force acting on it and is inversely
proportional to the mass of the body. That is,

force

acceleration =
mass

or

(mass)(acceleration) = force

Suppose that forces are acting on a body of mass m . If ZF is the sum of all
forces acting on a mass m through the center of mass in a given direction, then

> F=ma (3-7)

where 4 is the resulting absolute acceleration in that direction. The line of action of
the force acting on a body must pass through the center of mass of the body.
Otherwise, rotational motion will also be involved.

ROTATIONAL MOTION. For a rigid body in pure rotation
about a fixed axis, Newton’s second law states that

(moment of inertia)(angular acceleration) = torque
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or
dYT=]a (3-8)

where ZT is the sum of all torques acting about a given axis, ] is the moment of
inertia of a body about that axis, and & is the angular acceleration of the body.

NEWTON’S THIRD LAW. It is concerned with action and reaction
and states that every action is always opposed by an equal reaction.

TORQUE OR MOMENT OF FORCE. Torque, or moment of force, is
defined as any cause that tends to produce a change in the rotational motion of a
body in which it acts. Torque is the product of a force and the perpendicular distance
from a point of rotation to the line of action of the force.

[ Torque |=[forcexdistance] = [N-m] in SI units

MOMENTS OF INERTIA. The moment of inertia | of a rigid body about an
axis is defined by

J= j r*dm (3-9)

Where dm is an element of mass, r is the distance from axis to dm, and integration
is performed over the body. In considering moments of inertia, we assume that the
rotating body is perfectly rigid. Physically, the moment of inertia of a body is a
measure of the resistance of the body to angular acceleration.

A Y m

dm

Figure 3-6 Moment of inertia

PARALLEL AXIS THEOREM. Sometimes it is necessary to calculate the
moment of inertia of a homogeneous rigid body about an axis other than its
geometrical axis.
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Figure 3-7 Homogeneous cylinder rolling on a flat surface

As an example to that, consider the system shown in Figure 3-7, where a cylinder of
mass m and a radius R rolls on a flat surface. The moment of inertia of the cylinder
is about axis CC’is

1
= —mR’
Jc >

The moment of inertia | of the cylinder about axis xx”is
2 1 2 »_ 3 2
J.=].+mR :EmR +mR :EmR

FORCED RESPONSE AND NATURAL RESPONSE. The behavior
determined by a forcing function is called a forced response, and that due initial
conditions is called natural response. The period between initiation of a response and
the ending is referred to as the transient period. After the response has become
negligibly small, conditions are said to have reached a steady state.

A Response (1)

Steady state
response

Transient Response

- 1

Figure 3-8 Transient and steady state response

PARALLEL AND SERIES SPRINGS ELEMENTS. In many
applications, multiple spring elements are used, and in such cases we must obtain
the equivalent spring constant of the combined elements.
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PARALLEL SPRINGS. For the springs in parallel, Figure
3-9, the equivalent spring constant keq is obtained from the relation

Vz kl
—/ MV o '
VIV r A

Figure 3-9 Parallel spring elements

F=k x+k, x=(k +k,)x=k, x

where
k., =k +k, (for parallel springs) (3-9)
This formula can be extended to 71 springs connected side-by-side as follows:

k,, =Yk, (for parallel springs) (3-10)
i=1

SERIES SPRINGS. For the springs in series, Figure 3-10, the force in
each spring is the same. Thus

7 7
— —x

kl k2 k eq

MWW ——F MWW —F

Figure 3-10 Series spring elements

F=ky, szz(x_y)

Eliminating from these two equations yields

F=k, x—£
k,
or
Fokx—tor o kx-relepo[Rtkp
k, k, k,

10/31
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ME 413 Systems Dynamics & Control Chapter Three: Mechanical Systems
or
k +k k. k 1
x=|+—2|F & F=|—21 X=| 54— |X
k,k, k +k, L
ki K
k
eq
where
1 1 1 . . 3-11
—=—+— (for series springs) (3-11)
eq kl k2
which can be extended to the case of 71 springs connected end-to-end as follows
1 = 1 . .
— =) — (for series springs) (3-12)
keq i=l1 ki
FREE VIBRATION WITHOUT DAMPING.
Consider the mass spring system shown in Figure 3-11. The equation of motion can
be given by
mxi+kx=0 [///1//]]/
or
.k .9
X+—x=0 = x+w x=0
m k
where
k
o, =,—
m m
is the natural frequency of the system and is
expressed in rad/s.
Taking LT of both sides of the above equation where
x(())zxo and X(O)ZXO gives x(t)
Figure 3-11 Mass Spring
System
X (s)—sx(0)—x(0)+@ X (s)=0
L[x]
rearrange to get
SX, + X, .
X (s)=——=, = Remember poles are s==jm,
ST+,
complex conjugates
11/31
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ME 413 Systems Dynamics & Control Chapter Three: Mechanical Systems
X, @ s
X($)=—"—F5"5+x, 57—
@ s+, s+,
and the response x(t) is given by
X
= n o n
x(1) sin(@,7)+ x, cos(a,t)
Im
s —plane
a)n
» !
4

It is clear that the response x(t) consists of a sine and cosine terms and depends

on the values of the initial conditions X, and X, . Periodic motion such that described
by the above equation is called simple harmonic motion.

x(1) [«— slope =%,

\

a)n
Re
—J _a)n
Z Period =T = 27
[0

n

Figure 3-12 Free response of a simple harmonic motion and pole location on the s-plane
if £(0)=x, =0,
x(t)=x, cos(@,t)

The period T is the time required for a periodic motion to repeat itself. In the
present case,

Period T = Z—ﬂ- = z—ﬂ- seconds

o, /k
m
The frequency fof a periodic motion is the number of cycles per second (cps), and

the standard unit of frequency is the Hertz (Hz); that is 1 Hz is 1 cps. In the present
case,
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system having no damping. If the natural frequency is measured in Hz or in cps, it is
denoted by f,1 If it is measured in rad/sec, it is denoted by @, . In the present

system,

W, =2xf, = K rad/sec
m

ROTATIONAL SYSTEM. Rotor mounted in bearings is shown in figure 3-
13 below. The moment of inertia of the rotor about the axis of rotation is | . Friction
in the bearings is viscous friction and that no external torque is applied to the rotor.

wb ®

N
WA Z
7 ) — A bw

Figure 3-13 Rotor mounted in bearings and its FBD.

Apply Newton’s second law for a system in rotation

dM=J0=Jd
Jo+bo=0 = @+(b/J)w=0
or
o+ w=0
(J/b)
Define the time constant 7 = (]/b), the previous equation can be written in the
form
1
o+—w=0, o(0)=0
T
which represents the equation of motion as well as the mathematical model of the
system shown. It represents a first order system. To find the response a)(t) , take
LT of both sides of the previous equation.
13/31
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Frequency f 1 Ty
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The undamped natural frequency @, is the frequency in the free vibration of a
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where the denominator s+(1/2') is known as the characteristic polynomial and the
equation s+ (1/2') =0 is called the characteristic equation.

Taking inverse LT of the above equation will give the expression of a)(t)

—-(b1J)t _

o(t)=w, e = e ot

= e

()

It is clear that the angular velocity decreases exponentially as shown in the figure

—(t/7

below. Since lim e ) =0); then for such decaying system, it is convenient to

[—>00
depict the response in terms of a time constant.

Free response of a rotor bearing system
1.5

Figure 3-14 Graph of @ e “ for ranges of (¥ .
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$Q(s) = @(0) [+ Q(s) |=0
N y T| ——2
[a] L[]
1 )
+—|Q(s)=w os)=—%
Es rj (s)=a - (s) s+(1/7)
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A time constant is that value of time that makes the exponent equal to -1. For this
system, time constant 7=J/b. When t =7, the exponent factor is

e =) o1 2 0.368=36.8 %

This means that when time constant= T, the time response is reduced to 36.8 %

of its final value. We also have
7 =J /b =time constant

o(7)=0.37 @,
o(47)=0.02 ®,

,

037w

002

Figure 3-15 Curve of angular velocity @ versus time f for the rotor shown in Figure 3-13.

http://www.sciences.univ-nantes.fr/physique/perso/gtulloue/equadiff/equadiff.html

SPRING-MASS-DAMPER SYSTEM. Consider the simple mechanical system
shown involving viscous damping. Obtain the mathematical model of the system

shown.
L

S

x(1)
Figure 3-16 Mass -Spring —Damper System and the FBD.
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i) The FBD is shown in the figure 3-16.
i) Apply Newton’s second law of motion to a system in translation:
Vi

L

mxi+bx+kx=0 = Free Vibration of a second order system

If in SI units m=0.1kg, b=04N/m-s, andk=4N/m, the above differential
equation becomes

0.1x+04x+4x=0 = Xx+4x+40x=0

To obtain the free response x(t), assume x(()) =X, and x(()) = (. By writing the

Laplace transform of x(t) as L[x(t)]zX(s), we obtain Laplace transform of

both sides of the given equation

':SZX (s)—s x(O)—fc(O)}+4[sX (s)—x(O)]+40[X(s)] =0

~ Vv —

RG] L[ x(r) ] L[ x(1)]

Substitute in the transformed equation x(O) =x, and x(()) =(), and rearrange, we
obtain

[sz +4s +40]X (s) = [sxo +4x0]
or solving for X (s) yields
sx. +4x s+4
K(o)osmran) _ (5+d)
s"+4s+40 s +4s5+40
%/_/

Characteristic polynomial

Which can be written as
_X(s)_ (s+4)
X, s> +4s5+40

Characteristic polynomial

where G(S) is referred to as the transfer function that gives the relationship

between the input X, and the output X (s) G(s) can be shown graphically as:
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— .
Characteristic polynomial

Input

e
Transfer function

Figure 3-17 Transfer function between input and output.

iii) It is clear that the characteristic equation of the system is s +4s+40=0 and
has complex conjugates roots.

s> +4s+40=5>+45+4+36=(s+2) +6>=0
%r_/
(s+2)°

The roots of the above equation are therefore complex conjugate poles given by
s, =—2+ 6 and s,=-2- /6

The expression of X (s can be written now as:

)
(s+4) (s+2+2) (s+2) 2
X(s)= > X = T X = Xt %,
s +4s+40  (s42) +6 (s+2) +6 (s+2) +6
(s+2) 6

1
T ot +§—22Xa
(s+2) +6 (s+2) +6

v) Solving for x(t) = L_1|:X (S):| yields

x(r)=x, (e‘zr cos 6 + %e‘zr sin 6t)

———————————————————————————————————————————————————————————————————————
17/31
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Damped period, 7, =—
/ @,

Figure 3-18 Free Vibration of the mass-spring-damper system described by
X +4x+ 40 x = 0 with initial conditions x(O) =X, and x(O) =0,.

Pole-Zero Map

Imaginary Axis
a8
A
|
|
|
|
|
L r___r___°r___|

Real Axis

Free vibration of mass-spring-damper system

x(t)

Figure 3-18 Free Vibration of the mass-spring-damper system described by
X +4x+ 40 x =0 with initial conditions x(()) =x, and x(O) =0,.
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3.4 WORK ENERGY, AND POWER
WORK. The work done in a mathematical system is the product of a
force and a distance (or a torque and the angular displacement) through which the
force is exerted with both force and distance measured in the same direction.
d d
iy 4k Ja
' ' ' ' é 9
: = F E ;
N . N
W =Fd W =F dcos@
Figure 3-19 Work done by a force
19/31
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Remark: The expression of acos(a)t)+bsin(a)t) can be written in terms of

cos(ar) or sin(ax), that is

acos(@r)+bsin(ar) =+a’* +b2(

Define ¥ such that

cosl//—L and siny/—L = l//—tan_l(éj
a’+b’ Na’ +b’ a

Therefore

a b
WCOS(M)'FWCOS(M)j

acos(ar)+bsin(at)=a’ +b* (cosycos(ar)+sinysin(ar))
Using the identity

cos(@r —y) = cos(a@r)cosy +sin (@ )siny

Therfore,

acos(at)+bsin(@)=~a’ +b* (cosar —y)
or

acos(@r)+bsin(@t)=a*+b* (sinax + @)
Where

sin(p—L and sin(p—L = (p—tan_l(gj
a’+b’ Na’ +b’ b

Therefore,

x(t)=@xoe4’(sin6t+71.56°)

N
4
=



]|

L

4

I | I

b

ME 413 Systems Dynamics & Control

The units of work in SI units are :

found in many different forms and can be converted from one form to another. For
instance, an electric motor converts electrical energy into mechanical energy, a
battery converts chemical energy into electrical energy, and so forth.

According to the law of conservation of energy, energy can be neither created
nor destroyed. This means that the increase in the total energy within a system is
equal to the net energy input to the system. So if there is no energy input, there is
no change in the total energy of the system.

POTENTIAL ENERGY. The Energy that a body possesses because of its
position is called potential energy.

e In mechanical systems, only mass and spring can store potential
energy.

e The change in the potential energy stored in a system equals the work
required to change the system’s configuration.

e Potential energy is always measured with reference to some chosen
level and is relative to that level.

N m
I [ e
|

Figure 3-20 Potential energy

20/31
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[work] =[forcexdistance] =[N-m]=[Joule] =[]] .
The work done by a spring is given by:
X
L.,
W= jk xdx=—kx
— 2
0 F
k
F—/VVWWVN—>r
- —
[+x —™
Figure 3-19 Work done by a spring.
ENERGY. Energy can be defined as ability to do work. Energy can be
A
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Refer to Figure 3-20, the potential energy, U of a mass M is given by:
X
U= J‘mg dx =mgh
0

For a translational spring, the potential energy U(sometimes called strain energy
which is potential energy that is due to elastic deformations) is:

X X
1
u :J.F dx :J.kx dx =—kx*
0 0 2
If the initial and final values of X are X, and X,, respectively, then

Change in potential energy AU = J.F dx = Ikx dx = %kxi —%kxf

X X

Similarly, for a torsional spring

6, 0, 1 1
Change in potential energy AU = J.T dé = J. kT fdx= —kT 022 - kT 012

y ” 2 2

1 1
KINETIC ENERGY. Only inertia elements can store kinetic energy in
mechanical systems.
L,

E mv~  (Translation)
T = Kinetic energy = 1
5 Jé ? (Rotation)

The change in kinetic energy of the mass is equal to the work done on it by
an applied force as the mass accelerates or decelerates. Thus, the change in kinetic

energy T of a mass m moving in a straight line is

Xy t,
Change in kinetic energy AT = AW = IP dx = IP % dt
X 4
ty ty U,
:J.det=J‘mz'wdt= J.mvdv
t 4 [}

1
:Emvz —Emvl

The change in kinetic energy of a moment of inertia in pure rotation at

angular velocity @ is

21/31
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Change in kinetic energy AT = E ]922 - E ]912

DISSIPATED ENERGY. Consider the damper shown in Figure 3-21 in
which one end is fixed and the other end is moved from X, to X,. The dissipated

energy AW in the damper is equal to the net work done on it:

AW = dex jbxdx bj dt bj dt

F

O— - O=p X

Figure 3-20 Damper.

POWER. Power is the time rate of doing work. That is,

Power=P = d_W
dt

where dIV' denotes work done during time interval dt.
In SI units, the work done is measured in Newton-meters and the time in seconds.
The unit of power is :

JET [N'm]

. []OUIe}[Watt]:W :

S

PASSSIVE ELEMENTS. Non-energy producing element. They can only
store energy, not generate it such as springs and masses.

ACTIVE ELEMENTS. Energy producing elements such as external
forces and torques.

ENERGY METHOD FOR DERIVING EQUATIONS OF MOTION. Equations
of motion are derive from the fact that the total energy of a system remains the
same if no energy enters or leaves the system.

22/31
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CONSERVATIVE SYSTEMS.
(damping) are called conservative systems.

AT+U) = AW
Net work done on the
system by external forces

Systems that do not involve friction

[
Change in the total energy

If no external energy enters the system (AW =0, no work done by external
forces) then

A (T + u) =0 Conservation of energy only
or for conservative systems
(No friction or damping)

(T +U) = constant

AN ENERGY METHOD FOR DETERMINING NATURAL FREQUENCIES.

The natural frequency of a conservative system can be obtained from a
consideration of the kinetic energy and the potential energy of the system. Let us
assume that we choose the datum line so that the potential energy at the equilibrium
state is zero. Then in such a conservative system, the maximum kinetic energy
equals the maximum potential energy , or

Tmux - umux

SOLVED PROBLEMS.

Example 3-5 Page 80 (Textbook)

Consider the system shown in the Figure shown. The displacement X is
measured from the equilibrium position.

|
The Kinetic energy is: T= mez

1 m
The potential energy is: U= —kx2

2 be

| B 1
The total energy of the systemis 1 +U = mez +5kx2

The change in the total energy is




L

u

b
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d d(i1r ., 1

—(T+U)=—| —mx* +—kx* |=0

dt dt\ 2 2

1 | :
=—Xx2Zxmx¥+—x2Zxkxx=0

4

=x(m¥+kx)=0
Since X is not zero then we should have
mx+kx=0

.k .
it—x=0 = i+@ x=0
m
where

®,=,|—

n

m

is the natural frequency of the system and is expressed in rad/s. Another way of finding the
natural frequency of the system is to assume a displacement of the form

x=Asinat

Where Ais the amplitude of vibration. Consequently,

T :%mfcz :%m A’ (cosa,t)’

u=Ltre=Lpa (sinw,t)’
2 2

Hence the maximum values of 7" and U are given by

T =%m A, U =ik A

max
2

Since Tmax =U we have

max ’/

LnAa} =2k A’
2 2

From which

a)nz,/—
m
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1.49 Use the energy method to calculate the equation of motion and natural frequency
of an airplane's steering mechanism for the nose wheel of its landing gear. The
mechanism 1s modeled as the single-degree-of-freedom system 1llustrated 1n

Figure P1.49.
(Steering wheel)

{Tire-wheel

ky assembly)

The steering wheel and tire assembly are modeled as being fixed at ground for
this calculation. The steenng rod gear system 1s modeled as a linear spring and
mass system (. k) oscillating in the x direction. The shaft-gear mechanism 1s
modeled as the disk of inertia J and torsional stiffness k. The gear J turns
through the angle 8 such that the disk does not slip on the mass. Obtamn an
equation in the linear motion x.

Solution:
From kinematics: y=rf.= 1 =18

. L o 1 5
Kinetic energy: = ;JS + me
Potential energy: U= Efczx' + Eklﬁ -
Substitute 8 =T 41/ = lij:v'r2 + lﬁ:r:i.'2 +lk3x2 + 1 kﬁ x

g 2r 2r
Dernvative: @ =0
t

Joo Lk
— ¥+ i+ kyd + i =0
r r

(£ompefos o

J -
Equation of motion: (—2 +m}\'+ [i’c. +£2Jx =0
r r
b+ X
Natural frequency: o, = | = r
r
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1.50 A control pedal of an aircraft can be modeled as the single-degree-of-freedom
system of Figure P1.50. Consider the lever as a massless shaft and the pedal as a
lumped mass at the end of the shaft. Use the energy method to determune the
equation of motion in § and calculate the natural frequency of the system.

Assume the spring to be unstretched at 8 = 0.

iy

Figure P1.50

Solution: In the figure let the mass at @ = 0 be the lowest point for potential energy.
Then, the height of the mass m 1s (1-cos@)¢,.

Kinematic relation: x=£,0

Kinetic Energy: T= %m:&z = %rﬂfiéz

Potential Energy: U= %k(flﬁ)g +mgt;(1-cosf)

Taking the derivative of the total energy yields:
%(n U) = mb 306 + k(£76)8 + mgt,(sin6)d = 0

Rearranging, dividing by d8/dt and approximating sinf with 8 yields:
mi0 + (kf; +mgl,)8 =0

s .
s, - [Hatmgh
Voomb
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Problem # 2: (35 marks)

The figure shows a pendulum which consists
of a light rod of length L pivoted to a fixed
point at one end and having a mass m to its
other end. A spring of stiffness & is attached
as shown, at a distance a f{rom the pivot. In
the position shown the rod is displaced with a
small angle # from the equilibrium position.

Find the frequency of free oscillations of small amplitude in the plane of the
diagram.

ENERGY METHOD

Kinetic energy T:%mi:=ém{iﬂ9): =~;~m Lo
!
=

-

Potential Energy V' = kx + mgL(1-cos8)

. e 1o graviiaton
Due o elaghe defrmution

Since ¥, = a A the above expression becomes

T+V :ém L' +%ﬁ:a:€: +mg L(1-cosd)

d | | . . _
—(T+¥\==Im L 09+—=2kabbf+6meglsinf=0
dt ) z 2 t i

Since for small oscillations sinf =& , the above expression can be written as

O(mlG+(ka’+mgL)o]=0

since @ = (), then

[m‘r!f én—{_ka:+mg£ )o1=0

ar

(ku’-e—mgf.)

6 + - #=10
m L
compared to the standard harmonic nf.cﬂlator
6+ 8=0

one can write

_:Fl:ka]-a-mg!,}
@, == -
\ m L

" NEWTON'S SECOND LAW METHOD
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Problem # 3: (35 marks)

A uniform wheel of radius R can roll without
slipping on an inclined plane. Concentric with
the wheel, and fixed to it, is a drum of radius r
around which i1s wrapped one end of the string.
The other end of the string is fastened to a
spring of stiffness &, as shown. Both spring |
and string are pa:all:l to the plane. The total |
mass of the wheel/drum asscmbiy is M and |
its moment of inertia about the axis through the center of the wheel 0 is J. If
the wheel is displaced a small distance from its equilibrium position and
released (neglecting damping)

1. Derive the equation describing the ensuing motion.

2. Find the frequency of the oscillations. Damping is negligible.

|
|
|

NEWTON'S SECOND LAW METHOD

K(R+r)8 /‘
S
R

A A

If the wheel is given an anticlockwise rotation ¢ from the equilibrium position, the
spring extension is [ R+r }H so that the restoring spring force is K{.R ++r ) The

rotation is instantaneously about the contact point A, so that taking moment about

point O gives )
YT=1,0

-K(R+ry8=1,0
where the moment due to weight cancels with the moment due to initial spring
tension. The above expression can be written as:

ar

I,6+K(R+r)y8=0
or
K(R+r)
(R+r) p
oy

comparing this to the standard harmonic oscillator equation

{;}i_;_ =)

f+w =0

one can write
]

Mr

L'
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| K(R+r)

ENERGY METHOD

Kinetic energy I = % J, &

Potential Energy V ==%k(R-r):6‘3

Where weight and initial spring tension effects cancel

T+V=Ly @ ——I-k{R+r}:H:
2 2

ﬂ{hr]:lz.,n b -~ L 2k(R+r) 06 =0
dr' T2 2

The above expression can be written as

6l J, 6+k(R+r)0]=0

since & % 0, then
(7 G<k(R+r)V01=0

or
. k(R+r)
+ ————-yg =1
J.I
compared to the standard harmonic oscillator
' 8+w;8=0
one can write
K(R+ r‘]:
o = |=—

T

knowing that [, =/, + m R", the above expression can be written as

K(R+r)
e, =, |————F
\ I,+mRK

which 1s similar to the one obtained above,

ME 273, Sisiem Dvaamucy amd Controd
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TABLE 1. SUMMARY OF ELEMENTS INVOLVED IN LINEAR MECHANICAL SYSTEMS
Element Translation Rotation
X
> F
F4 _> _} 2
«— "™ > F
. F,
Inertia
Z F=ma T
dYT=Ja
X X k
Spring k 6 6,
F=k(x,—x,)=kx T=k(6, -6, =k6
x, Xy b
F —>°—]:|—°<—r> « F T, }3—@3{ T
Damper . .
p b 6 6,
F=b(x,—x,)=bx T=b(91—92)=b9
PROCEDURE

The motion of mechanical elements can be described in various dimensions as translational,
rotational, or combination of both. The equations governing the motion of mechanical
systems are often formulated from Newton’s law of motion.

Construct a model for the system containing interconnecting elements.

2. Draw the free-body diagram.

Write equations of motion of all forces acting on the free body diagram. For

translational motion, the equation of motion is Equation (1), and for rotational

motion, Equation (2) is used.

4
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