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1) OBJECTIVES 
 

a) To introduce the main features of compressible flow. 
b) To measure the pressure variation in a convergent-divergent nozzle. 
 

2) INTRODUCTION 
 

A flow is called compressible when the density variations in the flow field are 
considerable.  Such flow is called high-speed flow and the flow velocity becomes 
comparable to the speed of sound.  Examples are flow of steam in a steam turbine nozzle, 
flow of exhaust gases through the nozzle of a jet engine. The most important 
dimensionless parameter in high-speed flow is the Mach number, M, which is defined as 
the ratio between the velocity of flow and the speed of sound (M=V/C).  Flow at speeds 
less than the speed of sound (M<1) is called subsonic and at speeds higher than the speed 
of sound is called supersonic (M>1).   
 
A high-speed flow nozzle may have different geometrical shapes and, in general, it may be 
either convergent (dA<0) or convergent-divergent (dA<0 in the first part and dA>0 in the 
second part) as shown in Figure 1.  The section of minimum area in the C-D nozzle is 
called the throat.  The pressure and velocity changes in a nozzle are strongly dependent on 
its geometrical shape.  The governing equations of fluid motion are the mass, momentum 
and energy conservation equations together with the equation of state (or relation between 
properties) and the second law of thermodynamics.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Convergent only nozzle Convergent-divergent (C-D) nozzle

Figure 1. The general shapes of convergent and convergent-divergent nozzle. 



3) THEORETICAL BACKGROUND 
 

Considering flow of an ideal gas in the flow passage of general shape shown in Figure 2 
and assume that the flow is steady and one-dimensional.  We also assume that the flow is 
adiabatic and frictional effects are negligibly small (isentropic flow).  The governing 
equations can be written as 
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Using the above equations, one can deduce the relationships governing the variations of 
velocity, pressure and density with the change in the flow passage cross-sectional area.  
These relationships can be written as (for details see Appendix A),  
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The above equations are correct for the two cases of subsonic and supersonic flows subject to 
the above assumptions (flow is steady, one-dimensional, adiabatic and frictionless).  Now, let 
us consider the case of subsonic flow (M<1) in C-D nozzle. In the converging part, the term 
(dA/A) is negative and this results in dV positive [by Eq. (5)] and both dp and dρ negative 
[by Eqs. (6-7)].  The opposite occurs in the diverging part of the nozzle and the variation of 
V, p and ρ along the nozzle become as shown in Figure 3.  This mode of operation of the 

Figure 2. Flow in a flow passage of general shape. 



nozzle is called the venturi mode since the velocity and pressure variations are similar to that 
of a venturi meter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the nozzle operates at its design point, the flow at the nozzle exit section is supersonic 
(M3>1) while being subsonic at inlet (M1<1) and sonic at the throat (M2=1).  In most 
applications, the flow enters the nozzle at low speeds and the velocity increases towards the 
throat until reaching sonic velocity at the throat.  In the diverging section (2→3), the term 
dA/A becomes positive and the flow becomes supersonic (M>1).  This leads to having dV 
positive [by Eq.(5)] and both dp and dρ negative [by Eqs. (6-7)].  In this case, the diverging 
part of the nozzle acts as a nozzle (i.e. velocity increases and pressure decreases in direction 
of flow) opposite to what happened in the venturi mode.   Accordingly, the variations of V, p 
and ρ along the nozzle axis become as shown in Figure 4 when operating at the design 
condition.  In order to achieve this mode of operation, the back pressure, p3, should be much 
lower than the inlet pressure, p1, as shown in the figure.   
 
The throat section of the nozzle is called the critical section when operating at the design 
condition since the Mach number there reaches unity. All fluid properties at this section are 
labeled with a star (i.e. p2=p*, ρ2=ρ* and A2=A*).   The Mach number at the nozzle exit 
depends strongly on the nozzle area ratio (A3/A*).    
 
 
 

Figure 3. Variation of velocity, pressure and density along the 
nozzle in the venturi mode of operation.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4) APPARATUS 
 

The apparatus to be used is the Plint & Partners nozzle flow apparatus (model # TE 27).  Figure 5 
represents a general view of the apparatus and Figure 6 shows schematic diagram of various 
components.  The setup consists of the following: 
 

 

Figure 4. Variation of velocity, pressure and density along the 
nozzle when operating at design condition.

Figure 5. A general view of the nozzle flow apparatus 



 
 
 
 
i) Compressed Air Reservoir:  The reservoir is provided with compressed air from a set of air 

compressors located outside the laboratory. 

ii) The Inlet Air Chest: The inlet chest is supplied with air from the compressed air reservoir 
through a throttling valve to regulate the flow into the chest.  The maximum allowed pressure 
in the chest is 600 kPa. The chest also carries a mercury thermometer in an oil pocket, a 
pressure gauge for indicating the chest pressure. 

iii) The Convergent-Divergent Nozzle:  A Laval C-D nozzle is screwed into a seating at the 
center of the inlet air chest.  The exact nozzle geometry is shown in Figure 7.   

iv) Static Pressure Probe: A static pressure probe is positioned along the nozzle axis and 
allowed to move up or down through a traversing mechanism as shown in Figure 5.  
The probe transmits the local pressure to a high-grade pressure gauge mounted on the 
probe carrier.  The probe is traversed in increments of 2mm by rotating a calibrated dial.  A 
pointer attached to the probe carrier moves over a replica of the nozzle profile in order to 
indicate the position of the measuring point in the nozzle.  

v) The Discharge Section: The nozzle discharges into a vertical tube of large bore fitted 
with a throttling valve by which the nozzle back pressure may be regulated.  
Downstream of the throttle valve, the fluid flows through a long straight pipe and a flow 
straightener to an orifice flowmeter with D/2 pressure taps (designed in accordance with 
British Standard Specifications). The pressure difference across the orifice plate is indicated 
by an inclined manometer and the orifice discharge coefficient is 0.62.  A thermometer is 
provided downstream of the orifice for measuring air temperature. 

Figure 6. Schematic layout of the nozzle apparatus 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
5) TEST PROCEDURE AND CACULATIONS 

a) Test Procedure 
 
1. Ensure that the inclined manometer is correctly leveled and zeroed. 

2. Before starting the flow process, record the inlet air temperature and the barometer reading. 

3. Open the back pressure valve and traverse the search tube (pressure probe) to its upper limit. 
The pressure gauge should indicate the inlet chest pressure. This pressure may be set to the 
desired value by adjusting the inlet throttling valve.   

4. The selected inlet chest pressure should remain constant during the course of the experiment.  
Should there be any tendency for the inlet chest pressure to change in the course of the 
experiment (this may occur when the apparatus is being supplied with air by a compressor of 
insufficient capacity) a student should be placed in charge of the inlet throttling valve, with 
the task of maintaining a constant inlet chest pressure by adjusting the throttling valve as 
necessary. In this task he makes use of the small inlet chest pressure gauge. 

5. Take the reading of the inclined manometer at the beginning of the experiment.  

6. Use the traversing mechanism to record the pressure at several locations along the nozzle 
axis.  The probe is traversed in increments of 2mm by rotating a calibrated dial.  

7. Take the reading of the inclined manometer at the end of the experiment and use the average 
for calculating the mass flow rate.  

8. At the end of the traverse, the search tube should be returned to the upper position and the 
chest pressure rechecked.   

 

Exit dia. = 7.2 mm 

Throat dia. = 6.35 mm 

50 mm 

9.5 mm

Figure 7. The main dimensions of the convergent-divergent nozzle. 



b) Calculations 
 

1. The orifice flowmeter is used to calculate the airflow rate through the nozzle. The pipe 
diameter, D1=76.2 mm and the orifice diameter, D2= 50 mm.   

2. The discharge coefficient of the orifice, Cd = 0.62. 

3. Calculate the ideal air volume flow rate from the equation (for details see the handout of 
Experiment # 1)  
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4. Use the barometer reading and the recorded air temperature to determine the air density [may 
use the equation of state ( /p RTρ = )].    

5. The actual mass flow rate can be obtained from the equation 
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6) PRESENTATION OF RESULTS 

 
1. It is required to plot the pressure variation along the nozzle axis to show the continuous 

pressure decrease from the nozzle inlet to exit sections.  Typical pressure variations are shown 
in Figure 8 for different modes of operation. 

2. Calculate the mass flow rate through the nozzle. 
 

 
 
 
 
 

Figure 8. Typical pressure variations along the nozzle axis for different modes of operation. 



 
 

7) IDEAS FOR FURTHER DISCUSSIONS 

1. The diameter of the pressure probe is 3.33 mm. What is the effect of the probe 
diameter on the measured pressure distribution?  Does it really represent the 
pressure distribution in the nozzle shown in Figure 6 or a different one? 

2.   What is the percentage error involved in calculating the mass flow rate? 

3.   How would you explain the pressure drop downstream of the nozzle exit? 

4. What can be done to improve the apparatus or the test procedure? 

 



APPENDIX  A 
 

 
Isentropic Flow in Nozzles 

 
The nozzle is an important part of steam and gas turbines, jet and rocket propulsion systems 
and many other thermal devices.  The nozzle may have different geometrical shapes and in 
general it may be either convergent (dA<0) or convergent-divergent (dA<0 followed by 
dA>0).  The flow properties within a nozzle change from one section to another and this 
change depends very much on the nozzle shape.  The question now is how to determine the 
relationship between the nozzle geometry and the resulting flow properties. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Relation Between Nozzle Shape and Flow Properties 
 
Consider the case of steady 
compressible flow in a nozzle of 
arbitrary shape and apply the mass 
conservation principle, then 
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•
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The energy equation for steady isentropic flow may be written in the form  
 

2

.
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Convergent only nozzle Convergent-divergent (C-D) nozzle

Figure A1. The general shapes of convergent and convergent-divergent nozzle. 
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But   ( ) dpq Tds du pdv d u pv vdp dhδ
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= = + = + − = −  and since δq=0 for isentropic 

flow, then 
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Substitute in Eq. (A1) to obtain 
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But   ( ) ( )2 / /v s s
C E dp dρ ρ= = , therefore one can write the above equation in the 

form 
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Rearrange to obtain  ⇒   
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Substitute in Eq. (A1) ⇒   
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But one can use Eq. (A3) to write 2
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Equations (A4-A6) establish important relationships between the flow passage geometry and 
the changes in the fluid density, velocity and pressure for the special case of steady, one-
dimensional isentropic flow.   


