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Comments on the Paper

“Modelling Micro-Turbines Using Hammerstein Models” by Francisco Jurado

The paper proposes to use frequency-domain identification methods in Hammerstein modeling of Micro-Turbines and hence is recommended for publication in IJER. I have scanned the pages from the paper with my comments on them for the possible improvement to the readership. Some other comments are listed below:

1) It is not exactly clear to me how the block diagrams of the gas turbine and the control system are related, i.e. the relations of Figures 1 and 2 are not obvious. Some explanation would help. Is Pm in Figure 1 same as Pmec in Figure 2? Furthermore, Figure 2 itself is not clear and needs improvement in drawing. I think the Figures 1 and 2 are copied and pasted from the Simulink of the Matlab, but the Figure 2 could be enlarged for clarity. I have also scanned the page of Figure 2 with marks on it.

2) In equation (7), pg. 5, some explanation is needed for the second contributing term to the Torque T, i.e. for the term 0.5(((). Why is this 0.5?

3) In the second paragraph of pg. 6 from the top, the sentence “The diagram consists of two Proportional Integral Derivative (PID) controllers”. Are these two controllers for the power and speed control?

4) In Figure 5, the true and estimated Bode plots are not clear, i.e. a legend is needed to distinguish them.
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SUMMARY
The Hammerstein model configuration, which includes a nonlinear static block followed
by a linear dynamic block, is applied to model the static and dynamic characteristics on
micro-turbine. The parameters in the model can be extracted from the measurements of
physical engines or from the simulations of physics-based models. In this paper, a nonlinear
model is used to assistgnamic performance of\micro-turbine when connected to the grid

astlistributed generator. N the the

a
KEY WORDS: Hammerstein systems; gas turbines; nonlinear systems; parameter

estimation; system identification.

1. INTRODUCTION  °F m‘C"U"Wrblges
The computational burden required for the 51mu1at10n is highly/dependent on the

. complex1ty and accuracy of e)dl(generator modelf The factoo provide the

user' a reliable low-complexity prototype model of the micro-turbine (MT) generator set,
sufficiently accurate for simulations
Gas turbine engines were originally designed forfai-r?:g\fe“c propulsion, but are now
extensively used in industrial applications. With such Gv&espread and increasing
(applicationd the modelling of these engines is an issue Of‘;n‘p; nce
use. Engine models are required both in the development and operational stages of the life of

a gas turbine. Thermodynamic models are derived during the development stage, based on




[image: image3.png]the
knowledge of 6 engine physics, and provide important insights into the engine behaviour.
Such models are complex, making them unsuitable for use in the design of engine control
systems.
At the initial stages of an engine design, a thermodynamic model is derived from the
nonlinear differential equations which govern energy transfer within the engine. The

nonlinear model is then numerically linearised about a set of operating points, using small

weére
S
Initial work/on validating small signal engine models @ carried out in the 1950’s on 1959

single shaft and twin shaft engines (Lawrence and Powell, 1957, Fitchie et al.W
The results of testing a number of engines with maximum length binary sequences

(MLBS’s) were presented in (Cottington and Pease, 1979). The amplitude of the

perturbations and evaluating the partial derivatives.

and step inputs were used to excite an engine and

perturbation signals was restricted. worl?oexarenqned the application of a range of time-
domain methods to cil‘i‘srget;c-ec’iomaih engine models. (Hill, 1994). Mr,@oﬁgd
problems with the application of time-domain techniques were reported in a recent paper
(Hill, 1997).

The Hammerstein model is a special kind of nonlinear systems which has applications in
many engineering problems and therefore,(iagnti%cation of Hammerstein models has been
an active research topic for a long time. Existihg methods in the literature can be roughly
divided into six categories: the iterative method (Narendra and Gallman, 1966; Rangan et
al., 1995; Voros, 1997) the over-parameterization method (Boutayeb, 1996), the stochastic
method (Billings and Fakhouri, 1978; Greblicki, 2000; Krzyzak, 1996; Pawlak, 1991), the
nonlinear least squares method (Bauer and Ninness, 2000), the separable least squares
method (Bai, 2002 a; Westwick and Kearney, 2001), and the blind method (Bai, 2002 b).

The blind method (Bai, 2002 b) is to use the technique of blind system identification to
identify the linear part without requiring the structure of the unknown nonlinearity. A

Jandersteen et al.,

with some small

subspace method was proposed in (Favoreel and De Moor, 1999), and
, Iy/sf-perlodlc signals consisting of a large sinusoidal wave
{ sinusoidal wavesr—Were (’,{SE-A n s





[image: image4.png]Frequency domain identification methods for a linear system are well understood and
developed (Ljung, 1999; Pintelon and Schoukens, 2001). This idea will be used i{’or
Hammerstein models in this work.

In (Gardlner 197 3), the non near1ty 18 assumed to be a polynomial with a known order.

For example, in a practical situation, the unknown nonlinearity may be approximated by a

Section o +he/ out '+ ’
g als with the nonlinear identificatio: of the fueler dynamics P ‘

of a MT. @ 2 presents a revie of the MT @ 3 introduces the Ham: ersteln model ~Sech
ctio
—n\e.__/'[dentlﬁcatlon of the 11near6art emﬁﬁmn e no\xhﬂ'ear ﬁa(c »IB cLlscussed m n
4. Id@nﬁcﬁtlon )ﬂﬁe MT model 1s‘.descr1bec!\ in Section 5. some simulation

results and s )fﬁe'femarks.gé pryﬂr&d }A(Se}ltfn/?' : Secmons 6 O\V\d 7 PPDV!J&

This paper

the  , Micro-TURBINE

A thorough introduction to\gas ﬁ{bm ths.i)‘ry is provided in (Cohen et al., 1998). There
ok exist a largek cg the modelling of gas turbines. @)del complexity varies
according to the intended appllcatlon\d-e-taﬂed first principlef modelling based upon
fundamental mass, momentum and energy balances is reported by (Fawke et al., 1972) and
(Shobeiri, 1987). These models describe the spatially distributed nature of the gas flow
dynamics by dividing the gas turbine into a number of sections. Throughout each section,
the thermodynamic state is assumed to be constant with respect to 1ocaf"1'on, but varying
with respect to time. Mathematically, the full partial differenéilgé equation; rpodel
m is reduced to a set of ordinary differential equations, whic}h facilitat ' w‘“\/
applieet?®T within a computer simulation program. For a detailed model, a section might
consist of a single compressor or turbine stage. Much simpler models result if the gas
turbine is decomposed into just three sections corresponding to the main turbine
compgr_l_e_gts’i.e. compressor, combustor and turbine, as in (Hussain et al. ,1992).

Instead of applying the fundamental conservation equations, as described above, another
modelling approach is to characterize@a-s turbine performance by utilizing'g;l steady state

engine performance data, as in (Hung, 1991). It is assumed that transient thermodynamic




[image: image5.png]and flow processes are Gch%a(%tgﬁzed by a continuous progression along the steady state
performance curves, is known as the quasi-static assumption. The dynamics of the gas
turbine, e.g. combustion delay, motor inertia, fuel pump lag etc. are then represented as
lumpéd quantities separate from the steady-state performance curves. Very simple models
result if it is further assumed that the gas turbine is operated at all times close tograted speed
(Rowen, 1983). A the

Air at ratTnospheric pressure enters the gas turbine at the compressor inlet. After
compression of the air to achieve the most favourable condg‘tiohs for combustion,éu.gi gas is
mixed with the air in the combustion charriagr.@mbustfon takes place and the hot exhaust
gases are expanded through the turbine to produce@echamcal power. In terms of energy
conversion, the chemical energy present in the combust1on reactants is transferred to the
gas stream during combustion. This energy - measured in terms of gas enthalpy- is then
converted into'ge.chanical work by expanding the gas through the turbine. Thus the excess
mechanical power available for application elsewhere, after accounting for the power
required to drive the compressor, is derived ultimately from the combustion process.

Compressor power consumption equationl is ﬂ'wan by

g=%%ﬁz ‘ 1)
c'lrans

Combustion energy equation! [ eXPNSSGJ as

W, C o (T = 298 )+ W, Alys + w,C,,, (298 -1, )+ o
+w,c, (298 -T,)=0

is™ ps

Power delivery equation' 15 written as
B = ﬂTWgAhIT 3

mec

P.=P-F @

Figure 1 shows the block diagram of the gas turbine.
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Input variables to the turbine are wy, Ao and w. Output variable from the turbine is Prec .
For the purpose of this paper only modulating control of mechanical side of the gas turbine
is of interest. The simplified model of the gas turbine controller in this paper consists of
two inputs and one output. Inputs to the controller are P,.. and @. The output from the
controllers is Fy.

The block diagram of the gas turbine control system is presented in Figure 2 and ~ is
described by the data in Table ()] The diagram consists of two Proportional Integral

Derivative (PID) controllers. LVG stands for Least Value Gate that the

minimum of two incoming signals. 'H‘qnsrm ts

Figure 2. Gas turbine control system.

{

Table@ Micro-turbinel @;fstants.

3. HAMMERSTEIN MODEL
Consider the Hammerstein model shown in Figure 3, where u(f), v(f), y(¢) and y(?), are
the system input, noise, output and filtered output, respectively. x(#) denotes the unavailable
internal signal. These are continuous time signals. #(iT;) and y(iTs) denote the sampled
input and sampled filtered output signals respectively with the sampling interval T;. The
filteris a lowpass filter atﬁemgner s disposal.

Figure 3. Hammerstein model.

The goal of the frequency domain identification is to apply inputs of the form,
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and then, to determine a pair of the estimates (.) and é(s)based on Qnite sampled inputs

and filtered outputs u(iTy) and y,(iT,) so that ’r\\e

FO)-» 70, G(s)>G(s) | (10)

in some sense. Note that the continuous time model é(s) , hot its discretised model, is our

interest/ In fact, the forms of f“ () andé(s)depend on whether they are parametric or not.

Just like the frequency identification approaches for linear systems, the proposed method
may also have to be repeated for a number of frequencies.

,.Gund*'\\ﬁn
3.1. Continuous-Timf Frequency Response

The nonlinea x=f (u) is continuous and piecewise smooth. If the input
u(t)= Acos(cokt)w is an even and periodic function with the period T =(27)/®,,
then, x(¢) is also an even and periodic function that is continuous and piecewise smooth.‘/

gnﬂ',é%nsequently,}{\ pyfﬁits/@uﬁer series representation
C the fllowing

x(t)=ir,. cos(iw,t) , (T

i=0

Nis Pb&Si\L‘& :

where the Fourier coefficients are given by

we e [ r(dcos(o))e | )
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Note: Define these in Nomenclature.
3.2. Point Estimation of G( jw) Based on{Yr)and is
The theoretical framework j# developed in continuous time domainfbased on the
continuous time model G(s)and continuous time signals (?), x(#) and y(?). Given the input

u(t) = Acos(a,t), define the point estimate G (ja, ) of G(jo) at @ =, as

A

ja)k / (14)
T

where Y, (@, )and U, (@, )are the finite time Fourier transforms.

3.3. DFT Implementation .
The Discrete Fourier Transforms (DFTs) of u(iT;) and y,(iT) are defined by Y, ,pr (a)k ) and

U, prr (@) The point estimate G, (jw,)using only the sampled u(iTy) and yy (iT5)
determined by

-, . Y, por (@
Gd(ka)=A (15)
,DFT
4, IDENTIFICATION
4.1 Linear part

Given the point estimatesG, (jw,)’s, to find a G(jw)is a curve fitting problem.

Whether a particular method is effective for\identiﬁcation of G( ja)) depends on the
the




[image: image9.png]assumptions of G(jw). IfG(jw)is nonparametric, it is expected that the method is

~ complicated and tedious. On the other hand, the identification is much easier if the

unknown G| j®)is known to be an nth-order rational transfer function.
When the unknown G(jw)is characterized by an nth-order stable rational transfer

function

. n-1 n-2
G(s)= by +bs" +.. b, a6

s"+as" +a,s" +...a,
The unknown coefficient vector #and its estimate & are denoted by

0=(by..sb,,a,e0a,)" a7

The simplest way to find 9 is to solve the least squares minimization (Levi, 1959). Let
(‘ a (ka)
(oY b+...8,)-8, (jo)((Jo )™ &y +...+8,) (18)

and so, the estimate @ is obtained by

(19)

NCA

for some N > n. Cleatly, if G,(jw,)=G(jw,), e(6,0,)=0 and 6=06.

then, the estimate é(s) is defined as
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G(S) _ bls +"’bn (20)

- "+a n1+... %) ’
: als +an @/Wrth t\'\e

/The least squares solutions é( jco)of (19) and (20) are consistent (in) theory because

G—d(ag.)—>G(ja))/ as T—oow.

4.2 Nonlinear part

When the linear part G(s) is identified, the nonlinear part f () can be estimated. There
are two cases: 1) there is no a priori knowledge on the structure of the unknown f (u) and
2) f (u) is represented by a polynomial with a known order. In both cases, it is required to

. estimate the Fourier coefficients #;’s. This paper studies a simple case when the unknown

nonlinearity is parameterized by a polynomial
x=Y Bu' 1))

“The exact order of the polynomial is not necessarily known. However, an upper bound /

is assumed to be available.

Denote

I = [é] l,= I:éi| —rem (l +1, 2) | (22)

where [//2] rounds //2 to the nearest integer toward zero and rem (I +1, 2) is the remainder
after division,(/ +1)/ 2. When u(¢) = Acos(w,t) it follows that

\w'\t\\ {
()= L @):9: cos(iay1) @3)

i=0

10




[image: image11.png]hence, the estimates ,9, 'sand f= ZLO ,Biu‘ can be easily obtained based on the estimates

of 7’s,and

F(u)=3 B (1) 24)

7 ()= £ () >0

Clearly, if 7, — 7in probability as T — o, then B — B and SUD,o[_ 4,4]

in probability as T — 0.

5. IDENTIFICATION OF THE MICRO-TURBINE MODEL
A second-order term is sufficient to model the static nonlinear behaviour of the engine
and the linear part is a second order transfer function. The noise v(?) is a random signal

uniformly distributed and the input is
u(t)=Acos(ap), 4=1, i=123

f—-‘the.
with @= 0.6, @=1.2, w=6 and T= 100((2r)/@). For'input frequency @ the sampling
interval is set to be n/(50w;). No lowpass filter is used in simulationf i.e., () = y(?).
Because the linear part is parametric, we use the estimate of (12). Thus, the estimates of

7 (.)and é(s) are given by
7 () =0.00164" +0.6067u+2.301

()= 0.0449s +0.0068
52 +0.47535 +0.0531

11




[image: image12.png]which are very close to the true but unknown f(u) and G(s). The true (solid line) and the

estimated (circle) nonlinearities are shown in Figure 4, and the Bode plots of the true and

the estimated transfer functions are shown in Figure 5. They are basically indistinguishable.
Figure 4. True (solid) and the estimated (circle) nonlinearities.
Figure 5. Bode plots.

6. SIMULATION RESULTS
The IEEE test feeders (Kersting, 2001) are used as the test systems to investigate the
dynamic characteristics of the distribution system withQ/I'lfs. Figures 6 and 7 show the test

the

In this paper, all loads are balanced, and characterized by constant power. The MT. is

systems with the MTs.

natural gas operated, with the ratings of 100 kW electric and 167 kW thermal outputs
(Aglén, 2001; Chee-Mun, 1998). This unit is eminently well suited as a power source for
facilities ranging hospitag; and hotels to shopping malls and factories. The heart of the
unit is a small gas turbine which is integrated with a high-speed generator.
He, @v MT has the same parameters. AllﬁTs are regarded as coherent machines,
every which have the same dynamic 2 d share the gg'rsleration equally. The entire

rocterqst
electrical system was modelled dynamically with MATLAB™.

Figure 6. One line diagram of IEEE 13 node test feeder with MTs.
Figure 7. One line diagram of IEEE 34 node test feeder with MTs.

Figure 8 shows the response characteristics to a three-phase bolted fault applied to node

680 in the IEEE 13 node test feeder at ¢ = 0.5 s. Distributed generator DG3 is tripped after

12




[image: image13.png]application-of the fault. The fault is cleared at = 0.8 s. This figure depicts the mechanical
the. power for DG1, dropping to near zero. Stability returns after 4 s. This response, at the time
the disturbance was applied, compares favourably to the expected characteristic MT

performance.

Figure 8. MT mechanical power response to bolted three-phase bus fault. Loss of one MT

generator.

The next study case simulates MT operating in the IEEE 34 node test feeder. The site
test involved intentionally tripping@_e- égenerator and observing the response of the
remaining generators. At = 0.5 s, DG6 is tripped off-line. Figure 9 shows unit DG1 going
to full power. This response matched very closely to that which was observed in the full
model. The lag in the response to the mechanical power output following the load shedding
is due to the energy required to restore@tem frequency to 60 Hz, in addition to supplying
the required load demand. Stability returns after 5 s.

Figure 9. Mechanical power loss of one MT generator.

Figure 10 shows the node voltage dynamic response characteristics. The two levels of
load shedding are evident from the steep slope increases at = 0.8 s and # = 1.9 s, as shown.

The overshoot in bus voltage magnitude is due tojgenerator exciter response characteristics.

the

Figure 10. Voltage dynamic response characteristics. Loss of one MT generator (no load
shedding).

This test case is similar to the previous test case, except that no load shedding is

performed. Frequency decay is evident. Figure 11 shows the mechanical power,/unit
e

remains at maximum power, which is able to satisfy/electrical system load demand. This

condition will eventually lead to\generator' tripping off-line.

the

13




[image: image14.png]Figure 11. Mechanical power loss of one generator (no load shedding).

7. CONCLI{‘ASISNS reducé&-orc\er
To determine the potential impacts ofﬁTs on future distribution system! éynamic

models of’ﬁTs should be created reguCed jd oydéljand scattered throughout test feeders.

frequency domain identification approach for Hammerstein models is proposed in this

ft and eenonlinear partégn be

paper. By exploring the fundamental frequency, the linear e

The entire distribution system has been modelled dynamically and tested with various

operating configurations and electrical disturbances. Evaluation of MT performance was

possible with this dynamic modelling. \ﬂ\e.

&Shown to be
NOMENCLATURE

abc valve parameters

Cpa specific heat of air at constant pressure (J/(kg K))

Cpg specific heat of combustion gases (J/(kg K))

Cps specific heat of steam (J/(kg K))

er valve position

Fy fuel demand signal

K, PID parameter

Kp PID parameter

ky fuel system gain constant

kiay factor which depends on LHV

LHV lower heating value (MJ/kg)

P, compressor power consumption W)

Dein air pressure at compressor inlet (Pa)

14




[image: image15.png]Figure 2. Gas turbine control system.
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