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CHAPTER 5 
DEFLECTION AND STIFFNESS 

 
Beam deflection can be found by 3 methods: 1) Integration, 2) Superposition and 3) 
Castigliano’s Theorem. These are detailed as follows: 
 
1) Beam deflection by Integration (Section 5-3, pg. 188 in the textbook): 
 
If the deflection of a beam is mainly due to the bending moment, then the following 
formula is applied to find the deflection of the beam: 
 

EI
M

dx
yd
2

2
=  

 
where y is the vertical deflection, x is the horizontal distance, E is the modulus 
elasticity and I is the area moment of inertia as before. We also find the slope as: 
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where c1 is a constant found from the end or boundary conditions of the beam. 
 
Example: Find general expressions for the deflection and slope of the following 
beam. 
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First we draw a FBD for the system to find the reactions, which are found from 
Newton’s equations as RA = F+wa  and  MA = FL+wa2/2. We then cut the beam 
between A-B and B-C to find the bending moments of MAB and MBC as: 

 

 
We sum the moments at the cut sections and let them to be zero to find: 
 
MAB = RAx−wx2/2−MA = −wx2/2+(F+wa)x− (FL+ wa2/2)  and 

2MBC = RAx−wa(x−a/2)−MA = (F+wa)x− wa(x−a/2)− (FL+ wa /2) = F(x−L). 
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Deflection and Slope between A-B, i.e. 0 ≤ x ≤ a: 
 

1
2

2
1 )

2
()(

2
1 cdxawFLxwaFxw
EI

cdx
EI

M
dx
dy AB +












+−++

−
=+= ∫∫  Slope =θAB = 

 = 1
2

23 )
2

(
2

)(1 cxawFLxwaFxw
+









+−
+

+
−  
6EI 

Since θAB  = 0 at x =0 then c1 = 0. Hence: 
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Since yAB  = 0 at x =0 then c2 = 0. Hence: 

yAB = 

 











 +
−

+
+

− 2
2

34
4

)(2
6

)(
24

1 xawFLxwaFxw
EI

. 

 
eflection and Slope between B-C, i.e. a ≤ x ≤ L:D  

lope = θBC= 
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Deflection = yBC = 4
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Since yAB = yBC at x =a where from the above equations: 
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Note: Review example 5-1, pg. 190 in the textbook. 
 
2) Beam Deflection by Superposition (Section 5-5, pg. 192 in the textbook): 
 
Refer to 16 cases given in the Appendix A-9, from pg. 969 to 976 in the textbook. The 
superposition for linear systems means that we can find the reactions, bending 
moments, shear forces, slope and deflection by summing up these entities for each 
loading case. So let’s solve the above example by the superposition technique. We 
have, 
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Deflection and Slope between A-B, i.e. 0 ≤ x ≤ a: 
 
Slope =θAB = θ1AB + θ2AB , where from Table A-9-3, pg. 970 in the textbook,  

θ1AB = 
dx
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which is the same result obtained before using the integration method. 
Deflection =yAB = y1AB + y2AB , where from Table A-9-3, pg. 970 in the textbook,  
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which is again the same result obtained before using the integration method. 
 
Deflection and Slope between A-B, i.e. a ≤ x ≤ L: 
 
Slope =θBC = θ1BC + θ2BC. Since there is no bending moment between B-C for the case 
of distributed load w, we can assume that the slope remains the same as θ1AB at x=a. 

Hence, θ1BC = axAB1 =θ  = 
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which is the same result obtained before using the integration method. 
 
Deflection =yBC = y1BC + y2BC.  
For the case of distributed load w, the angle θ1BC remains the same between B-C, and 
hence the deflected curve between B-C is a linear one. 
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From the figure, y1BC = θ1BC(x−a)+ y1B, where y1B = axAB1y =  = 
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For the end load of F, again referring to Table A-9-1, pg. 969 in the textbook, y2BC = 
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which is again the same result obtained before using the integration method. 
 
Note: Review examples 5-2 and 5-3, pgs. 192 and 193 in the textbook. 
 
3) Beam Deflection by Castigliano’s Theorem (Sections 5-7 and 5-8, pgs. 198 and 
201 in the textbook): 
 
When a machine element is deformed, it stores a potential or strain energy U. This 
energy can be calculated for different loading cases, as given below: 
 
 Loading Strain Energy (U) 

 Tension or Compression 
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2

2
 

 Direct Shear 
GA

LF
2
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 Torsion 
GJ

LT
2
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 Bending Moment ∫ EI
dxM

2
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 Bending Shear ∫ GA
dxcV

2
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where for bending shear c is a factor that depends on the cross-section of the beam 
and is taken from Table 5-1, pg. 200, in the textbook. The Castigliano’s theorem then 
states that the displacement for any point on a machine element is the partial 
derivative of the strain energy with respective to a force which is on the same point 
and in the same direction of the displacement. In short: 
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where δi is the displacement for an ith point in the machine element and Fi is the force 
acting at the same point and in the same direction of the displacement asked for. If 
there is no force at the point for which the displacement is required, then we have to 
assume an imaginary force Q and let it be zero at the end.  
 
Example: Let’s solve the above problem for its vertical displacement at the free end, 
i.e. at point C, using the Castigliano’s theorem. So the question is to find δC in the 
vertical (−y) direction. We have, 
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where the strain energy U is contributed by the bending shear force V and bending 
moment M, but we’ll only consider the effect of M in U. Thus, as given above, 
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where as found before: MAB = −wx2/2+(F+wa)x− (FL+ wa2/2) and MBC = F(x−L). 

Therefore: Lx
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This result is in agreement with the result that can be found from the two methods 
above by substituting x=L in yBC. But remember that LxBCy = = −δC. Why? 
 
Note: Review examples 5-10, 5-11 and 5-12, pgs. 202 to 206 in the textbook. 
 
5.10 Statically Indeterminate Problems 
 
When a static problem has more unknowns than the Newton’s static equations, then 
this problem is known as the statically indeterminate problem. In these cases, we need 
extra displacement equations to solve the problem. There are two procedures to 
handle such problems, among which we’ll follow the Procedure 1 in the textbook, 
whose steps are given as follows: 
 

1) Choose the redundant (extra) reaction(s). This redundant reaction could be 
a force or a moment. 

2) Write the Newton’s equations of static equilibrium in terms of the applied 
loads and the redundant reaction(s) of step 1. 

3) Write the deflection or slope equation(s) for the point(s) of the redundant 
reaction(s) of step 1. Normally this deflection or slope will be zero. 

4) Solve the equations in steps 2 and 3 for the reactions. 
 
Note: Review example 5-14, pgs. 212 and 213 in the textbook. 
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5.12 Long Columns with Central Loading 
 
The long columns with central compressive loading may exhibit a phenomenon 
called “buckling”, which needs to be checked for the safe use of these columns. Such 
columns with 4 different end conditions are shown in the textbook in Figure 5-18, pg. 
217. The formula used for the long columns is named Euler formula, given as: 
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where Pcr is the critical or maximum central load for the column, c is the end 
condition constant that should be taken from Table 5-2, pg. 220, in the textbook, and k 
is the radius of gyration found from I = Ak2, which is equal to d/4 for a column having 
a solid round cross-section with a diameter of d. L/k in the formula is known as the 
slenderness ratio. There are 2 scenarios here: 
 

1) If the critical load Pcr is known, then one should use the above equations to 
find an adequate cross-section for the column. 

2) If the cross-section of the column is known, one can use the above equations 
to solve for the Pcr. 

 
How do we know a column is “long enough” or it is of intermediate length? First we 
define: 
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where Sy is the yield strength of the column material. We follow the following 
criterion: 

1) If 







k
L  > 

1








k
L  then use the above Euler formula. 

2) If 







k
L  ≤ 

1








k
L  then use the Johnson formula given below in section 5-13 for 

the intermediate-length columns. 
 
5.13 Intermediate-Length Columns with Central Loading 
 
Use the Johnson formula: 
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Note: Review examples 5-16, 5-17, 5-18 and 5-19, pgs. 223 to 225 in the textbook. 
 


