
4-7 General 3-D Stress 
 
In general for a 3-D stress, there are 3 principal stresses: σ1, σ2 and σ3. A 3-D stress 
element with the 3 principal stresses are shown below: 
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The Mohr’s circle for the above stress element would look like this: 
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The extreme shear stresses are: 
 

τ1/2 = (σ1−σ2)/2,  τ1/3 = (σ1−σ3)/2  and τ2/3 = (σ2−σ3)/2. 
 
The maximum shear stress is: 
 

τmax =τ1/3 
 

Even for a 2-D plane stress analysis, one can say that there are 3 principal stresses. σ1 
and σ2 are found using the equations given before, but σ3=0. There are 3 scenarios, which 
are: 
 
1) σ1, σ2 > 0, σ3=0;  2) σ1, σ2 < 0, σ3=0  and   3) σ1 > 0, σ2 < 0, σ3=0. 



Assuming σ1>σ2, for the first case: τmax = τ1/3 = (σ1−σ3)/2 = σ1/2, for the second case: 
τmax = τ2/3 = (σ2−σ3)/2 = σ2/2 and for the third case: τmax = τ1/2 = (σ1−σ2)/2. 
 
4-8, 9 Elastic Strain and Stress 
 
For a bar subject to a tensile axial load of F, the bar elongates with an amount of δ, then 
the axial elastic strain ε is defined as 
 

ε = δ/L 
 

where L is the original length of the bar. The axial stress σ is simply 
 

σ = F/A 
 

where A is the cross-sectional area of the bar. The Hooke’s Law is given as 
 

σ = Eε 
 
where E is the modulus elasticity of the material of the bar, which is given as 207 GPa for 
the carbon steel. Refer to Table A-5, p. 963, in the Appendix A of the textbook, for the 
physical constants of materials. From the above relations, one can obtain the elongation 
of the bar to be 
 

δ = (FL)/(AE). 
 
Also, the shear stress τ for a bar subjected to a direct shear force of F (scissor action) 
 

τ = F/A 
for which the Hooke’s Law is expressed as 
 

τ = Gγ 
 
where γ is the shear angle and G is the modulus of rigidity related to E as 
 

E = 2G(1+ν) 
 
in which the symbol ν stands for the Poisson’s ratio defined as 
 

ν = −Lateral Strain/Axial Strain. 
 
The Poisson’s ratio can be taken as 0.3 for the carbon steel, again refer to Table A-5 in 
the textbook. 
 
For the general elastic stress-strain relations (Hooke’s Laws) for the uniaxial (1-D), 
biaxial (2-D) and triaxial (3-D) stress cases, refer to Table 4-2, p. 124, in the textbook. 



4-10 Normal Stresses for Beams in Bending 
 
A cut beam subject to a positive bending moment M is shown below: 
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The normal stress at a distance y from the neutral axis is given by: 
 

σx = −(M/I)y 
 

where I is the area moment of inertia or the second moment of area about the z axis. The 
stress at the top surface is compression whose value is σx = −(M/I)c and at the bottom 
surface the stress is tension given by σx = (M/I)c. The moment of inertia for a solid round 
cross-section is: I=πd4/64 and therefore the normal stress is given by: σx = 32M/(πd3). 
For a rectangular cross-section of width b and height h, I = bh3/12 and σx = 6M/(bh2). 
 
Note: Review Examples 4-5 and 4-6 in textbook, pages 127-130. 
 
4-12 Shear Stresses for Beams in Bending 
 
The shear force V for a beam in bending causes shear stresses, which are maximum at the 
neutral axis, and zero at the top and bottom surfaces. The cut beam is shown below: 
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For a rectangular cross-section, the shear stress on a stress element at a distance y from 
the neutral axis is given by: 



τxy = 3V(1−y2/c2)/(2A) 
 
Hence, it is zero at the top and bottom surfaces where y=±c; and it is maximum at the 
neutral axis with a value of τxy = 3V/(2A). For a solid round cross-section, 
 

τxy = 4V(1−y2/c2)/(3A) 
 
And again, it is zero at the top and bottom surfaces where y=±c; and it is maximum at the 
neutral axis with a value of τxy = 4V/(3A). For different cross-sections, see Table 4-3, 
p.136, in the textbook. 
 
4-13 Torsion 
 
The twisting torque T on a round bar or shaft causes angular displacements and shear 
stresses as shown below: 
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The angular displacement or angle of twist θ is given as: 
 

θ = TL/(G J) 
 
where L is the length of the bar and J is the polar moment of inertia or second polar 
moment of area about the centroid of the cross-section. For a solid round cross-section 
with a diameter of d, J is given as J=πd4/32. The shear stress caused by the torque T on a 
round bar is given by: 

τ = Tρ/J 
 
where ρ is the radial distance of the stress element from the center of the cross-section. 
This shear stress is maximum at the outside surface, which is at a distance of ρ = r from 
the center. This maximum stress is 

τ = Tr/J = 16T/(πd3) 
 
for a solid round cross-section at the outside surface. The maximum shear stress for a 
rectangular cross-section of b×c, where b is the longer side, i.e. b>c: 

τ = T(3 + 1.8c/b)/(bc2). 
 
Note: Review Examples 4-7 (p.133), 4-8 (p.139) and 4-9 (p. 141) in the textbook. 
 



4-14 Stress Concentration 
 
The elastic stress across the cross-section of a machine element is uniform in the case of a 
bar in tension, or linear as in the case of a beam in bending. Many times, machine 
elements are required to have holes, notches, grooves etc. due to various reasons. For 
example, a shaft may be drilled a hole because of mounting a gear onto it. Such 
discontinuities disturb the stress distribution in machine elements and cause stress 
concentrations. See, for example, the following plate with a hole of diameter d subjected 
to tension: 
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At the section of A-A, the nominal stress σo is  
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where t is the thickness of the plate. But, due to the stress concentration at the edge of the 
hole, this stress rises to σmax, which is given as 
 

σmax = Kt σo 
 
where Kt is called the theoretical stress concentration factor for normal stress and Kt ≥ 1. 
We have a similar scenario for the case of shear stress where: 
 

τmax = Kts τo 
 
where Kts is the theoretical stress concentration factor for shear stress and again Kts ≥ 1. 
The values of Kt and Kts depend on the type of loading, i.e. tension, bending, torsion, and 
also on the geometry. The values for several cases are given in the Appendix of the 
textbook, Table A-15, pages 982-988. 


