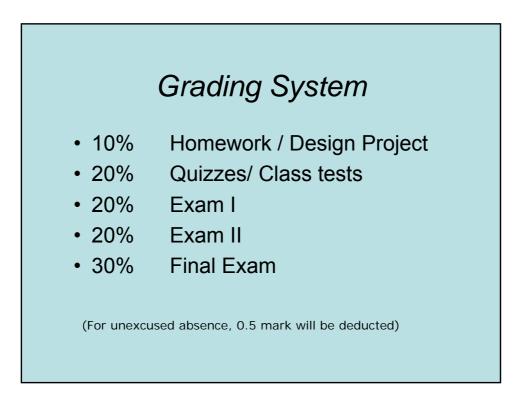
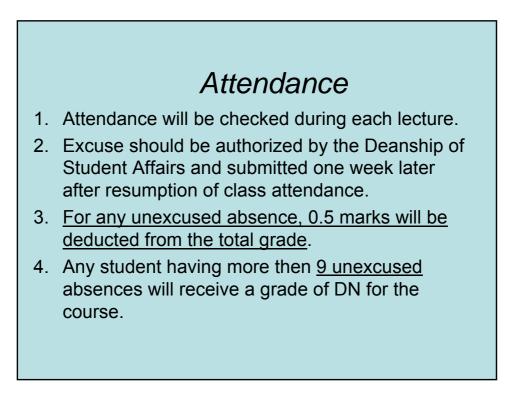
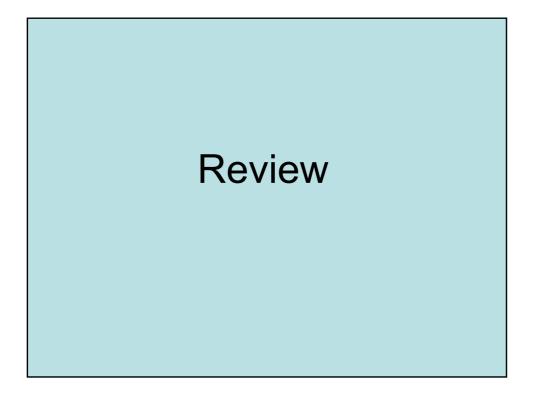
King Fahd University of Petroleum & Minerals

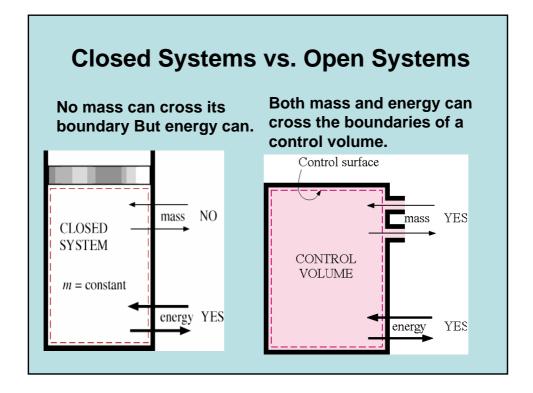

Mechanical Engineering Thermodynamics ME 204 BY Dr. Haitham Bahaidarah

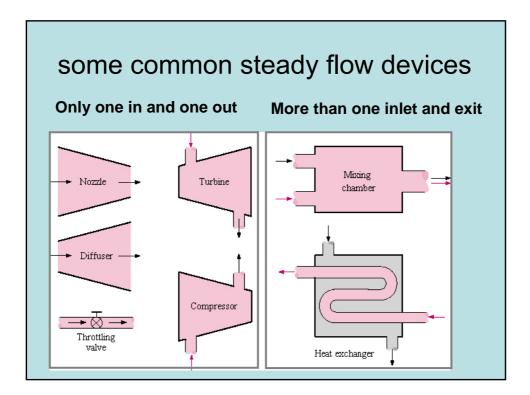
My Office

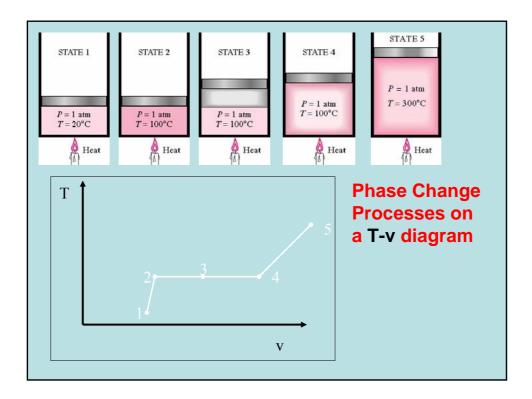
- Office Hours: 12:00 01:00 am SMW
 - 03:00 04:00 pm UT
- Location: Building 22 Room # 215.4
- Phone 860-1747
- email: haithamb@kfupm.edu.sa

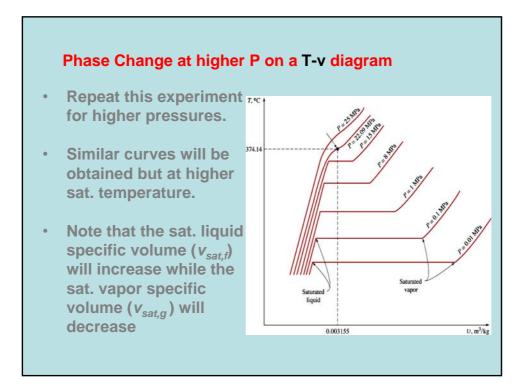

Outline

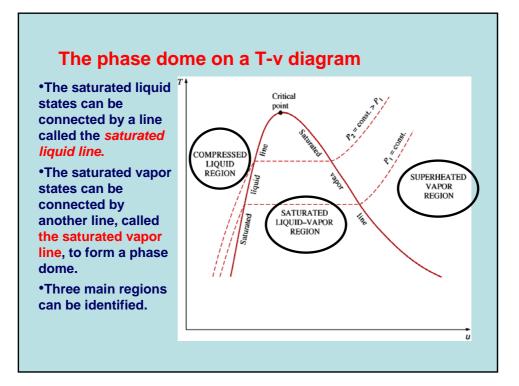

- Textbook
- Catalog Description
- · Grading system
- Homework
- Attendance
- Exams
- · What is thermodynamics
- Topics to be covered during the course
- · Application Areas of Thermal-Fluid Sciences

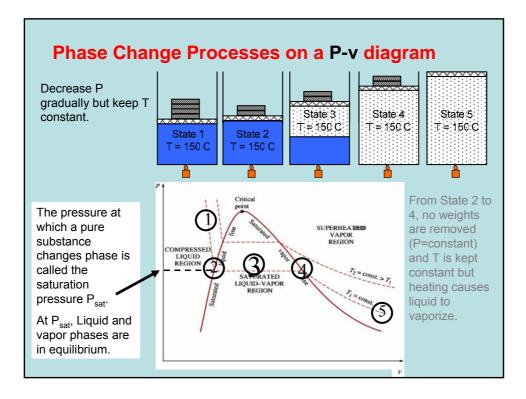

Homework

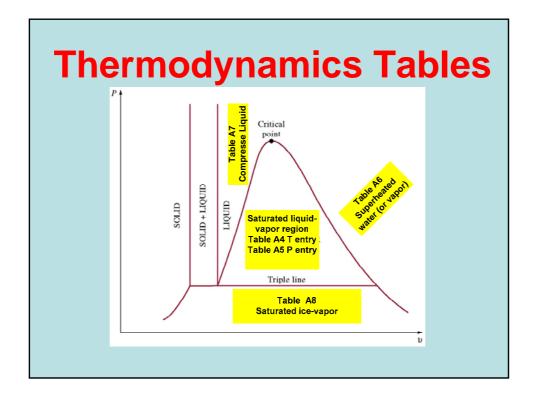

- Homework problems are 4-6 problems every week.
- All homework problems assigned during a given week are due in class one week later unless stated otherwise.
- Late Homework will NOT be accepted

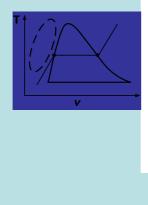




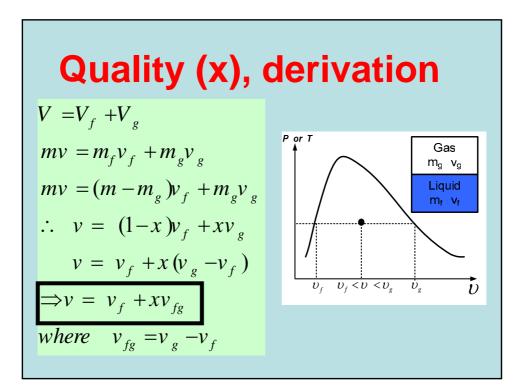

Basic Review of Thermodynamics I

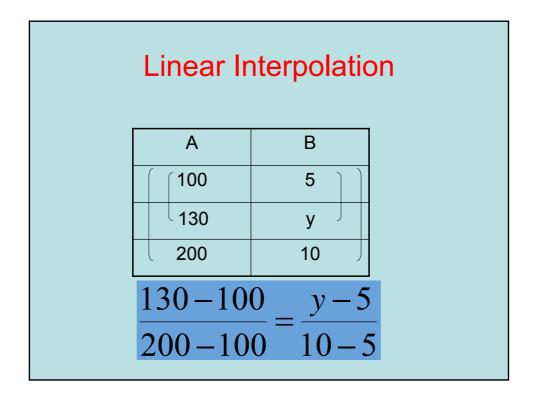


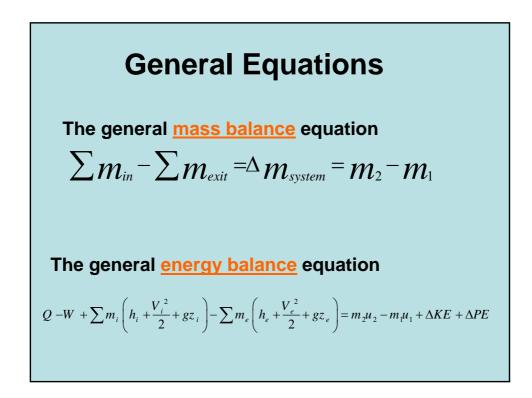



Saturated Liquid-	TABLE							
vonor mixturo	Saturated water—Temperature table							
vapor mixture Table A-4		Specific volu m ³ /kg			ne, Internal energy, kJ/kg			
Saturated liquid-vapor	Temp., 7 °C	Sat. press., <i>P</i> _{sat} kPa	Sat. liquid, v _f	Sat. vapor, <i>v_g</i>	Sat. Iiquid, <i>u_f</i>	Evap., <i>u_{tg}</i>	Sat. vapor, <i>u_g</i>	
mixture falls under the	0.01	0.6113	0.001000	206.14	0.0 20.97	2375.3 2361.3	2375. 2382.	
P-v (or T-v) dome.	10	1.2276	0.001000	106.38	42.00	2301.5 2347.2 2333.1	2389.	
Its properties can be	15 20	1.7051 2.339	0.001001 0.001002	57.79	62.99 83.95	2319.0	2402	
obtained from Water	25 30	3.169 4.246	0.001003 0.001004	43.36 32.89	104.88 125.78	2304.9 2290.8	2409. 2416.	
Tables A-4 and A-5	35 40	5.628 7.384	0.001006 0.001008	25.22 19.52	146.67 167.56	2276.7 2262.6	2423. 2430.	
T [†]	45 50	9.593 12.349	0.001010 0.001012	15.26 12.03	188.44 209.32	2248.4 2234.2	2436. 2443.	
	55 60	15.758 19.940	0.001015 0.001017	9.568 7.671	230.21 251.11	2219.9 2205.5	2450 2456	
	65	25.03	0.001020	6.197	272.02	2191.1	2463	
	70 75	31.19 38.58	0.001023 0.001026	5.042 4.131	292.95 313.90	2176.6 2162.0	2469 2475	
	80 85	47.39 57.83	0.001029 0.001033	3.407 2.828	334.86 355.84	2147.4 2132.6	2482. 2488.	
	90 95	70.14 84.55	0.001036	2.361 1.982	376.85 397.88	2117.7 2102.7	2494. 2500.	

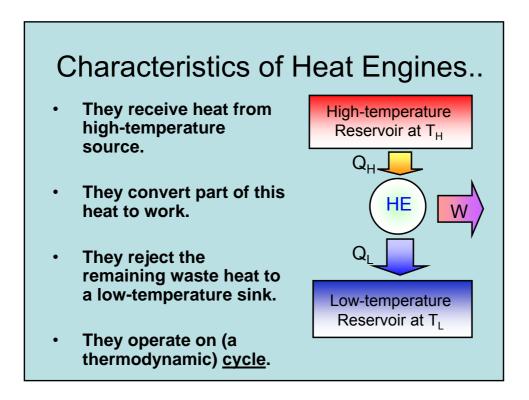
Sat.		c volume.			
Sat.	Specific volume, m³/kg		Internal energy, kJ/kg		
temp., <i>T</i> _{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. Iiquid, <i>u_f</i>	Evap., <i>u_{tg}</i>	Sat. vapor, <i>u_g</i>
0.01	0.001000	206.14 129.21	0.00 29.30	2375.3 2355.7	2375.3 2385.0
13.03	0.001001	87.98	54.71	2338.6	2393.3
17.50	0.001001	67.00	73.48	2326.0	2399.5
21.08	0.001002	54.25	88.48	2315.9	2404.4
24.08	0.001003	45.67	101.04	2307.5	2408.
28.96	0.001004	34.80	121.45	2293.7	2415.
32.88	0.001005	28.19 19.24	137.81 168.78	2282.7 2261.7	2420. 2430.
40.29 45.81	0.001008 0.001010	19.24	191.82	2246.1	2430.
53.97	0.001010	10.02	225.92	2222.8	2448.
				2205.4	2456.
64.97	0.001020	6.204	271.90	2191.2	2463.
69.10	0.001022	5.229	289.20	2179.2	2468.4
75.87	0.001027	3.993	317.53	2159.5	2477.0
81.33	0.001030	3.240	340.44		2483.9 2496.1
	60.06 64.97 69.10 75.87	60.060.00101764.970.00102069.100.00102275.870.00102781.330.001030	60.060.0010177.64964.970.0010206.20469.100.0010225.22975.870.0010273.99381.330.0010303.240	60.060.0010177.649251.3864.970.0010206.204271.9069.100.0010225.229289.2075.870.0010273.993317.5381.330.0010303.240340.44	60.060.0010177.649251.382205.464.970.0010206.204271.902191.269.100.0010225.229289.202179.275.870.0010273.993317.532159.581.330.0010303.240340.442143.4

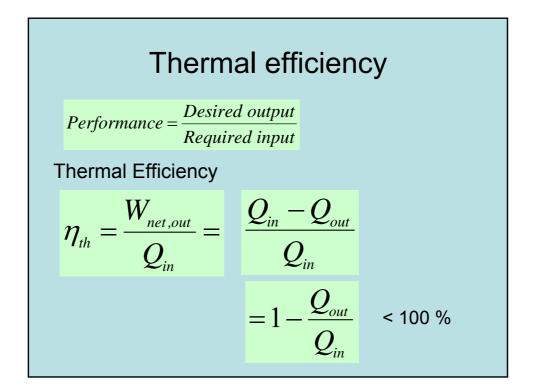

TABLE	•		ed \	/apo	r Tal	ole A	\-6		
T °C	v m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg·K	v m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg · K	$v_g v$
-0	0	= 0.01 MP				= 0.05 MP			la the region to
									In the region to
Sat.†	14.674	2437.9	2584.7	8.1502	3.240	2483.9	2645.9	7.5939	the right of the
50	14.869	2443.9	2592.6	8.1749	2 410	0511 6	0600 F	7 6047	saturated vapo
100	17.196	2515.5	2687.5	8.4479	3.418	2511.6 2585.6	2682.5 2780.1	7.6947 7.9401	
150 200	19.512 21.825	2587.9 2661.3	2783.0 2879.5	8.6882 8.9038	3.889 4.356	2585.6	2780.1	8.1580	line, a substan
200	21.825	2661.3	2879.5	9.1002	4.356	2735.0	2976.0	8.3556	exists as
300	26.445	2730.0	3076.5	9.2813	5.284	2811.3	3075.5	8.5373	
400	31.063	2968.9	3279.6	9.6077	6.209	2968.5	3278.9	8.8642	superheated
500	35.679	3132.3	3489.1	9.8978	7.134	3132.0	3488.7	9.1546	vapor.
600	40.295	3302.5	3705.4	10.1608	8.057	3302.2	3705.1	9.4178	vapor.
700	44.911	3479.6	3928.7	10.4028	8.981	3479.4	3928.5	9.6599	
800	49.526	3663.8	4159.0	10.6281	9.904	3663.6	4158.9	9.8852	
900	54.141	3855.0	4396.4	10.8396	10.828	3854.9	4396.3	10.0967	
1000	58.757	4053.0	4640.6	11.0393	11.751	4052.9	4640.5	10.2964	
1100	63.372	4257.5	4891.2	11.2287	12.674	4257.4	4891.1	10.4859	
1200	67.987	4467.9	5147.8	11.4091	13.597	4467.8	5147.7	10.6662	
1300	72.602	4683.7	5409.7	11.5811	14.521	4683.6	5409.6	10.8382	-

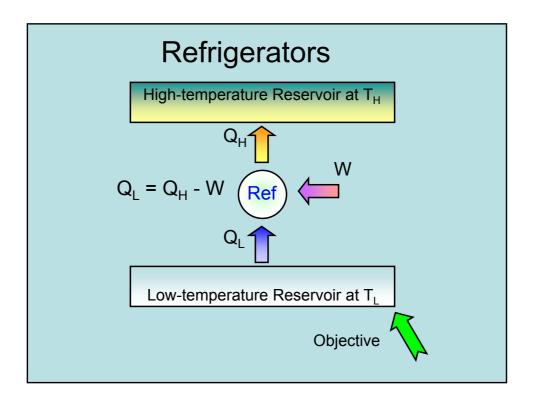

Compressed liquid Table A-7

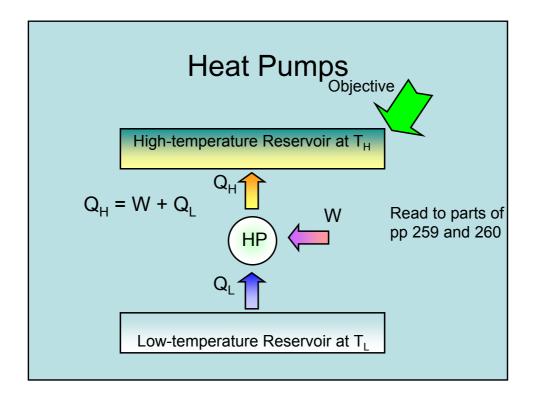

In the region to the left of the saturated liquid line, a substance exists as compressed liquid.

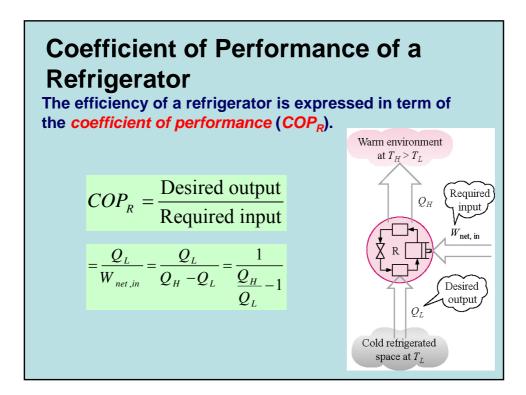


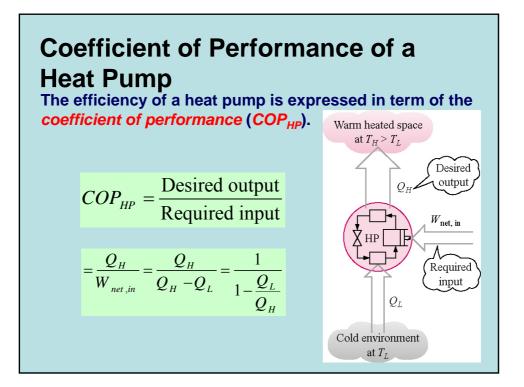

Com	pressed liqu	id water								
⊺ ℃	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K		
<u> </u>	$P = 5 \text{ MPa} (263.99^{\circ}\text{C})$									
	P	= 5 MPa (,	263.99-0)		P = 10 MPa (311.06°C)					
Sat.	0.0012859	1147.8	1154.2	2.9202	0.0014524		1407.6	3.3596		
0	0.0009977	0.04	5.04	0.0001	0.0009952	0.09	10.04	0.0002		
20	0.0009995	83.65		0.2956	0.0009972	83.36	93.33	0.2945		
40	0.0010056	166.95	171.97	0.5705	0.0010034	166.35	176.38	0.5686		
60	0.0010149	250.23	255.30	0.8285	0.0010127	249.36	259.49	0.8258		
80	0.0010268			1.0720	0.0010245	332.59		1.0688		
100	0.0010410			1.3030	0.0010385	416.12	426.50	1.2992		
120	0.0010576			1.5233	0.0010549	500.08		1,5189		
140	0.0010768		592.15	1.7343	0.0010737	584.68	595.42	1.7292		
160	0.0010988			1.9375	0.0010953	670.13	681.08	1.9317		
180	0.0011240			2.1341	0.0011199					
200	0.0011530		853.9	2.3255	0.0011480	844.5	856.0	2.3178		
220	0.0011866	938.4	944.4	2.5128	0.0011805	934.1	945.9	2.5039		
240	0.0012264		1037.5	2.6979	0.0012187		1038.1	2.6872		
260	0.0012749	1127.9	1134.3	2.8830	0.0012645		1133.7	2.8699		
280					0.0013216		1234.1	3.0548		
300					0.0013972	1328.4	1342.3	3.2469		
320										
340										

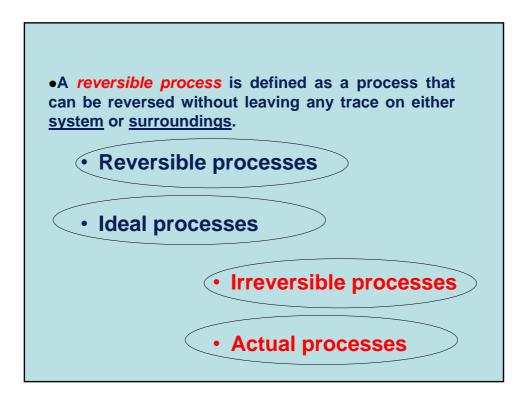


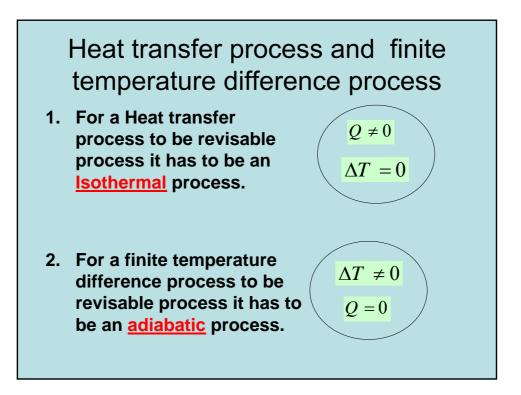


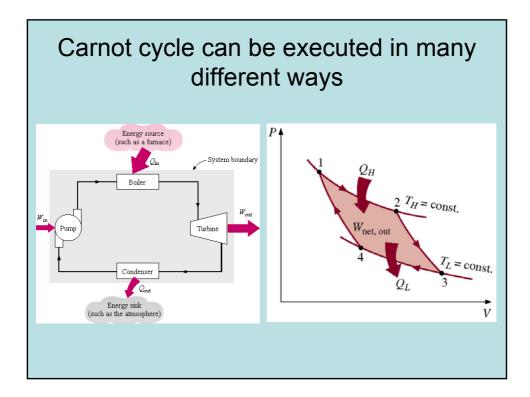


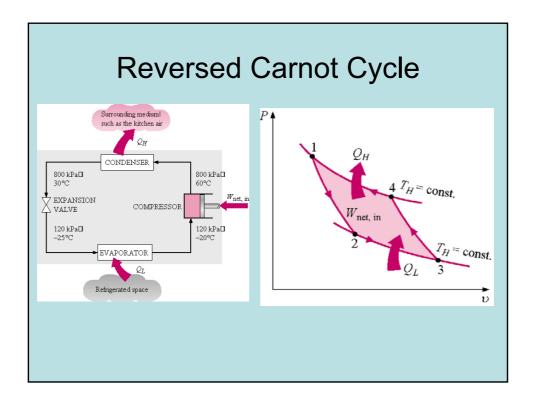


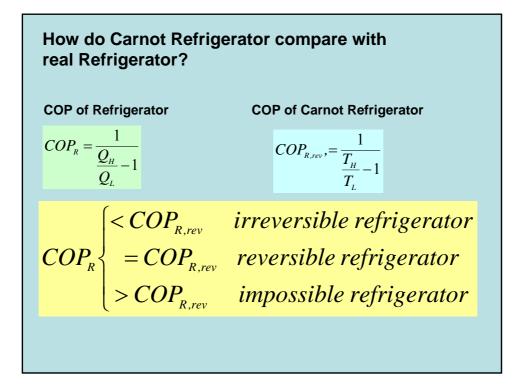


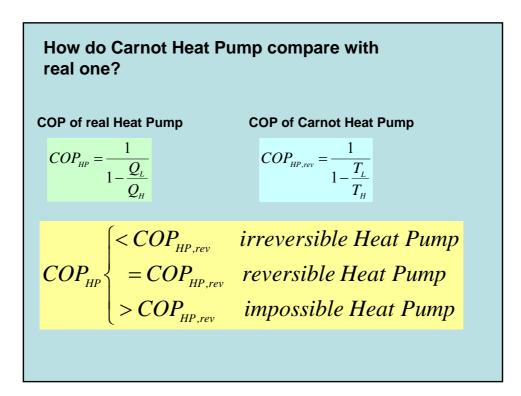


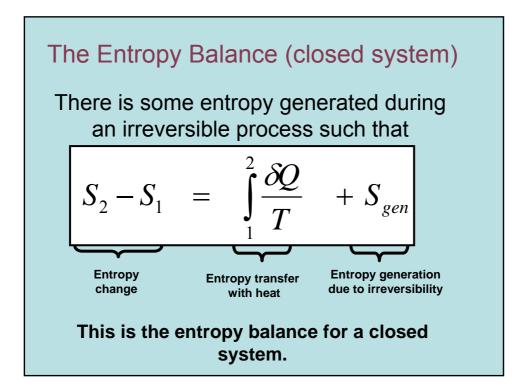


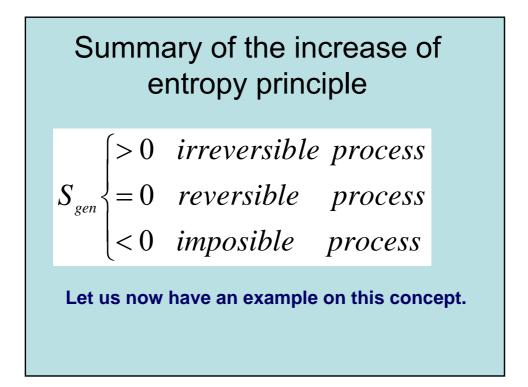


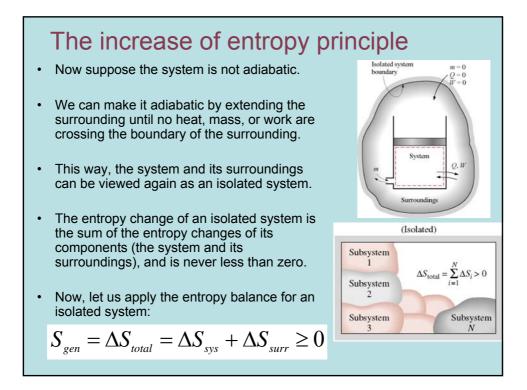


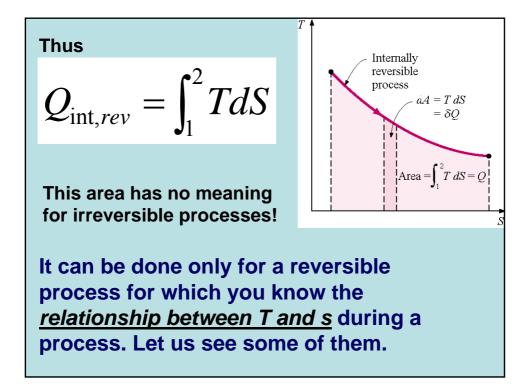


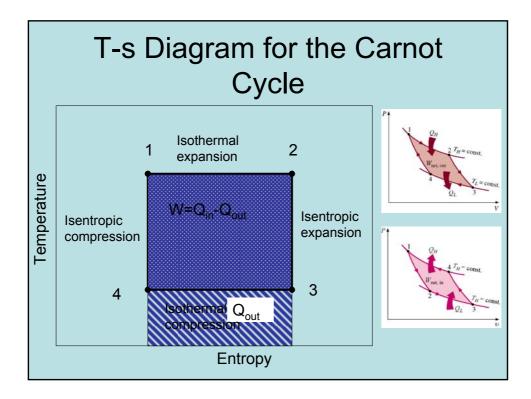





How do Reversible Carnot Heat Engine compare with real engines? $\eta_{thermal} \equiv \eta_{th}$ $\begin{cases} < \eta_{th,rev} & irreversible heat engine \\ = \eta_{th,rev} & reversible heat engine \\ > \eta_{th,rev} & impossible heat engine \end{cases}$






Derivation of Clausius Inequality								
	$\oint \frac{\delta Q}{T} \le 0$							
$\int \frac{\delta Q}{T}$	Reversible	Irreversible						
Heat Engine	= •	< 0						
Refrigeration	= •	< 0						
The equality in the Clausius inequality holds for totally or just internally reversible cycles and the inequality for the irreversible ones.								

